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Abstract

A fast algorithm is proposed for computing on line the optimal nonlinear
filter in the continuous-discrete time, multiple model setting. Using the finite
element approximation on a spatial grid with N points and performing part of
the computations off line, the on-line complexity of the algorithm is shown to
be O(N) for all dimensions of the state process. The error of the approximation
is also studied.
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1 Introduction

In the continuous-discrete time filtering model, an unobservable continuous
time state process is estimated from the noisy measurements made at discrete
time moments. This model seems of special interest from the point of view of
applications, because many real life processes evolve in continuous time while
the digital devices used to process the measurements require discrete time data.
The case of continuous time observations was studied in [9, 8], see also [10].

The desired solution of the filtering problem is an algorithm that provides
the best mean square estimate of the given functional of the state process in
the form suitable for on-line implementation. In the linear case, such a solution
is given by the Kalman filter [6, 7].

It is worth mentioning that the exact solution of the continuous-discrete
time filtering problem is known for a wide class of nonlinear models [4, 6]
and consists in determining a special random field called the unnormalized
filtering density (UFD), but the resulting algorithm requires on-line solution
of a partial differential equation (Fokker-Planck equation) and computation of
integrals. If the dimension of the state process is greater than three, the real
time implementation of this algorithm is practically impossible.

On-line solution of the Fokker-Planck equation can be avoided if the UFD
admits a finite dimensional sufficient statistics; in particular, this is the case
when the model is linear Gaussian. The first nonlinear example of this sort
was discovered by Benesh [2], and a more general class of UFD admitting finite
dimensional sufficient statistics was studied by Daum [3]. Unfortunately, for a
given nonlinear model, it is usually not clear whether the sufficient statistics
exists. The practical algorithms based on this approach use approximations
similar to the extended Kalman filter [11], so as a rule the error of such approx-
imations is unknown. Moreover, these algorithms still require on-line solution
of an ordinary differential equation and evaluation of integrals.

The objective of the current work is to develop a recursive numerical algo-
rithm for computing the optimal filter in which the on-line part is as simple as
possible; in particular, no differential equations are to be solved on-line. The
starting point in the derivation is the equation satisfied by the unnormalized
filtering density in the general nonlinear model, and the approach is based on
the technique known as the parameterization of the UFD [6] using the finite
element approximation [5].

In the proposed algorithm (Section 3) both time consuming operations of
solving the Fokker-Planck equation and computing the integrals are performed
off line, which makes the algorithm suitable for on-line implementation. The
on-line complexity of the algorithm is O(N), where N is the number of points
in the spatial domain (or the number of functions used in the finite element
approximation). Since the result is not the exact optimal filter, the error of the
approximation is estimated.
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2 The Filtering Problem

Consider the problem of estimating an IRd-valued state process X = X(t) that
evolves in continuous time according to the following diffusion equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t), X(0) = x0, (2.1)

given IRr-valued measurements z = z(k) made at discrete time moments tk =
k∆, k ≥ 1:

z(k) = h(X(tk)) + v(k). (2.2)

In the above, W = (W (t))t≥0 is an IRd1-valued standard Brownian motion
independent of the initial condition x0; functions b = b(x), σ = σ(x), and
h = h(x), x ∈ IRd, take values in IRd, IRd×d1 , and IRr respectively; the sequence
{v(k)}k≥1 is independent of the state process and consists of i.i.d. Gaussian
random vectors with zero mean and covariance Ev(k)v(k)T = εI, I ∈ IRr×r is
the identity matrix, ε > 0 is a scalar parameter. The underlying probability
space (Ω,F ,P) is assumed to be fixed.

The following regularity assumptions are made about the model (2.1), (2.2):

1. the functions b, σ, and h are infinitely differentiable and bounded with all
the derivatives;

2. the random vector x0 has a density p0 = p0(x), x ∈ IRd, so that the function
p is infinitely differentiable and decays at infinity with all the derivatives
faster than any power of |x|.

Let f = f(x), x ∈ IRd, be a measurable scalar function such that E|f(X(t))|2 <
∞ for all t ≥ 0. Then the filtering problem for (2.1), (2.2) can be stated as fol-
lows: find the best mean square estimate of f(X(tk)) given the measurements
z(m), m = 1, . . . , k. This estimate is called the optimal filter and will be
denoted by f̂(k). It is a standard fact that

f̂(k) = E(f(X(tk))|z(1), . . . , z(k)).

