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Abstract

A recursive in time Wiener chaos representation of the optimal nonlinear filter is
derived for a continuous time diffusion model with uncorrelated noises. The existing rep-
resentations are either not recursive or require a prior computation of the unnormalized
filtering density, which is time consuming. An algorithm is developed for computing a re-
cursive approximation of the filter, and the error of the approximation is obtained. When
the parameters of the model are known in advance, the on-line speed of the algorithm
can be increased by performing part of the computations off line.

Key words: multiple Wiener integrals, nonlinear filtering, recursive filter.
∗This work was partially supported by ONR Grant #N00014-95-1-0229 and ARO Grant DAAH 04-95-1-

0164. The paper is based on [10].

1



1 Introduction

In a typical filtering model, a non-anticipative functional ft(x) of the unobserved signal
process X = X(t) is estimated from the observations Y = Y (s), s ≤ t. The best
mean square estimate is known to be the conditional expectation E[ft(X)|Y (s), s ≤ t],
called the optimal filter. When the observation noise is additive, the Kallianpur-Striebel
formula [6, 8] provides the representation of the optimal filter as follows:

E[ft(X)|Y (s), s ≤ t] =
φt[f ]
φt[1]

,

where φt[·] is a functional called the unnormalized optimal filter. In the particular case
ft(X) = f(X(t)), there are two approaches to computing φt[f ].

In the first approach [9, 12, 13], the functional φt[f ] is expanded in a series of multiple
integrals with respect to the observation process. This approach can be used to obtain
representations of general functionals, but these representations are not recursive in time.
In fact, there is no closed form differential equation satisfied by φt[f ].

In the second approach [6, 8, 14] it is proved that under certain regularity assumptions
the functional φt[f ] can be written as

φt[f ] =
∫
f(x)u(t, x)dx (1.1)

for some function u(t, x), called the unnormalized filtering density. Even though the
computation of u(t, x) can be organized recursively in time, and there are many numerical
algorithms to do this [1, 2, 3, 5, 10, etc.], these algorithms are time consuming because
they involve evaluation of u(t, x) at many spatial points. Moreover, computation of φt[f ]
using this approach requires subsequent evaluation of the integral (1.1).

The objective of the current work is to develop a recursive in time algorithm for
computing φt[f ] without computing u(t, x). The analysis is based on the multiple integral
representation of the unnormalized filtering density [10, 11, 13] with subsequent Fourier
series expansion in the spatial domain. In the proposed algorithm, the computations
involving the parameters of the model can be done separately from those involving the
observation process. If the parameters of the model are known in advance, this separation
can substantially increase the on-line speed of the algorithm.

2 Representation of the Unnormalized Optimal

Filter

Let (Ω,F ,P) be a complete probability space, on which standard Wiener processes V =
V (t) and W = W (t) are given of dimensions d1 and r. Random processes X = X(t) and
Y = Y (t) of dimention d and r are defined by the equations

X(t) = X0 +
∫ t

0
b(X(s))ds+

∫ t

0
σ(X(s))dV (s),

Y (t) =
∫ t

0
h(X(s))ds+W (t), 0 ≤ t ≤ T.

(2.1)
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In applications, X(t) represents the unobserved state process subject to estimation from
the observations Y (s), s ≤ t. The σ - algebra generated by Y (s), s ≤ t, will be denoted
by Fy

t .
The following regularity assumptions are made:

(A1) The Wiener processes V and W are independent of X0 and of each other;

(A2) The functions b(x), σ(x), and h(x) are infinitely differentiable and bounded with
all the derivatives;

(A3) The random variable X0 has a density p(x), x ∈ IRd, so that the function p = p(x)
is infinitely differentiable and decays at infinity with all the derivatives faster than
any power of |x|.

The coefficients b, σ, h, the density function p, and the lenght of the time interval T will
be referred to as the parameters of the filtering model (2.1).

Let f = f(x) be a measurable function such that

|f(x)| ≤ L(1 + |x|k0) (2.2)

for some k0 ≥ 0 and L > 0. Assumptions (A2) and (A3) imply that E|f(x(t))|2 < ∞
for all t ≥ 0 [8]. Suppose that T > 0 is fixed. It is known [6, 8, 14] that the best mean
square estimate of f(X(t)) given Y (s), s ≤ t ≤ T, is f̂t = E[f(X(t))|Fy

t ], and under the
above regularity assumptions this estimate can be written as follows:

f̂t =
φt[f ]
φt[1]

.

The functional φt[f ] is called the unnormalized optimal filter and admits a repre-
sentation

φt[f ] =
∫
IRd

f(x)u(t, x)dx.

