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WIENER CHAOS AND NONLINEAR FILTERING

S. V. LOTOTSKY

Abstract. The paper discusses two algorithms for solving the Zakai equation in
the time-homogeneous diffusion filtering model with possible correlation between
the state process and the observation noise. Both algorithms rely on the Cameron-
Martin version of the Wiener chaos expansion, so that the approximate filter is a
finite linear combination of the chaos elements generated by the observation process.
The coefficients in the expansion depend only on the deterministic dynamics of
the state and observation processes. For real-time applications, computing the
coefficients in advance improves the performance of the algorithms in comparison
with most other existing methods of nonlinear filtering. The paper summarizes
the main existing results about these Wiener chaos algorithms and resolves some
open questions concerning the convergence of the algorithms in the noise-correlated
setting. The presentation includes the necessary background on the Wiener chaos
and optimal nonlinear filtering.
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1. Introduction

Let us recall the general mathematical formulation of the filtering problem [27, 28,
44, 62]. Consider two random processes, the state X = X(t) and observations
Y = Y (t), t ≥ 0, both defined on a suitable stochastic basis F = (Ω,F , (Ft)t≥0,P). Let
f = f(t,X0,t, Y0,t) be a square integrable measurable functional, depending at time t
on the trajectories X0,t and Y0,t of the processes X and Y up to time t. The filtering
problem is to find the optimal filter estimate of f , that is, the best mean-square

estimate f̂t of f(t,X0,t, Y0,t) on the basis of the observations Y (s), 0 ≤ s ≤ t. From
the basic probability theory, this estimate is known to be the conditional expectation

f̂t = E
(
f(t,X0,t, Y0,t)|FY

t

)
, (1.1)

where FY
t is the σ-algebra generated by the random variables Y (s), 0 ≤ s ≤ t. The

subject of the mathematical theory of filtering is finding suitable ways of computing
this conditional expectation, either exactly or approximately.

If f(t,X0,t, Y0,t) = f(X(t)), then, for a large class of processes X,Y , the optimal filter
(1.1) is computable by the formula

f̂t =

∫
S

f(x)u(t, x)dx∫
S

u(t, x)dx
, (1.2)

where S is the phase space of the unobserved process X and u = u(t, x) is a random
field called unnormalized filtering density. Moreover, the function u is a unique so-
lution of a linear stochastic parabolic equation driven by the observation process Y ;
the equation is known as the Zakai equation. Below is a rough idea of the filtering
algorithms discussed in this paper.

By definition, the unnormalized filtering density u is a function of the time t, space
x, and the elementary outcome ω; by convention, the dependence on ω is usually not
shown, but always implied. Assume that the filtering problem is considered on a fixed
time interval [0, T ]. Similar to the usual Fourier series expansion, we can write

u(t, x, ω) =
∞∑

k,l=1

ϕkl(t)ek(x)ξl(ω), (1.3)

where ϕkl, k, l ≥ 1, are deterministic functions of time, {ek, k ≥ 1} is an orthonormal
basis in L2(S), and {ξl, l ≥ 1}, is an orthonormal basis in the suitable space of random
variables generated by the observation process Y (s), 0 ≤ s ≤ T .

Let 0 = t0 < t1 < . . . < tn = T , with tk = k∆, be a uniform partition of the
interval [0, T ]. We will see that the uniqueness of the unnormalized filtering density
and linearity of the Zakai equation imply the following recursive version of (1.3):

u(ti, x, ω) =
∞∑

k=1

ϕi
k(ω)ek(x), ϕi

k(ω) =
∞∑

l,n=1

qln
k ϕi−1

n (ω)ξi
l (ω), (1.4)

where qln
k are real numbers and {ξi

l , l ≥ 1}, is an orthonormal basis in the suitable
space of random variables generated by the observation process Y (s), ti−1 ≤ s ≤ ti.
In most applications, the space S is all or part of Rd, so that there is no difficulty in
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selecting the functions ek. Construction of the basis in the space of random variables
generated by the observation process is less straightforward and relies on a theorem
of Cameron and Martin [8].

A recursive approximation of u is obtained by keeping only finitely many terms in
each of the sums in (1.4); if the filtering model is time-homogeneous, then the numbers
qln
k depend only the time step ∆ and the coefficients in equations describing the state

and observation processes, and therefore can be computed in advance. We call the
corresponding algorithm for computing the approximation of u a spectral separating
scheme. We will see that there are two fundamentally different ways to truncate
the expansions in (1.4), resulting in the spectral separating schemes of the first and
second kind.

The structure of the paper is as follows. Sections 2 and 3 contain the background in-
formation about nonlinear filtering and Wiener chaos. Section 2 introduces the time-
homogeneous diffusion filtering model and outlines the derivation of representation
(1.2) for the optimal filter. Section 3 reviews the construction of the Cameron-Martin
basis and presents the corresponding expansion for the solution of a linear stochastic
evolution equation. Section 4 is the main part of the paper and is mostly based on
papers [46] and [47]. In this section, we derive representation (1.4) for the solution
of the Zakai equation in the time-homogeneous diffusion filtering model, study the
spectral separating schemes, and preform the compare-and-contrast analysis of the
results from [46] and [47]. Theorem 4.5, establishing the convergence of the spectral
separating scheme of the first kind in the noise-correlated setting, is new. In Section
5 we discuss other filtering models and other approaches to constructing the optimal
filter, as well as possible connections with the Wiener chaos method. It appears that
the spectral separating schemes have both theoretical and practical interest due to
a unique combination of features not found in other works on nonlinear filtering. In
particular, (i) these algorithms have a potential for good real-time performance when
the dimension of the state process is large, and (ii) the implementation and analysis
of the algorithms are not affected by the presence of the observation noise in the state
equation.

2. The Diffusion Filtering Model

Let (Ω,F ,P) be a complete probability space with independent standard Wiener
processes V = V (t) and W = W (t) of dimensions d1 and r respectively. Let X0

be a random variable independent of W and V . We consider a time-homogeneous
diffusion filtering model, in which the unobserved d - dimensional state, or signal,
process X = X(t) and the r-dimensional observation process Y = Y (t) satisfy the
Itô stochastic ordinary differential equations

dX(t) = b(X(t))dt + σ(X(t))dV (t) + ρ(X(t))dW (t),

dY (t) = h(X(t))dt + dW (t), 0 < t ≤ T ;

X(0) = X0, Y (0) = 0,

(2.1)
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where b(x) ∈ Rd, σ(x) ∈ Rd×d1 , ρ(x) ∈ Rd×r, h(x) ∈ Rr. We call (2.1) time-
homogeneous because the functions b, σ, ρ, and h do not depend on time. A more
general filtering model is discussed in Section 5.

Assumption R1. The components of the matrix functions σ and ρ are C3
b(Rd),

that is, bounded and three times continuously differentiable on Rd so that all the
derivatives are also bounded; the components of the functions b and h are C2

b(Rd),
and the distribution of the random variable X0 has a density p0 with respect to the
Lebesgue measure on Rd.

Under Assumption R1 system (2.1) has a unique strong solution [31, Theorems 5.2.5
and 5.2.9].

Let f = f(x) be a scalar measurable function on Rd so that sup0≤t≤T E|f(X(t))|2 <
∞. In what follows, we show that the optimal filter

f̂t = E
(
f(X(t))|FY

t

)

has the representation (1.2) and derive the equation for the function u.

Define a new probability measure P̃ on (Ω,F) as follows: for A ∈ F ,

P̃(A) =

∫

A

Z−1
T dP,

where

Zt = exp

(∫ t

0

h∗(X(s))dY (s)− 1

2

∫ t

0

|h(X(s))|2ds

)
.