For computational purposes, the optimal filter can be characterized as follows.
Denote by Tt the solution operator for the Fokker-Planck equation corre-

sponding to the state process; in other words, u(t, x) = Ttϕ(x) is the solution
of the equation

∂u(t, x)
∂t

=
1
2

d∑
i,j=1

∂2

∂xi∂xj

 d1∑
l=1

σil(x)σjl(x)u(t, x)

−
d∑

i=1

∂

∂xi
(bi(x)u(t, x)), t>0,

u(0, x) = ϕ(x).

(2.3)

Next, define the sequence pk(x), x ∈ IRd, k ≥ 0, by

p0(x) = p(x),
pk(x) = Hk(x)T∆pk−1(x),

3



where

Hk(x) = exp

{
1
ε2

r∑
l=1

(
hl(x)zl(k)−

1
2
h2

l (x)
)}

.

The random field pk = pk(x) is called the unnormalized filtering density.
Then the optimal filter f̂(k) can be written as follows [6]:

f̂(k) =
∫
IRd pk(x)f(x)dx∫

IRd pk(x)dx
. (2.4)

The numerator in (2.4) will be denoted by φk[f ]. With this notation, (2.4)
becomes

f̂(k) =
φk[f ]
φk[1]

.

3 The Algorithm

Assume that the function f satisfies the following growth condition:

|f(x)| ≤ C(1 + |x|α), x ∈ IRd, (3.1)

for some α, C > 0. Then E|f(X(t))|2 <∞ for all t ≥ 0 [7].
To parameterize the function pk, a finite element approximation is used.

Let {e1, . . . , en} be a basis in the given finite dimensional set of interpolating
functions and {x1, . . . , xN} the collection of points in IRd so that ei(xj) = δij .
Assume that the support of each function ei is a compact set concentrated
around the point xi.

For a continuous function v = v(x) its interpolation v = v(x) is defined by

v(x) =
N∑

i=1

v(xi)ei(x).

Consider the following approximation of the unnormalized filtering density:

p̃k(x) = Hk(x)T∆p̃k−1(x).

For l,m = 1, . . . ,M define the numbers

Qlm = (T∆em)(xl), ψl(k) = p̃k(xl),

and
fl =

∫
IRd

f(x)el(x)dx.

The coefficients ψl(k) can be used to compute the approximations p̃k(x) and
φ̃k[f ] of the UFD and the unnormalized optimal filter according to the following
recursive algorithm.

1. Off line (before the measurements are available),
compute Qlm, fl, and ψl(0) = p0(xl), l, m = 1, . . . , N.
2. On line, step k (as the measurements become available): compute

ψm(k) = Hk(xm)
N∑

l=1

Qmlψl(k − 1),m = 1, . . . , N, (3.2)
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then compute

p̃k(x) =
N∑

l=1

ψl(k)el(x), (3.3)

φ̃k[f ] =
N∑

l=1

ψl(k)fl,

and

f̃k =
φ̃k[f ]
φ̃k[1]

. (3.4)

According to formula (3.2), the matrix Q can be viewed as the filter kernel.
We would like to remark the following features of the algorithm:

(1) The time consuming operations of solving the partial differential equation
(2.3) and computing integrals are performed off line;

(2) The overall amount of the off-line computations does not depend on the
number of the on-line time steps;

(3) Formula (3.4) can be used to compute an approximation to f̂(k) (e.g.
conditional moments) without computing p̃k(x) as an intermediate step;

(4) Only the coefficients ψl must be computed at every time step while the
approximate filter f̃k and UFD p̃k(x) can be computed as needed, e.g. at
the final time moment.

(5) The on-line part of the algorithm can be easily parallelized.

The number of on-line operations on each step of the algorithm is O(N),
where N is the number of the spatial points. The reason is that the number of
operations to update each of the coefficients ψm according to (3.2) is effectively
independent of N . Indeed, since T∆el is a solution of a parabolic equation with
the initial condition el and each function el is compactly supported around
the point xl, the values of (T∆el)(xm) will be close to zero when the distance
|xl − xm| is sufficiently large. In other words, the the matrix Q = (Qml) is
numerically banded meaning that in actual computations Q is replaced by a
banded matrix with the number of nonzero entries in each column not exceeding
some fixed number L; the number L is independent of N . The specific value of
L depends on the coefficients of the state equation and the basis functions, and
can be controlled by the suitable choice of ∆. The number of on-line operations,
measured in flops, on each step of the algorithm is then equal to

Kop = (3r + 2L+ 3)N.