The random field u = u(t, x) is called the unnrmalized filtering density.
Denote by Pt ϕ(x) the solution of the equation

∂v(t, x)
∂t

=
1
2

d∑
i,j=1

∂2((σσ)
ijv(t, x))

∂xi∂xj
−

d∑
i=1

∂(bi(x)v(t, x))
∂xi

, t > 0;

v(0, x) = ϕ(x),

and consider 0 = t0 < t1 < . . . < tM = T , a uniform (for simplicity) partition of [0, T ]
with steps ∆ = ti − ti−1; this partition will be fixed hereafter. The following theorem
gives a recursive representation of the unnormalized filtering density at the points of the
partition.
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Theorem 2.1 Under assumptions (A1) – (A3),

u(t0, x) = p(x),

u(ti, x)=Ptu(ti−1, ·)(x) +
∑
k≥1

r∑
l1,...,lk=1

∫ ∆

0

∫ sk

0
. . .

∫ s2

0

Pt−sk
hlk . . . hl1Ps1u(ti−1, ·)(x)dY (i)

l1
(s1) . . . dY

(i)
lk

(sk),
P− a.s.

(2.3)

for i = 1, . . . ,M , where Y (i)
l (t) = Yl(t+ ti−1)− Yl(ti−1), 0 ≤ t ≤ ∆.

Proof. Under different assumptions that are typically less restrictive than (A1–A3)
the various forms of the representation (2.3) were established by Kunita [7], Mikulevicius
and Rozovskii [12], and Ocone [13]. 2

To simplify the further presentation, the following notations are introduced. For an
Fy
ti−1

- measurable function g = g(x, ω) and 0 ≤ t ≤ ∆,

F
(i)
0 (t, g)(x) := Ptg(x),

F
(i)
k (t, g)(x) :=

r∑
l=1

∫ t

0
Pt−shlF

(i)
k−1(s, g)dY

(i)
l (s), k ≥ 1.

(2.4)

With these notations, (2.3) becomes

u(ti, x) =
∑
k≥0

F
(i)
k (∆, u(ti−1, ·))(x), i = 1, . . . ,M. (2.5)

It can be shown [14] that the regularity assumptions (A1) and (A2) imply

u(ti, ·) ∈ L2(IRd), i = 1, . . . ,M (P− a.s.)

Consequently, if {en}n≥0 is an orthonormal basis in L2(IRd), then

u(ti, ·) =
∑
n≥0

ψn(i)en (P− a.s.), (2.6)

where ψn(i) = (u(ti, ·), en)0 and (·, ·)0 is the inner product in L2(IRd). Substitution of
(2.6) into (2.5) yields

ψn(i) =
∑
k≥0

( ∑
l≥0

(F (i)
k (∆i, el), en)0ψl(i− 1)

)
,

i = 1, . . . ,M.
(2.7)

Together with the initial relation

ψn(0) = (p, en)0

equation (2.7) can be used for recursive computation of the coefficients ψn(i).
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Clearly, for computational purposes both infinite sums in (2.7) must be truncated.
To study the effects of the truncation it is necessary to specify the basis {en}.

There are two main reasons why the desired filtering algorithm cannot be described
using a general basis {en}. One reason is that, to estimate the error due to the truncation
of the infinite sum in (2.7), it is necessary to know the rate of decay of the coefficients
ψn(i) as n→∞, and this rate, in general, depends on the basis {en}. The other reason
is that, once the UFD is represented in the form (2.6) – exact or truncated, it is natural
to write the unnormalized optimal filter φt[f ] as

φt[f ] =
∑
n≥0

ψn(i)fn,

where
fn =

∫
IRd

f(x)en(x)dx.

On the other hand, if the only restriction on the function f is the growth condition (2.2),
then the last integral need not be defined for a general basis functions en.

Below, the approximations of the UFD and of the optimal filter will be constructed
using the Hermite basis in L2(IRd). The basis is defined as follows. Let Γ = {γ : γ =
(γ1, . . . , γ2), γi ∈ Z+} be the set of d dimensional multi-indices; |γ| =

∑d
i=1 γi. To define

the ordering of Γ, set γ < τ if |γ| < |τ | or if |γ| = |τ |, γi = τi, i < j < d, γj < τj . For
γ ∈ Γ define

eγ(x1, . . . , xd) =
d∏
i=1

eγi(xi), (2.8)

where, for n ∈ Z+, t ∈ IR,

en(t) =
1√

2nπ1/2n!
et

2/2 d
n

dtn
e−t

2
.