Here and below, if ζ ∈ Rk, then ζ is a column vector, ζ∗ = (ζ1, . . . , ζk), and |ζ|2 = ζ∗ζ);
the adjoint of a matrix A is A∗.

The measures P and P̃ are equivalent because the function h is bounded. The expec-

tation with respect to the measure P̃ will be denoted by Ẽ.

Theorem 2.1. The measure P̃ has the following properties:

P1. Under the measure P̃, the distributions of the Wiener process V and the
random variable X0 are unchanged, the observation process Y is a standard
Wiener process, and the state process X satisfies

dX(t) = b(X(t))dt + σ(X(t))dV (t)

+ ρ(X(t)) (dY (t)− h(X(t))dt) , 0 < t ≤ T ;

X(0) = X0;

(2.2)

P2. Under the measure P̃, the Wiener processes W and Y and the random variable
X0 are independent of one another;

P3. The optimal filter f̂t satisfies

f̂t =
Ẽ

(
f(X(t))Zt|FY

t

)

Ẽ(Zt|FY
t )

. (2.3)
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P4 If ξ ∈ L2(Ω, P̃), then ξ ∈ L1(Ω,P) and

E|ξ| ≤ C

√
Ẽξ2, (2.4)

where C depends only on T and supx∈Rd |h(x)|.

Proof. Properties P1 and P2 follow from the Girsanov Theorem; notice that equa-
tion (2.2) is equivalent to the first equation in (2.1) because dW = dY −hdt. Property
P3 is a particular case of the Bayes formula [59, Lemma 8.6.2]. Finally, P4 follows
from the Cauchy-Schwartz inequality:

E|ξ| = Ẽ(ZT ξ) ≤
√
ẼZ2

T

√
Ẽξ2 ≤ C

√
Ẽξ2.

The details of the arguments can be found in [28, 44, 62]. ¤

Next, consider the partial differential operators

Lg(x) =
1

2

d∑
i,j=1

((σ(x)σ∗(x))ij + (ρ(x)ρ∗(x))ij)
∂2g(x)

∂xi∂xj

+
d∑

i=1

bi(x)
∂g(x)

∂xi

;

Mlg(x) = hl(x)g(x) +
d∑

i=1

ρil(x)
∂g(x)

∂xi

, l = 1, . . . , r;

and their adjoints

L∗g(x)=
1

2

d∑
i,j=1

∂2

∂xi∂xj

((σ(x)σ∗(x))ijg(x)+(ρ(x)ρ∗(x))ijg(x))−
d∑

i=1

∂

∂xi

(bi(x)g(x)) ;

M∗
l g(x) = hl(x)g(x)−

d∑
i=1

∂

∂xi

(ρil(x)g(x)) , l = 1, . . . , r.

Let Hγ, γ ∈ R, be the Sobolev space with the norm

‖f‖γ =

(∫

Rd

(1 + |y|2)γ/2|f̆(y)|2dy

)1/2

,

where f̆ = f̆(y) is the Fourier transform of f ; H0 = L2(Rd). Both the inner product
in L2(Rd) and the duality between H1 and H−1 relative to L2(Rd) will be denoted by
(·, ·)0.

Note that the operators L,L∗ are bounded from H1 to H−1 and operators M,M∗

are bounded from H1 to L2(Rd). Moreover, direct calculations show that, under
Assumption R1, there exists a number C > 0 so that, for every g ∈ H1,

2(L∗g, g)0 +
r∑

l=1

‖M∗
l g‖2

0 ≤ C‖g‖2
0. (2.5)

If the matrix σσ∗ is uniformly positive definite, that is, there exists a δ > 0 so that,
for all x, y ∈ Rd,

d∑
i,j=1

d1∑

k=1

σik(x)σjk(x)yiyj ≥ δ|y|2 (2.6)
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then a stronger version of (2.5) holds:

2(L∗g, g)0 +
r∑

l=1

‖M∗
l g‖2

0 ≤ −δ‖g‖2
1 + C‖g‖2

0. (2.7)

Theorem 2.2. In addition to Assumption R1 suppose that the initial density p0

belongs to the space H1. Then there exists a unique FY
t -adapted random field u =

u(t, x), t ∈ [0, T ], x ∈ Rd, with the following properties:

U1 The function u(t, x) is an element of L2(Ω, P̃;C([0, T ],H1)) and, for every
v ∈ H1, satisfies the equality

(u, v)0(t) = (p0, v)0 +

∫ t

0

(u,Lv)0(s)ds +

∫ t

0

r∑

l=1

(u,Mlv)0(s)dYl(s)

on the same set of P̃-measure one for all 0 ≤ t ≤ T ; see Section 4.2 in [62]
for details. In other words, u = u(t, x) is the unique generalized solution of
the stochastic partial differential equation

du(t, x) = L∗u(t, x)dt +
r∑

l=1

M∗
l u(t, x)dYl(t), 0 < t ≤ T, x ∈ Rd;

u(0, x) = p0(x).

(2.8)

U2 The equality

Ẽ
(
f(X(t))Zt|FY

t

)
=

∫

Rd

f(x)u(t, x)dx (2.9)

holds for all bounded measurable functions f .

Proof. Existence, uniqueness, and regularity of an FY
t -adapted generalized solution

of equation (2.8) follow from Theorem 4.2.1 in [62]. Representation (2.9) follows from
Theorem 5.3.1 in [62]. ¤

The random field u = u(t, x) is called the unnormalized filtering density

and the random variable φt[f ] = Ẽ
[
f(X(t))Zt|FY

t

]
, the unnormalized optimal

filter.

If condition (2.6) holds, then the unique solvability of (2.8) holds under weaker reg-
ularity conditions on the coefficients and initial condition; see Theorem 4.1.1 in [62].

3. The Wiener Chaos

In this section, we review the construction of the Cameron-Martin basis in the space
of square integrable functionals of the Wiener process. For a linear stochastic evolu-
tion equation, we show that the coefficients of the Cameron-Martin expansion of the
solution satisfy a lower-triangular system of linear deterministic evolution equations.

For a fixed T > 0, let F = (Ω,F , {Ft}0≤t≤T ,P) be a stochastic basis with the usual
assumptions and W = (W1(t), . . . ,Wr(t)), 0 ≤ t ≤ T , an r-dimensional Wiener
process on F. Denote by FW

t the sigma-algebra generated by the random variables
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Wk(s), k = 1, . . . , r, s ≤ t, and by L2(W), the Hilbert space of FW
T -measurable square

integrable random variables. The Cameron-Martin basis is a special orthonormal basis
in the space L2(W).

Let m = {mk, k ≥ 1} be an orthonormal basis in L2((0, T )) and define independent
standard Gaussian random variables

ξik =

∫ T

0

mi(s)dWk(s).

Consider the set of multi-indices

J =
{

α = (αk
i , i ≥ 1, k = 1, . . . , r), αk

i ∈ {0, 1, 2, . . .},
∑

i,k

αk
i < ∞

}
. (3.1)

The set J is countable, and, for every α ∈ J , only finitely many of αk
i are not equal

to zero. For α ∈ J , we write

|α| =
∑

i,k

αk
i , α! =

∏

i,k

αk
i !,

and define the collection Ξ = {ξα, α ∈ J } of random variables so that

ξα =
1√
α!

∏

i,k

Hαk
i
(ξik), (3.2)

where

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2 (3.3)

is n-th Hermite polynomial. Recall that H0(t) = 1 and H1(t) = t. The N-th Wiener
chaos is the linear span of the random variables ξα, |α| = N .