The approximation error can be controlled by increasing the dimension of
the approximation. The specific error bounds depend on the basis functions el.
For simplicity, consider the one dimensional model (d = r = 1) and the linear
interpolation on a uniform grid so that the functions el(x) are given by

el(x) =
(

1− |x− xl|
xl+1 − xl

)
I(xl−1 ≤ x ≤ xl+1).
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Denote by C2
b the space of twice continuously differentiable functions bounded

with both derivatives; ‖f‖Cb
2

:= supx∈IR |f(x)|+supx∈IR |f ′(x)|+supx∈IR |f ′′(x)|.
Also denote by L2(w), w ∈ IR, the space of measurable functions f = f(x)
for which ‖f‖2

L2(w) :=
∫
IR |f(x)|2(1 + x2)wdx < ∞; similarly, H1(w) = {f :

‖f‖2
H1(w) := ‖f‖2

L2(w) + ‖f ′‖2
L2(w) <∞}.

Theorem. Assume that the spatial grid x1 < . . . < xN is uniform (xi+1 −
xi = δx), [−R,R] ⊂ [x1, xN ] for some R > 0, and the linear interpolation is
used. Then for every w > 0 there is a constant C(w) depending only on w and
possibly the coefficients of the state equation, and a constant C(h) depending
only on the ratio h(x)/ε so that

sup
x∈IR

E|pk(x)− p̃k(x)| ≤ exp (k(C(w)∆ + C(h))×(
(δx)2

8
‖p0‖C2

b
+

C(w)
(1 +R2)w/2

‖p0‖H1(w)

)
.

If in addition the function f satisfies the growth condition (3.1), then

E|φk[f ]− φ̃k[f ]| ≤

exp (k(C(w)∆ + C(h))×
(
CRα+3/2 (δx)2

8
‖p0‖C2

b
+

C(w)‖f‖L2(−α−2)

(1 +R2)w/2
‖p0‖L2(w+α+2)

)
.

Proof. It is well known that in the case of linear interpolation

sup
x∈[−R,R]

|f(x)− f(x)| ≤ (δx)2

8
max

x∈[−R,R]
|f ′′(x)| ≤

(δx)2

8
‖f‖C2

b
.

Another well known inequality is

sup
x/∈[−R,R]

|f(x)| ≤ C(w)
(1 +R2)1/2

‖f‖H1(w).

It can be shown using the definition of pk and the regularity assumptions
that

E‖pk‖X ≤ ek(C(w)∆+C(h))‖p0‖X,

where X is either C2
b or H1(w). After that the first statement of the theorem

follows from the discrete time version of the Gronwall lemma.
The second statement of the theorem follows from the first and the growth

condition (3.1). 2

The theorem implies that for every k the approximation error converges to
zero in the limit lim

R→∞
lim

δx→0
.

Remark. If ε−1‖h‖C2
b
≤ 1, then C(h) = 8ε−2‖h‖2

C2
b
, and if ε−1‖h‖C0

b
≥ 1,

then C(h) = 5ε−2‖h‖2
C2

b
+ 7ε−4‖h‖4

C1
b
.
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4 Multiple Model Filtering

The optimal nonlinear filter can also be used even if the parameters of the state
equation are not known to the observer. To construct the filter in this situation,
the multiple model approach can be used. According to [1], the basic assump-
tion of the approach is that at each moment the state process can be described
by one of the given number of models with switching between the models gov-
erned by a homogeneous Markov process. For example, an aircraft can be in
one of few possible flight modes (constant velocity, constant acceleration, co-
ordinated turn, etc.), and while the current mode may be not known to the
observer, the dynamical equations corresponding to each mode are available.

Assume that each of the possible models of the state process is of the form
(2.1), i.e. is a nonlinear diffusion with drift b(x, i) and diffusion coefficient
σ(x, i), with i ∈ {1, . . . ,M} corresponding to the particular model. If θ = θt

is a homogeneous Markov process with values in the set {1, . . . ,M}, initial
distribution π0 ∈ IRM , and the jump intensity matrix Λ ∈ IRM×M , then the
state process X = X(t) can be modeled by

dX(t) = b(X(t), θt)dt+ σ(X(t), θt)dW (t). (4.1)

It is also assumed that the measurements

z(k) = h(X(tk), θtk) + v(k) (4.2)

with the sequence v = v(k) as in (2.2), and that the process θ is independent of
v, W, and X(0). As before, the functions b(·, i), σ(·, i), and h(·, i) are infinitely
differentiable and bounded with all the derivatives for every i = 1, . . . ,M, and
the initial density p0 of X(0) is infinitely differentiable and decays at infinity
faster than any power of |x|.