It is known [14] that under the regularity assumptions (A2) and (A3) the UFD u(t, x)
is infinitely differentiable as a function of x and decays at infinity with all the derivatives
faster than any power of |x|. Consequently, using the results from [4], it can be shown
that for every ν > 0 there is a constant C(ν) depending only on ν and the parameters of
the model so that for all i = 0, . . . ,M

E|ψγ(i)| ≤
C(ν)
|γ|ν

.

Also, since each function eγ = eγ(x) decays at infinity as exp(−C(γ)|x|2) for some
positive number C(γ), the coefficients

fγ =
∫
IRd

f(x)eγ(x)dx

can be defined for every function f satisfying the condition (2.2).
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3 Recursive Approximation of the Unnormalized

Optimal Filter

It was already mentioned that the infinite sums in (2.7) must be approximated by truncat-
ing the number of terms if the formula is to be used for practical computations. Multiple
integrals in (2.4) must also be approximated. The effects of these approximations are
studied below.

Given a positive integer κ, define the set

Γκ = {γ ∈ Γ : |γ| ≤ κ}

and then the random variables ψγ,κ(i), γ ∈ Γκ, i = 0, . . . ,M, by

ψγ,κ(0) = (p, eγ)0,
ψγ,κ(i) =

∑
τ∈Γκ

((P∆eτ , egm)0+

r∑
l=1

(P∆hleτ , eγ)0[Yl(ti)− Yl(ti−1)]+

1
2

r∑
l=1

(P∆h
2
l eτ , eγ)0[(Yl(ti)− Yl(ti−1))2 −∆]+

r∑
l=1

l−1∑
m=1

(P∆hlhmeτ , eγ)0(Yl(ti)− Yl(ti−1))×

(Ym(ti)− Ym(ti−1)))ψτ,κ(i− 1), i = 1, . . . ,M.

(3.1)

Then the corresponding approximations to u(ti, x) and φti [f ] are

uκ(ti, x) =
∑
γ∈Γκ

ψγ,κ(i)eγ(x),

φti,κ[f ] =
∑
γ∈Γκ

ψγ,κ(i)fγ .
(3.2)

The errors of these approximations are given in the following theorem. The main
steps in deriving (3.1) and (3.2) and the idea of the proof are given in the Appendix.
Below, ‖ · ‖0 denotes the norm in the space L2(IRd).

Theorem 3.1 If assumptions (A1) – (A3) and (2.2) hold and the basis {en} is chosen
according to (2.8) then

max
1≤i≤M

E‖uκ(ti, ·)− u(ti, ·)‖0 ≤ C∆ +
C(ν)
κν∆

, (3.3)

max
1≤i≤M

E|φti,κ[f ]− φti [f ]| ≤ C∆ +
C(ν)
κν∆

. (3.4)
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Remark. The constants in (3.3) and (3.4) are determined by the parameters of the
model, i.e. the bounds on the functions b, σ, h, and p and their derivatives and by the
length T of the time interval. The constants in (3.4) also depend on L and k0 from (2.2).

The error bounds in (3.3) and (3.4) involve two asymptotic parameters: ∆ (the size
of the partition of the time interval) and κ (which determines the number of the spatial
basis functions). With the appropriate choice of these parameters, the errors can be
made arbitrarily small.

The following is the description of the algorithm based on the formulas (3.1) and
(3.2).

1. Off line (before the observations are available):
— for l,m = 1, . . . , r and γ, τ ∈ Γκ, compute (P∆eτ , egm)0, (P∆hleτ , egm)0,

(P∆h
2
l eτ , egm)0, (P∆hlhmeτ , egm)0, fγ =

∫
IRd f(x)eγ(x)dx, and ψγ,κ(0).

— set uκ(t0, x) =
∑
γ∈Γκ

ψγ,κ(0)eγ(x) and φt0,κ[f ] =
∑
γ∈Γκψγ,κ(0)f[γ

.
2. On line, k-th step (as the measurements become available): compute

ψγ,κ(i) =
∑
τ∈Γκ

Qγτ (Y (i))ψ(i− 1), γ ∈ Γκ, (3.5)

where
Qγτ (Y (i)) = (P∆eτ , eγ)0+
r∑
l=1

(P∆hleτ , eγ)0[Yl(ti)− Yl(ti−1)]+

1
2

r∑
l=1

(P∆h
2
l eτ , eγ)0[(Yl(ti)− Yl(ti−1))2 −∆]+

r∑
l=1

l−1∑
m=1

(P∆hlhmeτ , eγ)0(Yl(ti)− Yl(ti−1))×

(Ym(ti)− Ym(ti−1)),

then compute
uκ(ti, x) =

∑
γ∈Γκ

ψγ,κ(i)eγ(x), (3.6)