As an example, let r = 2 and consider the multi-index

α =

(
0 1 0 3 0 0 · · ·
2 0 0 0 4 0 · · ·

)

with four non-zero entries α1
2 = 1; α1

4 = 3; α2
1 = 2; α2

5 = 4. Then the corresponding
basis element

ξα = ξ2,1 · H3(ξ4,1)√
3!

· H2(ξ1,2)√
2!

· H4(ξ5,2)√
4!

.

Theorem 3.1. The collection Ξ = {ξα, α ∈ J } is an orthonormal basis in L2(W).

Proof. This is a version of the classical result due to Cameron and Martin [8]. ¤

If η ∈ L2(W), then, by Theorem 3.1,

η =
∑
α∈J

E
(
ηξα

)
ξα, (3.4)

and
E|η|2 =

∑
α∈J

|E(
ηξα

)|2. (3.5)

Representation (3.4) is an example of the Wiener chaos expansion, and is known as
the Cameron-Martin expansion of η.
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Recall that, beside constructing the Cameron-Martin basis Ξ, another goal of this
section is to derive the corresponding expansion for the solution of a linear stochastic
evolution equation. To achieve this goal, we start with the following technical result.

Lemma 3.2. Define ξα(t) by

ξα(t) = E(ξα|FW
t ). (3.6)

Then

ξα(t) = I(|α| = 0) +

∫ t

0

∑

i,k

√
αk

i ξα−(i,k)(s)mi(s)dWk(s), (3.7)

where

I(|α| = 0) =

{
1, |α| = 0,

0, otherwise,

and α−(i, k) is the multi-index with components
(
α−(i, k)

)l

j
=

{
max(αk

i − 1, 0), if i = j and k = l,
αl

j, otherwise.
(3.8)

Proof. Let h = (h1(t), . . . , hr(t)) be an r-vector so that each hk is a finite linear
combination of the elements of m. Define

E(t, h) = exp

(
r∑

k=1

(∫ t

0

hk(s)dWk(s)− 1

2

∫ t

0

|hk(s)|2ds

))
. (3.9)

We also introduce the notations

E(h) = E(T, h); hik =

∫ T

0

hk(t)mi(t)dt, mi ∈ m; hα =
∏

i,k

h
αk

i
ik , α ∈ J .

The following properties of the process E(t, h) are verified by direct calculation:

E(h) =
∑
α∈J

hα

√
α!

, (3.10)

E(t, h) = 1 +

∫ t

0

E(s, h)
∑

i,k

hikmi(s)dWk(s). (3.11)

In particular,
E

(E(h)|FW
t

)
= E(t, h). (3.12)

The main consequence of (3.10) is an alternative representation of ξα:

ξα =
1√
α!

∂|α|

∂hα
E(h)

∣∣∣∣
h=0

. (3.13)

Taking the conditional expectation, using the martingale property (3.12) of E(t, h),
and exchanging the expectation and differentiation operations (for example, by The-
orem 3.3.3(iii) in [38]), we conclude that

ξα(t) =
1√
α!

∂|α|

∂hα
E(t, h)

∣∣∣∣
h=0

. (3.14)

Equality (3.6) now follows from (3.11). ¤
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We are now ready to derive the Cameron-Martin expansion for the solution of a linear
stochastic evolution equation.

Theorem 3.3. Let U = U(t), 0 ≤ t ≤ T, be a square integrable, FW
t − adapted

random process with values in a Hilbert space X. Denote by (·, ·)X and ‖ · ‖X the
inner product and the norm in X. Assume that

U(t) = U(0) +

∫ t

0

A(s)U(s)ds +
r∑

k=1

∫ t

0

Bk(s)U(s)dWk(s), (3.15)

where the initial condition U(0) is independent of FW
T and the linear operators

A(s), Bk(s) are non-random. Then U(t) =
∑

α∈J Uα(t)ξα, and

Uα(t) = U0I(|α| = 0) +

∫ t

0

A(s)Uα(s)ds +
∑

i,k

√
αk

i Bk(s)Uα−(i,k)(s)mi(s)ds, (3.16)

with multi-index α−(i, k) defined in (3.8). If, in addition, the operator A generates a
semi-group Φt,s, t ≥ s ≥ 0, that is, a family of continuous operator on X so that, for

every u, v ∈ H, (Φt,sv, u)X = (v, u)X +
∫ t

s

(A(τ)Φτ,sv, u
)

X
dτ , then

∑

|α|=n

‖Uα(t)‖2
X =

r∑

k1,...,kn=1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

‖Φt,snBkn(sn) · · ·Φs2,s1Bk1(s1)Φs1,0U0(s1)‖2
Xds1 · · · dsn.

(3.17)

Proof. By Theorem 3.1 we have Uα(t) = E
(
U(t)ξα

)
and then FW

t -measurability of
U(t) implies

E
(
U(t)ξα

)
= E

(
U(t)E(ξα|FW

t )
)

= E
(
U(t)ξα(t)

)
.

To derive (3.16), it remains to apply the Itô formula to the product U(t)ξα(t) using
equation (3.7).

To prove (3.17), iterate (3.15) and write the random variable U(t) as

U(t) = U(0) +
∑
n≥1

r∑

k1,...,kn=1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

Φt,snBkn(sn) · · ·Φs2,s1Bk1(s1)Φs1,0U0(s1)dWk1(s1) · · · dWkn(sn).

(3.18)

Then the relation between the multiple Itô integrals and Hermite polynomials [24,
Theorem 3.1] implies the equality

∑

|α|=n

Uα(t)ξα =
r∑

k1,...,kn=1

∫ t

0

∫ sn

0

· · ·
∫ s2

0

Φt,snBkn(sn) · · ·Φs2,s1Bk1(s1)Φs1,0U0(s1)dWk1(s1) · · · dWkn(sn),

(3.19)

and (3.17) follows. ¤

Existence of Φt,s usually follows from the existence and uniqueness of a solution of
(3.15); see, for example, Section 3.1 in [62] for the list of the corresponding sufficient
conditions on the operators A and Bk.
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Given the semi-group Φt,s, the system of equations (3.16) is solvable by induction:
definition of α−(i, k) implies that, for n ≥ 1, the coefficients Uα with |α| = n − 1
determine the coefficients Uα with |α| = n. There is only one Uα = U(0) corresponding
to |α| = 0, and U(0)(t) = Φt,0U(0). For |α| = 1, with αk

i = 1, we have

Uα(t) =

∫ t

0

A(s)Uα(s)ds +

∫ t

0

Bk(s)U(0)(s)mi(s)ds,

so that Uα =
∫ t

0
Φt,sBk(s)Φs,0U(0) mi(s)ds. Similarly, an explicit formula for all other

Uα can be derived by induction; see [47, Proposition A1].

Representation (3.18) is an alternative form of the Wiener chaos expansion and uses
multiple Itô integrals rather than the Cameron-Martin basis (3.2). Multiple integral
expansion is more explicit than the Cameron-Martin expansion, and has been widely
used in the study of stochastic equations. For example, Kunita [37] used it to sharpen
existence and uniqueness results for the Zakai equation and Krylov and Veretennikov
[35], to establish a new criterion for existence and uniqueness of strong solutions for
stochastic ordinary differential equations. A clear advantage of the Cameron-Martin
version (3.4) is computational flexibility: numerically, it is much easier to work with
the system of equations (3.16) than with the integrands in (3.18).