The choice of the initial distribution π0 and of the jump intensity matrix
Λ is made during the overall system design. For example, in the case of an
aircraft tracking both π0 and Λ can be estimated by analyzing the real flight
data. A general discussion of the question is given in [1].

From the point of view of the general theory, the model (4.1), (4.2) is equiv-
alent to the original model (2.1), (2.2). Indeed, the unobservable component is
the pair of processes (X, θ) with the generating operator

L =

 L1 0
. . .

0 LM

+ Λ,

where

Lkg(x) =
1
2

d∑
i,j=1

(σ(x, k)σT (x, k))ij
∂2g(x)
∂xi∂xj

+

d∑
i=1

b(x, k)
∂g(x)
∂xi

and σT is the transpose of the matrix σ. Denote by ΓtF(x) the solution of the
equation

∂v(t, x)
∂t

= L∗v(t, x), t > 0, v(0, x) = F(x),
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in which v(t, x) is a vector1 in IRM and L∗ is the formal adjoint of L.
Define the vectors p(k, x), k ≥ 0, x ∈ IRd, by

p(k, x) = H(k, x)Γ∆p(k − 1, ·)(x), k ≥ 1,
p(0, x) = p0(x)π0,

(4.3)

where H(k, x) is a diagonal matrix with entries

exp

{
1
ε2

r∑
l=1

(
hl(x, i)zl(k)−

1
2
h2

l (x, i)
)}

i = 1, . . . ,M.

For a function f satisfying the growth condition (3.1) define

φk[f, i] =
∫

IRd
f(x)[p(k, x)]idx.

Then

Ef(X(tk))|z(1), . . . , z(k)) =
∑M

i=1 φk[f, i]∑M
i=1 φk[1, i]

and
P(θtk = i|z(1), . . . , z(k)) =

φk[1, i]∑M
i=1 φk[1, i]

.

Recursive approximations of p(k, x) and φk[f, i] can be computed using the
same approach as in the previous section. The vector p(k, x) is approximated
by

p̃(k, x) =
N∑

l=1

M∑
i=1

ψi
l(k)el(x)ui,

where e1, . . . , eN are the interpolating functions and {u1, . . . ,uM} is the stan-
dard unit basis in IRM (i.e. [ui]j = δij). The coefficients ψi

l are updated using
the pre-computed filter kernel Q = (Qij

lm), l,m = 1, . . . , N , i, j = 1, . . . ,M, and
the measurements z(k). The following is the description of the corresponding
algorithm.

1. Off line (before the observations are available): compute the components of
the kernel

Qij
lm = [Γ∆(em(·)uj)]i(xl),

the coefficients

fl =
∫

IRd
f(x)el(x)dx

and
ψi

l(0) = p0(xl)[π0]i;

set

p̃(0, x) =
N∑

l=1

M∑
i=1

ψi
l(0)el(x)uk;

1All vectors are column vectors; the components of a vector v are denoted by either vi or [v]i.
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2. On line, step k: compute

ψi
l(k) = H(k, xl)

N∑
m=1

M∑
j=1

Qij
lmψ

j
m(k − 1),

then, if necessary, compute

p̃(k, x) =
N∑

l=1

M∑
i=1

ψi
l(n)el(x)ui,

φ̃k[f, i] =
N∑

l=1

ψi
l(k)fl,

f̃k =
∑M

i=1 φ̃k[f, i]∑M
i=1 φ̃k[1, i]

, (4.4)

and

θ̃k(i) =
φ̃k[1, i]∑M

i=1 φ̃k[1, i]

(the probability that the current model is i).

Formula (4.4) gives only one possible way of estimating the state. Once the
coefficients ψ(k) are known, other estimates can be constructed, for example,

X̂k = arg max
x

[p̃(k, x)]θ̂k
,

where
θ̂k = arg max

i
φk[1, i].

Using the same arguments as in the previous section, it can be shown that
the number of on-line operations (in flops) to update the coefficients ψ is

Kop = (3r + 2L+ 3)M2N.

The operator Γ∆ can be approximated by the Trotter formula as follows.
For t > 0 denote by T (k)

t g(x), k = 1, . . . ,M, the solution of the equation

∂v(t, x)
∂x

= L∗kv(t, x), v(0, x) = g(x),

and let

Tt =


T

(1)
t 0

. . .

0 T
(M)
t

 .

If 0 = t0 < t1 . . . < tλ = ∆ is a partition of the interval [0,∆], then Γ∆ is
approximated by

exp((tλ − tλ−1)ΛT )Ttλ−tλ−1
· · · exp((t1 − t0)ΛT )Tt1−t0 .
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