φti,κ[f ] =
∑
γ∈Γκ

ψγ,κ(i)fγ ,

and
f̂ti,κ =

φti,κ[f ]
φti,κ[1]

. (3.7)

We would like to remark the following features of the algorithm:

(1) The time consuming operations of solving the partial differential equations and
computing integrals are performed off line;

(2) The overall amount of the off-line computations does not depend on the number of
the on-line time steps;
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(3) Formula (3.7) can be used to compute an approximation to f̂ti (e.g. conditional
moments) without the time consuming computations of uκ(ti, x) and the related
integrals;

(4) Only the Fourier coefficients ψγ,κ must be computed at every time step while the
approximate filter f̂ti,κ and/or UFD uκ(ti, x) can be computed as needed, e.g. at
the final time moment.

(5) The on-line part of the algorithm can be easily parallelized.

The number of on-line operations (in flops) to update the coefficients ψ(i) is about

Kop = (r2 + 3r + 1)|Γκ|2,

where |Γκ| = (κ + d)!/(κ!d!) is the number of elements in the set Γκ; for κ = 10 and
d = 6, |Γκ = 8008. We believe that, due to the high spatial regularity of the unnormalized
filtering density, relatively small values of κ will suffice to achieve the desired accuracy
so that the above number of operations is not too large and can be performed on line by
a sufficiently powerful computer even for high dimensional state processes.

4 Conclusion

An optimal nonlinear filtering algorithm is suggested for a continuous time diffusion
model with independent noise. The algorithm is based on the multiple Wiener inte-
gral expansion of the unnormalized filtering density. Recursive approximations of the
unnormalized filtering density and of the optimal filter are computed independently of
each other using a finite collection of (approximate) Fourier coefficients with respect to
the Hermite basis. The coefficients are updated using the increments of the observation
process. The on-line speed of the algorithm is increased by shifting off line the time
consuming operations of solving partial differential equations and computing integrals.
The approximation error can be controlled by increasing the number of the coefficients
and decreasing the size of the time step.
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Appendix

Below, the main steps of the proof of Theorem 3.1 are presented. These steps also
illustrate how formulas (3.1) and (3.2) were obtained.

Step 1. Define
u1(t0, x) := p(x),

u1(ti, x) :=
2∑

k=0

F
(i)
k (∆, u(ti−1, ·))(x).

It is proved in [10, Theorem 2.4], that

max
0≤i≤M

E‖u(ti, ·)− u1(ti, ·)‖0 ≤ C∆. (A.1)
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Step 2. Define

F̄
(i)
0 (∆, g)(x) := P∆g(x),
F̄

(i)
1 (∆, g)(x) :=

r∑
l=1

P∆(hlg)(x)[Yl(ti)− Yl(ti−1)],

F̄
(i)
2 (∆, g)(x) :=
1
2

r∑
l=1

P∆(h2
l g)(x)[(Yl(ti)− Yl(ti−1))2 −∆]+

r∑
l=1

l−1∑
m=1

P∆(hlhmg)(x)(Yl(ti)− Yl(ti−1))×

(Ym(ti)− Ym(ti−1))

and then by induction

ū1(t0, x) := p(x),

ū1(ti, x) =
2∑

k=0

F̄
(i)
k (∆, ū1(ti−1, ·))(x).

It can be shown that

max
0≤i≤M

E‖ū1(ti, ·)− u1(ti, ·)‖0 ≤ C∆. (A.2)

Step 3. The same arguments as in the proof of Theorem 2.6 in [10] show that

E‖ū1(ti, ·)− uκ(ti, ·)‖0 ≤
C(ν)
κν∆

. (A.3)

Combining (A.1), (A.2), (A.3), and the triangle inequality results in (3.3).
2. Inequality (3.4) follows from (3.3) and the Cauchy inequality. To deal with the

technical difficulty that, in general, f /∈ L2(IRd), the following spaces are introduced
[14, Sec. 4.3]: for w ∈ IR, L2(IRd, w) = {ϕ :

∫
IR ϕ

2(x)(1 + |x|2)wdx < ∞}. The growth
condition (2.2) then implies that f ∈ L2(−w) for sufficiently large positive w, while the
regularity assumptions and the choice of the basis {en} imply that both the UFD and
its approximation belong to L2(IRd, w) for all positive w. The idea is then to establish
the analog of inequality (3.3) with the norm of the space L2(IR,w) for sufficiently large
positive w and then to use the generalized Cauchy – Schwartz inequality.
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