4. Spectral Separating Schemes

In this section, we describe two algorithms for solving the Zakai equation (2.8) us-
ing the Cameron-Martin expansion of the solution. Consider the filtering model
(2.1). By Theorem 2.2, given a suitable function f = f(x), the optimal fil-

ter f̂t = E
(
f(X(t))|FY

t

)
has the representation f̂t = φt[f ]/φt[1], where φ[f ] =∫

Rd f(x)u(t, x)dx and u is the solution of the Zakai equation (2.8). Using Theorem
3.3, we will implement the idea described in the Introduction and construct recursive
approximations of u(t, x) and ϕt[f ], as well as study the quality of the approximations.

Let 0 = t0 < t1 < . . . < tM = T be a uniform partition of the interval [0, T ] with step
∆ so that ti = i∆, i = 0, . . . , M . Fix an orthonormal basis m = {mk(s), k ≥ 1} in
L2([0, ∆]) and define random variables

ξi
α =

∏

k,l

(
Hαl

k
(ξi

k,l)√
αl

k!

)
, α ∈ J , (4.1)

where J is the set of multi-indices (3.1), ξi
k,l =

∫ ti
ti−1

mk(s− ti−1)dYl(s), and Hn is the

n-th Hermite polynomial (3.3). We also fix an orthonormal basis e = {ek(x), k ≥ 1}
in L2(Rd).

4.1. Spectral Separating Scheme of the First Kind. Consider the following
system of equations:

∂ϕα(s, x, g)

∂s
= L∗ϕα(s, x, g) +

∑

k,l

√
αl

kmk(s)M∗
l ϕα−(k,l)(s, x, g), 0< s≤∆

ϕα(0, x, g) = g(x)1{|α|=0}.
(4.2)
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Define the numbers
ql
αk = (ϕα(∆, ·, ek), el)0, (4.3)

and then by induction

ψj(0) = (p0, ej)0; ψj(i) =
∑
α∈J

∞∑

k=1

ψk(i− 1)qj
αkξ

i
α. (4.4)

Theorem 4.1. The unnormalized filtering density has the representation

u(ti, x) =
∞∑

j=1

ψj(i)ej(x), 0 ≤ i ≤ M, (4.5)

and, for f ∈ L2(R2), the unnormalized optimal filter φt[f ] has the representation

φti [f ] =
∞∑

j=1

ψj(i)fj, where fk =

∫

Rd

f(x)ek(x)dx. (4.6)

Proof. Recall that u is a square integrable FY
t -adapted solution of the Zakai equation

(2.8), and Y is an r-dimensional Wiener process under measure P̃. By Theorem 3.3 we
have u(t, x) = ϕα(t, x, u(ti−1, x))ξi

α, t ∈ [ti−1, ti]. To establish (4.5), it remains to write
u(ti−1, x) =

∑
k≥1(u(ti−1, ·), ek)0ek(x) and use linearity of equations (2.8) and (4.2).

Equality (4.6) is a direct consequence of (4.5), because φt[f ] =
∫
Rd f(x)u(t, x)dx. ¤

Even when f /∈ L2(Rd), the integrals
∫
Rd f(x)ek(x)dx may still be defined for all k ≥ 1,

and, under some additional assumptions, representation (4.6) of the unnormalized
optimal filter will still hold; see Theorems 4.4, 4.5, and 4.6 below.

Next, we use Theorem 4.1 to construct recursive approximations of u(ti, x) and φti [f ].
for all j ≥ 1. Let K,n, N be positive integers, and J n

N , the collection of those multi-
indices in J for which |α| ≤ N and αl

k = 0 if k > n; note that J n
N is a finite set. With

the numbers ql
αk from (4.3), we define ψK

l (i, N, n) by truncating the sums in (4.4):

ψK
l (0, N, n) = (p0, el)0, l = 1, . . . , K;

ψK
l (i, N, n) =

∑
α∈J n

N

K∑

k=1

ψK
k (i− 1, N, n)ql

αkξ
i
α,

(4.7)

and then define the approximations of u(ti, x) and φti [f ] by

un
N,K(ti, x) =

K∑
j=1

ψK
j (i, N, n)ej(x), φ̃i[f ] =

K∑
j=1

ψK
j (i, N, n)fj, 0 ≤ i ≤ M, (4.8)

where we assume that fj =
∫
Rd f(x)ej(x)dx exists for each j ≥ 1. The following is an

algorithm for computing the approximations of the unnormlized filtering density and
filter using (4.8).

1. Preliminary computations (before the observations are available)

(1) Choose suitable basis functions {ek, k = 1, . . . , K} in L2(Rd) and
{mi, i = 1, . . . , n} in L2([0, ∆]).
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(2) For α ∈ Jn
N and k, l = 1, . . . , K compute ql

αk = (ϕα(∆, ·, ek), el)0 (using (4.2)),

fk =

∫

Rd

f(x)ek(x)dx, ψK
l (0, N, n) =

∫

Rd

p0(x)ek(x)dx.

2. Real − time computations, i− th step (as the observations become available):

compute ξi
α according to (4.1) and update the coefficients ψ:

ψK
l (i, N, n) =

∑
α∈Jn

N

K∑

k=1

ψK
k (i− 1, N, n)ql

αkξ
i
α l = 1, . . . , K;

then, if necessary, compute

un,K
N (ti, x) =

K∑

l=1

ψK
l (i, N, n)el(x) (4.9)

and/or

φ̃i[f ] =
K∑

j=1

ψK
j (i, N, n)fj, f̃i =

φ̃i[f ]

φ̃i[1]
. (4.10)

We call this algorithm the Spectral Separating Scheme of the First Kind.
It was first suggested in [51] and analyzed in [47] for the filtering model (2.1) with
ρ ≡ 0. Analysis for arbitrary ρ became possible after the recent work [49]. We discuss
the properties of this algorithm in Section 4.3 and analyze its convergence in Section
4.4.

4.2. Spectral Separating Scheme of the Second Kind. We now present an
alternative algorithm for solving the Zakai equation (2.8) in the filtering model (2.1).
In the spectral separating scheme of the first kind, the truncation of the expansion in
L2(Rd) is done after the truncation of the Cameron-Martin expansion. Now, we will
do the truncation in L2(Rd) first.

Let e be an orthonormal basis in L2(Rd) so that every function ek = ek(x) belongs to
H1.

Fix a positive integer number K. Define the matrices AK = (AK
ij , i, j = 1, . . . , K)

and BK
l = (BK

l,ij, i, j = 1, . . . , K; l = 1, . . . , r), by

AK
ij = (L∗ej, ei)0, BK

l,ij = (M∗
l ej, ei)0,

and consider the Galerkin approximation uK(t, x) of u(t, x) :

uK(t, x) =
K∑

i=1

uK
i (t)ei(x), (4.11)

where the vector uK(t) = {uK
i (t), i = 1, . . . , K} is the solution of the system of

stochastic ordinary differential equations

duK(t) = AKuK(t)dt +
r∑

l=1

BK
l uK(t)dYl(t) (4.12)
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with the initial condition uK
i (0) = (p0, ei)0. Note that the matrices BK

l , l = 1, . . . , r,
do not, in general, commute with each other even if ρ(x) ≡ 0, and so system (4.12)
must be solved numerically because there is no closed-form solution.

Define random variables ξi
α according to (4.1). Theorem 3.3 implies the following

result.

Theorem 4.2. For every i = 1, . . . , M , the solution of (4.12) can be written in

L2(Ω, P̃;RK) as

uK(ti) =
∑
α∈J

ϕK
α (∆; uK(ti−1))ξ

i
α, i = 1, . . . , M, (4.13)

where, for s ∈ (0, ∆] and ζ ∈ RK, the functions ϕK
α (s; ζ) are the solutions of

∂ϕK
α (s; ζ)

∂s
= AKϕK

α (s; ζ) +
∑

k,l

√
αl

k mk(s)B
K
l ϕK

α−(k,l)(s; ζ), 0 < s ≤ ∆,

ϕK
α (0; ζ) = ζ1{|α|=0},

(4.14)

and α−(i, j) stands for the multi-index (3.8).

To construct a recursive approximation of uK , fix positive integers N and n and define
the set J n

N as the collection of multi-indices α from J such that |α| ≤ N and αl
k = 0

if k > n. The approximation uK,n
N (ti) of uK(ti) is defined by

uK,n
N (t0) = uK(0), uK,n

N (ti) =
∑

α∈J n
N

ϕK
α (∆; uK,n

N (ti−1))ξ
i
α, i = 1, . . . , M. (4.15)

To establish a representation of uK,n
N (ti) similar to (4.9), note that uK,n

N (ti) is a vector

in RK . Let U = {uj, j = 1, . . . , K} be a basis in RK . The vector uK,n
N (ti) can then

be written as

uK,n
N (ti) =

K∑
j=1

uK,n
N,j (ti; U)uj,

and by the recursive definition of uK,n
N (ti),

uK,n
N (ti) =

∑
α∈J n

N

ϕK
α (∆; uK,n

N (ti−1))ξ
i
α

=
∑

α∈J n
N

K∑
j=1

ϕK
α (∆;uj)uK,n

N,j (ti−1; U)ξi
α.

Once again, ϕK
α (∆,ui) is a vector in RK , so we write

ϕK
α (∆,uj) =

K∑

k=1

qK,α
jk (U)uk, (4.16)

and conclude that

uK,n
N,j (ti; U) =

∑
α∈J n

N

K∑

k=1

qK,α
jk (U)uK,n

N,k(ti−1; U)ξi
α. (4.17)



14 S. V. LOTOTSKY

If fk =
∫
Rd f(x)ek(x)dx is defined for all k ≥ 1, then

uK,n
N (ti, x) =

K∑

j,k=1

uK,n
N,j (ti; U)uj

kek(x), φ̃i[f ] =
K∑

j,k=1

uK,n
N,j (ti; U)uj

kfk (4.18)

are the approximations of the unnormalized filtering density and filter.

The following is an algorithm for computing the approximations of the unnormlized
filtering density and filter using (4.18).

1. Preliminary computations (before the observations are available):

(1) Choose suitable basis functions {ek, k = 1, . . . , K} in L2(Rd),
{mk, k = 1, . . . , n} in L2([0, ∆]), and a standard unit basis
{uj, j = 1, . . . , K} in RK, that is, uj

j = 1, uj
l = 0 otherwise.

(2) For α ∈ J n
N and j, k = 1, . . . , K, compute qK,α

jk = ϕK
α,j(∆;uk) (using (4.14)),

fk =

∫

Rd

f(x)ek(x)dx, uK,n
N,k(t0) =

∫

Rd

p0(x)ek(x)dx.

2. Real − time computations, i− th step (as the observations become available):

compute ξi
α, α ∈ J n

N according to (4.1) and update the coefficients uK,n
N,k as follows:

QK
jk(ξ

i) =
∑

α∈J n
N

qK,α
jk ξi

α, uK,n
N,j (ti) =

K∑

k=1

QK
jk(ξ

i)uK,n
N,k(ti−1), j = 1, . . . , K; (4.19)

then, if necessary, compute

uK,n
N (ti, x) =

K∑
j=1

uK,n
N,j (ti)ej(x) (4.20)

and/or

φ̃ti [f ] =
K∑

j=1

fju
K,n
N,j (ti), f̃ti =

φ̃ti [f ]

φ̃ti [1]
. (4.21)

We call this algorithm the Spectral Separating Scheme of the Second Kind.
It was suggested and analyzed in [22] when ρ = 0 and in [46] for the general model
(2.1).

4.3. Discussion. The main advantage of the spectral separating schemes, as com-
pared to most other nonlinear filtering algorithms, is that the time consuming com-
putations, including solving partial differential equations and evaluation of integrals,
are performed in advance, while the real-time part is relatively simple even when the
dimension d of the state process is large. Here are some other features of the spectral
separating schemes:

(1) The overall amount of preliminary computations does not depend on the num-
ber of the on-line time steps;
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(2) Formulas (4.10) and (4.21) can be used to compute an approximation to f̂ti ,
for example, conditional moments, without the time consuming computations
of the unnormalized filtering density and the related integrals;

(3) Only the coefficients ψK
j (i, n,N) or uK,n

N,j (ti) must be updated at every time
step; the filtering density and/or filter can be computed independently of each
other as needed, for example, at the final time moment.

(4) The real-time part of the algorithms can be easily parallelized.
(5) If n = 1, then each ξi

α depends only on the increments Yl(ti) − Yl(ti−1) of
the observation process, and the corresponding algorithms can be used for
filtering with discrete time observations [50]. For n > 1 and k > 1, the

integral

∫ ti

ti−1

mk(s − ti−1)dYl(s) can be reduced to a usual Riemann integral

and then approximated by the trapezoidal rule.
(6) The implementation of both algorithms does not depend on whether the model

is noise-correlated (ρ 6≡ 0) or not.

Successful implementation of the algorithms requires effective numerical methods for
solving deterministic parabolic equations [61] and evaluating integrals [13], but no
special tools from numerical stochastics. On the other hand, successful testing and
tuning of the algorithms will require effective numerical methods for stochastic ODEs
to simulate the processes X,Y . The books [32, 54] describe many such methods.

Theoretical analysis of the algorithms is possible with little or no change if the model
is not time homogeneous, that is, the functions b, ρ, σ, h in (2.1) depend on time. This
time dependence certainly decrease the computational advantages, as the number of
preliminary computations will grow substantially and will depend on the number of
the on-line time steps.

The Wiener chaos approach is far less effective if the functions b, ρ, σ, h in (2.1) depend
on the observation process Y , because the corresponding systems (4.2) and (4.14)
have a much more complicated structure and are no longer solvable by induction.
The corresponding analysis is still an open problem.

4.4. Approximation error. The quality of the approximation for the spectral sep-
arating schemes is controlled by four numbers: K,n, N, and ∆. On the other hand,
the amount of the preliminary computations and the storage space are controlled by
the size of the array q; the size of this array is K2|J n

N |, where K is the number of
basis functions in L2(Rd), and |J n

N |, the size of the set J n
N , is the number of the

Cameron-Martin basis functions. By construction, it is impossible to improve the
quality of approximation without increasing K. While increasing n and N should
also lead to better approximation, it is essentially impossible to use large values of n
and N because of the prohibitively large size of the set J n

N . For example, if r = 1,
the number of the elements in the set J 10

5 is 740, and this number more than doubles
for r = 2. A rough asymptotic of |J n

N | is (nN)r. Accordingly, the convergence of the
approximations must be studied with fixed values of n and N : to improve the quality
of approximation, we should decrease the time step ∆ and increase the number K of
the spatial basis functions.
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The study of convergence of the spectral separating schemes requires a special choice
of the bases e and m, as well as extra regularity of the filtering model (2.1).

We begin by specifying the basis e in L2(Rd). Denote by Γ the set of ordered d-tuples
γ = (γ1, . . . , γd) with γj = 0, 1, 2, . . .. For γ ∈ Γ define

Hγ(x) =
d∏

j=1

Hγj
(xj),

where

Hn(t) =
(−1)n

√
2nπ1/2n!

et2/2 dn

dtn
e−t2 , n = 0, 1, 2, . . . .

If Λ is the operator

Λ = −∇2 + (1 + |x|2), (4.22)

where ∇2 is the Laplace operator, then direct computations show that

ΛHγ = λγeγ, (4.23)

with λγ = (2
∑d

j=1 γj + d + 1).

Next, we introduce an ordering of the set Γ as follows: define |γ| = ∑d
j=1 γj and then

say that γ < τ if |γ| < |τ | or if |γ| = |τ | and γ < τ under the lexicographic ordering,
that is, γi0 < τi0 , where i0 is the first index for which γi 6= τi. Finally, we define the
basis e, known as the Hermite basis, as the collection {Hγ(x), γ ∈ Γ} together with
the above ordering of Γ. By construction, the elements ek of e satisfy

Λek = λkek, (4.24)

where c1k
1/d ≤ λk ≤ c2k

1/d and 0 < c1 < c2 do not depend on k. The construction of
the Hermite basis implies that each ek decays at infinity faster than every power of |x|,
and therefore fk =

∫
Rd f(x)ek(x)dx is defined for every k ≥ 1 and every measurable

function of polynomial growth.

As far as the basis m in L2([0, ∆]), we use the Fourier cosine basis

m1(s) =
1√
∆

; mk(s) =

√
2

∆
cos

(
π(k − 1)s

∆

)
, k > 1; 0 ≤ s ≤ ∆. (4.25)

Definition 4.3. The filtering model (2.1) is called ν-regular for some positive integer
ν if the functions σ and ρ belong to C2ν+3

b , the functions b and h belong to C2ν+2
b ,

and Λνp0 belongs to H1, with Λ as in (4.22).

We are now ready to study the convergence of the spectral separating schemes. Recall
that the Spectral Separating Scheme of the First Kind defines the approximations

un
N,K(ti, x), φ̃ti of the unnormalized filtering density and filter according to (4.8). The

following theorem presents the quality of these approximations and establishes the
convergence in the limit lim∆→0 limK→∞ for the noise uncorrelated model.

Theorem 4.4. Assume that N ≥ 2, ρ(x) ≡ 0, and the matrix σσ∗ is uniformly
positive definite, that is, condition (2.6) holds. If the filtering model (2.1) is ν-regular
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for some ν > d + 1, then

max
0≤i≤M

E‖u(ti, ·)− un
N,K(ti, ·)‖0 ≤ C0

(
(C11∆)N/2

√
(N + 1)!

+
C12∆√

n

)
+

C2

K(ν−d−1)/d∆
. (4.26)

The number C0 depends on T and the parameters of the model, that is, the coefficients
and the initial condition in the Zakai equation (2.8); the numbers C11, C12 depend only
on the parameters of the model; the number C2 depends on ν, T , and the parameters
of the model.

If, in addition, (1 + |x|2)−wf ∈ L2(Rd) for some w ≥ 0 so that ν > d + 1 + w and
Λν((1 + |x|2)wp0) ∈ H1, then

max
0≤i≤M

E|φti [f ]− φ̃ti [f ]| ≤ C3

(
(C11∆)N/2

√
(N + 1)!

+
C12∆√

n

)
+

C4

K(ν−d−1)/d∆
. (4.27)

The numbers C3, C4 depend on ν, T , the function f , and the parameters of the model;
the numbers C11 and C12 are the same as in (4.26).

Proof. We only indicate the main steps; the details are in [47]. Consider first the local

error Ẽ‖u(∆, ·) − un
N,K(∆, ·)‖2

0. Define uN(∆, x) =
∑

α∈J n
N

ϕα(∆, x, p0). By Theorem

2.2 in [47],

Ẽ‖u(∆, ·)− un
N(∆, ·)‖2

0 ≤ c1e
c2∆

(
(c3∆)N+1

(N + 1)!
‖p0‖2

0 +
∆3

n
‖p0‖2

2

)
, (4.28)

where the numbers c1, c2, c3 depend only on the coefficients of (2.1); recall that ‖ · ‖2

is the norm in the Sobolev space H2. Next, by Theorem 2.6 in [47],

Ẽ‖un
N(∆, ·)− un

N,K(∆, ·)‖2
0 ≤ c4e

c5∆K−2(ν−d−1)/d‖Λνp0‖2
0, (4.29)

where the numbers c3, c4 depend on ν and the parameters of the model. We combine
(4.28), in which N ≥ 2, and (4.29) to get the overall local error

Ẽ‖u(∆, ·)− un
N,K(∆, ·)‖2

0 ≤
(
c6∆

3 + c7K
−2(ν−d−1)/d

)
ec8∆;

the global error is then

Ẽ‖u(ti, ·)− un
N,K(ti, ·)‖2

0 ≤ c9∆
2 + c10K

−2(ν−d−1)/d∆−2;

see [47] for details. Error bound (4.26) now follows from (2.4).

Error bound (4.27) follows from (4.26) by the Cauchy-Schwartz inequality. ¤

The following properties of the functions mk were essential in the proof of (4.28): if

Mk(t) =
∫ t

0
mk(s)ds, then Mk(∆) = 0, |Mk(t)| ≤

√
∆/n. Any other basis with these

properties can also be used, but for now the Fourier cosine basis (4.25) appears to
be the only one for which these properties are easily verified. The Haar basis, while
simplifying calculations of ξi

α, results in a local error bound (4.28) with a slower rate of
decay in ∆ [6, Corollary 3.8], [7, Corollary 4.5]; the corresponding global error bound
for the Haar basis has not been derived yet.

The assumption ρ ≡ 0 was also essential for the proof of (4.28); without this assump-
tion, a slightly weaker error bound holds.
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Theorem 4.5. Assume that the matrix σσ∗ is uniformly positive definite. If the
filtering model (2.1) is ν-regular for some ν > max(4, d + 1), then

max
0≤i≤M

E‖u(ti, ·)−un
N,K(ti, ·)‖0 ≤ C1

(
1

(1 + δ)N/2
+

1√
n

)
∆1/2 +

C2

K(ν−d−1)/d∆
. (4.30)

The number C1 depends on T and the parameters of the model, that is, the coefficients
and the initial condition in the equation (2.1); the number δ > 0 depends only on the
parameters of the model; C2 depends on ν, T , and the parameters of the model.

If, in addition, (1 + |x|2)−wf ∈ L2(Rd) for some w ≥ 0 so that ν > d + 1 + w and
Λν((1 + |x|2)wp0) ∈ H1, then

max
0≤i≤M

E|φti [f ]− φ̃ti [f ]| ≤ C3

(
1

(1 + δ)N/2
+

1√
n

)
∆1/2 +

C4

K(ν−d−1)/d∆
. (4.31)

The numbers C3, C4 depend on ν, T , the function f , and the parameters of the model.

Proof. Once we establish the local error bound of the type (4.28), which in this case
turns out to be

Ẽ‖u(∆, ·)− un
N(∆, ·)‖2

0 ≤ c1e
c2∆

(
∆2

(1 + δ)N
‖p0‖2

2 +
∆2

n
‖p0‖2

4

)
, (4.32)

for a suitable δ > 0, the proof is completed by the same arguments as in Theorem
4.4.

To establish (4.32), we use equality (3.17), in which we replace equation (3.15) with
the Zakai equation (2.8), and also put X = Hγ for a suitable γ. Then

∑

|α|=n

‖ϕα(t, ·, p0)‖2
γ =

r∑

k1,...,kn=1

∫ t

0

∫ sn

0

. . .

∫ s2

0

‖Φt−snM∗
kn
· · ·Φs2−s1M∗

k1
Φs1p0‖2

γds1 . . . dsn,

(4.33)

where Φ = Φt is the semi-group of the operator L∗. The assumptions of the current
theorem imply that the semi-group Φ is bounded above by the heat kernel:

‖Φtf‖γ ≤ C1

∫

Rd

e−C2|y|2t|f̆(y)|2(1 + |y|2)γdy (4.34)

for some positive numbers C1, C2, where f̆ is the Fourier transform of f ; see [18] for
details. Notice also that

‖M∗
kf‖γ ≤ C3(‖f‖γ + ‖∇f‖γ),

where ∇f is the gradient of f . Then direct computations show that

∫ t

0

∫ s

0

‖M∗
kΦs−s1f(s1)‖2

γds1ds ≤ C4

∫ t

0

‖f(s)‖2
γds.
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For n ≥ 2, we combine the last inequality with Theorem 9.5 in [49] to conclude that
r∑

k1,...,kn=1

∫ ∆

0

∫ sn

0

. . .

∫ s2

0

‖Φ∆−snM∗
kn
· · ·Φs2−s1M∗

k1
Φs1p0‖2

0ds1 . . . dsn

≤C5

r∑

k1,...,kn−3

∫ ∆

0

∫ sn

0

. . .

∫ s2

0

‖M∗
kn−3

Φsn−2−sn−3M∗
kn−3

· · ·Φs2−s1M∗
k1

Φs1p0‖2
2ds1 . . . dsn

≤ C6(1 + δ)−n∆2‖p0‖2
2

(4.35)

for some δ > 0. Then local error bound (4.32) follows by same arguments as in the
proof of Theorem 4.4. The main reason for the factor ∆2 rather than ∆3 in (4.35) is
that the operators M∗

k do not commute with one another when ρ 6≡ 0. ¤

If the matrix σσ∗ is not uniformly positive definite, then the rate of convergence is
an open question.

We now establish the rate of convergence for the Spectral Separating Scheme of the

Second Kind. Recall that this algorithm defines the approximations uK,n
N (ti, x), φ̃ti

of the unnormalized filtering density and filter according to (4.18). The following
theorem presents the quality of these approximations and establishes the convergence
in the limit limK→∞ lim∆→0.

Theorem 4.6. If the filtering model (2.1) is ν-regular for some ν > d + 1, then

max
0≤i≤M

E‖u(ti, ·)− uK,n
N (ti, ·)‖0 ≤ C1

K(ν−d−1)/d
+ C2

(
(C21∆)N/2

√
(N + 1)!

+
C22∆

1/2

√
n

)
. (4.36)

The number C1 depends on ν, T , and the parameters of the model, that is, the coef-
ficients and the initial condition in the Zakai equation (2.8); the number C2 depends
on T, K and the parameters of the model; the numbers C21, C22 depend on K and the
parameters of the model.

If, in addition, (1 + |x|2)−wf ∈ L2(Rd) for some w ≥ 0 so that ν > d + 1 + w and
Λν((1 + |x|2)wp0) ∈ H1, then

max
0≤i≤M

E|φti [f ]− φ̃ti [f ]| ≤ C3

K(ν−w−d−1)/d
+ C4

(
(C21∆)N/2

√
(N + 1)!

+
C22∆

1/2

√
n

)
. (4.37)

The number C3 depends on ν, T , the function f , and the parameters of the model; the
number C4 depends on K, T , the function f , and the parameters of the model; the
numbers C21, C22 are the same as in (4.36).

Proof. This theorem is proved in [46]. The reference also contains a more detailed
information about the constants C. ¤

Note that, in the Spectral Separating Scheme of the Second Kind, the approximation
in space is carried out first, and the Winer chaos expansion is applied to a system
of ordinary differential equations (4.12). As a result, unlike Theorems 4.4 and 4.5,
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the error bound can be established with no additional non-degeneracy assumptions
about the matrix σσ∗. According to [4, 10], the rate of convergence in ∆ for an
approximation of the optimal filter for (2.1) is, in general, not better than ∆1/2, and
both spectral separating schemes achieve this rate. Indeed, for N ≥ 2, formulas (4.31)
and (4.37) can be written as

max
0≤i≤M

E|φti [f ]− φ̃ti [f ]| ≤ C3∆
1/2 +

C4

K(ν−d−1)/d∆
. (4.38)

and

max
0≤i≤M

E|φti [f ]− φ̃ti [f ]| ≤ C3

K(ν−w−d−1)/d
+ C4∆

1/2, (4.39)

respectively. Note that the error due to truncation in space is C3K
−(ν−w−d−1)/d in

both cases, but, since computation of φ̃ti [f ] in (4.38) involves truncation in space
on every time step, this error is multiplied by the number of time steps, which is
proportional to 1/∆. The rate of convergence in time is still ∆1/2, since we first take
the limit K →∞.

5. Other Directions

The most general model of the processes X, Y for continuous-time filtering problem
in Gaussian white noise is

dX(t) = A(t,X0,t, Y0,t)dt + B(t,X0,t, Y0,t)dV(t),

dY (t) = C(t,X0,t, Y0,t)dt + D(t,X0,t, Y0,t)dV(t),
(5.1)

where A, B, C, D are measurable functionals of suitable dimensions, and V is a Wiener
process, also of a suitable dimension. Since the process V is multi-dimensional and
the functions B, D are matrix-valued, the state and observation equations are, in
general, driven by different noise processes, even though the first look at equation
(5.1) might suggest otherwise. Under natural regularity conditions on A,B,C,D,
the system of equations (5.1) has a unique strong solution [44, Theorem 4.6]. In the
diffusion filtering model, the functionals A,B, C, D at time moment t depend only on
X(t) and Y (t).

Solution of the filtering problem for (5.1) requires additional conditions on the coef-
ficients in the equation, and under these conditions the system (5.1) is reduced to an
upper triangular form

dX(t) = b(t,X0,t, Y0,t)dt + σ(t,X0,t, Y0,t)dV + ρ(t,X0,t, Y0,t)dW (t),

dY (t) = h(t,X0,t, Y0,t)dt + H(t, Y0,t)dW (t),
(5.2)

with modified coefficients b, σ, ρ, h, H and new Wiener processes V,W ; Section 6.0.2
in [62], together with Lemma 10.4 in [44], provide the details of this reduction. The
square matrix H does not depend on X and is uniformly positive definite; with no
dependence on t and Y , it will be just a constant invertible matrix. As a result, (2.1)
describes the most general time homogeneous diffusion filtering with no observation
process Y in the coefficients.
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There are specific reasons for the additional assumptions about the function H in
(5.2): without these assumptions, the procedure of estimating X from the observa-
tions of Y is somewhat different. In particular, if H depends on the state process
X, then some information about X can be obtained from the quadratic variation of
Y . If H is not uniformly positive definite, then we have the filtering problem with
degenerate observation noise [5].

5.1. Representations of the Optimal Filter. In this section, we review the main
representations of the optimal filter using the Zakai, Kushner-Stratonovich, and
Fujisaki-Kallianpur-Kunita equations, as well as the Kallianpur-Striebel formula. The
Wiener chaos expansion can be used to study any of these representations.

Consider the filtering model (5.2). If f = f(t,X(t), Y0,t) is a square integrable func-
tional, and the functionals b, σ, ρ, h at time t depend only on X(t) in a sufficiently

smooth way, then the optimal filter f̂ = E
(
f |FY

t

)
has the representation

f̂ =

∫
Rd f(t, x, Y0,t)u(t, x)dx∫

Rd u(t, x)dx
, (5.3)

where u satisfies the Zakai equation similar to (2.8). The original reference, the paper
by Zakai [68], provides the derivation for the diffusion model with the coefficients
independent of Y and with ρ ≡ 0. A more general derivation, together with the
detailed investigation of the analytical properties of the solution, is in [36, 62]. Some
of the results of [68] were obtained independently by Duncan [17] and Mortensen
[56]; accordingly, equation (2.8) is also known as the DMZ (Duncan-Mortensen-Zakai)
equation. Being a linear equation, (2.8) is well-suited for analysis using various forms
of the Wiener chaos expansion, especially if the coefficients do not depend on Y .

If the unnormalized filtering density u = u(t, x) exists, then the time evolution of
the normalized filtering density p(t, x) = u(t, x)/

∫
Rd u(t, x) is described by

a non-linear integro-differential equation, which for the time-homogeneous diffusion
model (2.1) becomes

p(t, x) = p0(x) +

∫ t

0

L∗p(s, x)ds +
r∑

l=1

(
M∗

l p(s, x)

− p(s, x)

∫

Rd

p(s, x)hl(x)dx
) (

dYl −
(∫

Rd

p(s, x)hl(x)dx

)
ds

)
.

(5.4)

The nonlinear structure of this equation complicates the analysis by means of the
Wiener chaos expansion, leaving it an open problem.

The time evolution of the normalized filtering density was originally derived, in various
forms and with various degrees of mathematical rigor, in [40, 42, 64, 65], and is known
as the Kushner-Stratonovich equation. Some of the computations in [65] do not agree
with the accepted standards of the Itô calculus and were initially dismissed as a
mistake. A more careful analysis of the computations later lead to the creation of the
now famous Stratonovich stochastic calculus [66]. Many later works, such as Chapter
6 in [62], or Section 8 in [34], present a modern approach, both to the derivation and
to the study of the analytical properties of the filtering density p.
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It can happen that representation (2.3) of the optimal filter holds, while representation
(5.3) does not; one example is the general model (5.2). In fact, for (2.3) to hold, the
process X does not need any particular structure. Papers [45, 52, 57, 67] successfully
study the optimal filter using (2.3) and various versions of the Wiener chaos expansion.
The results illustrate the power of the Wiener chaos method by providing an insight
into the structure of the optimal filter when the Zakai equation is not available. On
the other hand, this level of generality prevents a detailed analysis of the potential
numerical methods based on the expansions.

Another application of representation (2.3) is the particle system approxima-
tions of the optimal filter [14, 15, 16], which are deep extensions of the Monte Carlo
method.

Kallianpur and Striebel [29] were among the first to realize the importance of the
representation (2.3) for the solving the filtering and other estimation problems. Ac-
cordingly, (2.3) is known as the Kallianpur-Striebel formula.

One disadvantage of (2.3) is that this representation does not provide the time evo-
lution of the optimal filter. It turns out that this time evolution can be written even
when the filtering density does not exist. The Fujisaki-Kallianpur-Kunita equation

[21] describes the time evolution of the conditional expectation F̂ (t) = E
(
F (t)|FY

t

)
,

t ≥ 0, for two semi-martingales F, Y and can serve as the starting point in the deriva-
tion of all other filtering equations. Assume that F (t) = F (0)+

∫ t

0
B(s)ds+M(t) and

Yl(t) = Yl(0) +
∫ t

0
hl(s)ds +

∑t
k=1 Hlk(s)dWk(s), l = 1, . . . , r, so that the matrix H(s)

is FY
t -measurable and invertible. Define W k(s) =

∫ t

0
H−1

kl (s)(dYl(s)− ĥl(s)ds) and let

Dl be the process so that 〈M,Wl〉(t) =
∫ t

0
Dl(s)ds, where 〈M, Wl〉 is the quadratic

covariation of the martingale M and the Wiener process Wl. Then

F̂ (t) = F̂ (0) +

∫ t

0

B̂(s)ds

+
r∑

k=1

∫ t

0

(
D̂(s) +

r∑

l=1

(
F̂ hl(s)− F̂ (s)ĥl(s)

)
H−1

lk (s)
)

dW k(s)

(5.5)

The complicated nonlinear structure of this time evolution prevents a direct numerical
analysis, including the use of the Wiener chaos expansion.

Despite the technical difficulties, the Wiener chaos can be used to study nonlinear
equations [53], and so the analysis of the Fujisaki-Kallianpur-Kunita and Kushner-
Stratonovich equations using Wiener chaos is an open problem.

5.2. Solving the Filtering Problem. If the pair of the process (X,Y ) is jointly
Gaussian, then, by the Normal Correlation Theorem, the conditional distribution of
X(t) given FY

t is Gaussian and uniquely defined by the conditional mean m(t) =
E(X(t)|FY

t ) and variance P (t) = E((X(t) −m(t))(X(t) −m(t))∗|FY
t ). The system

of stochastic ordinary differential equations describing time evolution of m and P is
the foundation of the Kalman-Bucy filter [30]. Various extensions of this filter
to conditionally Gaussian processes have been derived [44].
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In the Gaussian model, the filtering density is characterized by a finite number of
parameters. Even though exact finite dimensional filters can exist for non-Guassian
processes X,Y [2, 55], a result of Ocone and Pardoux [58, 60] shows that for most
models the optimal filter is infinite-dimensional. Some special infinite-dimensional
optimal filters can be computed exactly [12, 33, 63], but a typical filtering problem
requires an approximation of the optimal filter.

The extended Kalman filter [27] is one of the most straightforward approxima-
tions and is derived by applying the Kalamn filter to the linearization of the model
around the current estimate of X. This approximation preserves the relative ana-
lytical and computational simplicity of the Kalman filter and works well in many
applications. The main drawback is that there is no rigorous justification for such
approximations, that is, we have no reliable bounds on the deviation of the computed
filter estimate from the optimal value. More theoretically sound are the geometrically
intrinsic filter [11], and the moment approximation of the optimal filter [41, 39]. Still,
the error analysis of these approximations is an open problem. A large class of nu-
merical methods is based on approximating the original filtering model with a simpler
one, for a example, a finite state Markov chain, and using the actual observations in
the optimal filter for the approximating model [43].

Still, the most straightforward way to get an approximation together with an error
bound is to solve numerically the equation for the filtering density, either normalized
or unnormalized. The unnormalized filtering density is a more popular object to
study because the corresponding equation is linear. For some numerical methods, the
step-by-step solution of the Zakai equation with normalization at every step provides
an approximate solution of the Kushner-Stratonovich equation, with approximation
error under control [26].

A large class of numerical methods for the Zakai equation employ the corresponding
algorithms used for deterministic partial differential equations: Galerkin approxima-
tion [3, 25], finite element [23], or operator splitting [4, 19, 20]. All these methods
require the solution of certain partial differential equation at every time step, which is
usually impossible to achieve in real time if the dimension of the process X is bigger
than three. The spectral separating schemes deal with this ”curse of dimensionality”
by doing all the time consuming calculations in advance. With a careful choice of
the branching mechanism, the particle system approximations [14, 15, 16] also have
a potential for the real-time implementation.

For t < T , the problems of computing E
(
f(X(t))|FY

T

)
(interpolation, or smooth-

ing) and E
(
f(X(T ))|FY

t

)
(extrapolation, or prediction) are studied using the same

technical tools as in the filtering problem; see [44, Sections 8.4, 8.5] or [62, Section
6.3]. Application of the Wiener chaos expansions to the problems of interpolation
and extrapolation is mostly an open question.

The traditional formulation of the filtering problem assumes that the probability
distributions of X and Y are completely known. Multiple model filtering [1] provides a
more realistic setting and can be studied using Wiener chaos expansions [48]. An even
more realistic setting is simultaneous filtering and estimation [9], where application
of the Wiener chaos is an open problem.
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