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WIENER CHAOS SOLUTIONS OF LINEAR STOCHASTIC
EVOLUTION EQUATIONS

BY S. V. LOTOTSKY1 AND B. L. ROZOVSKII2

University of Southern California

A new method is described for constructing a generalized solution of
a stochastic evolution equation. Existence, uniqueness, regularity and a prob-
abilistic representation of this Wiener Chaos solution are established for
a large class of equations. As an application of the general theory, new re-
sults are obtained for several types of the passive scalar equation.

1. Introduction. Consider a stochastic evolution equation

du(t) = (
Au(t) + f (t)

)
dt + (

Mu(t) + g(t)
)
dW(t),(1.1)

where A and M are differential operators, and W is a cylindrical Brownian mo-
tion on a stochastic basis F = (�,F , {Ft }t≥0,P). Let A0 and M0 be the leading
(highest-order) terms of the operators A and M, respectively, and

Zt (u) =
∫ t

0

(
Mu(s) + g(s)

)
dW(s).

Traditionally, (1.1) is studied under the following assumptions:

(i) The operator A0−1
2M0M

∗
0 is elliptic.

(ii) The noise term Zt (v) is sufficiently regular. More specifically, for a suitable
function space X, E

∫ T
0 ‖Zt (v)‖2

X dt < ∞ for all v in a dense subspace of X.

Under these assumptions, there exists a unique Itô (strong) solution or a mar-
tingale (weak) solution u of (1.1) so that u ∈ L2(� × (0, T );X) for T > 0 (see,
e.g., [5, 19, 33, 35]). In the future, we will refer to such solutions as traditional or
square integrable solutions.

There are important examples demonstrating that the assumptions (i)–(ii) are
necessary for the existence of a square integrable solution of (1.1).

In particular, it was shown in [30] that the stochastic advection–diffusion equa-
tion

∂

∂t
u(t, x) = �u(t, x) + u(t, x)Ẇ (t, x), x ∈ R

d,
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where Ẇ (t, x) is the space–time white noise, has no square integrable solutions in
any Sobolev space X = Hs(Rd), s ∈ R, if d ≥ 2. In this case assumption (i) holds
but assumption (ii) does not.

Simple calculations show (see, e.g., [35]) that

du(t, x) = a2 ∂2

∂x2 u(t, x) dt + σ
∂

∂x
u(t, x) dw(t),

where w(t) is a one-dimensional Brownian motion and u(0, x) is square inte-
grable, has no square integrable solutions unless a2 − 1

2σ 2 ≥ 0, that is, unless (i)
holds. Obviously, (i) implies that the order of the operator M must be no larger
than a half of the order of A. Moreover, this assumption is, in some way, counter-
intuitive. Indeed, in the deterministic theory, only the highest-order operator (A0,
in our case) has to be elliptic.

The objective of the current paper is to study stochastic differential equations
of the type (1.1) without the restrictive assumptions (i) and (ii). The basic idea can
be described as follows. If (1.1) does have a sufficiently regular solution, this so-
lution can be projected on an orthonormal basis in some Hilbert space, resulting in
a system of equations for the corresponding Fourier coefficients. We now turn this
argument around, and define the solution of (1.1) as a formal Fourier series with
the coefficients computed by solving the corresponding system. It often happens
that this system has a solution under more general conditions than the original
equation.

This approach could be traced to the classical separation of variables ideas
in PDE’s. For example, the Navier–Stokes equation is often defined as a system
of coupled ODE’s for the modes of its formal Fourier expansion with respect to
the spatial variables (see, e.g., [7] and [26]). Similarly, in our case, the nonrandom
spatiotemporal variables (x, t) are being separated from the “random variable”
(Brownian motion).

More specifically, the traditional solution of (1.1) is an F W
T -measurable square

integrable random variable taking values in a Hilbert space X. A classical result
by Cameron and Martin [4] provides an orthonormal basis � = {ξα,α ∈ J} in the
Wiener Chaos space L2(W;X), where J is the set of multi-indices α = {αk

i } of
finite length |α| = ∑∞

i,k=1 αk
i . Accordingly, a Wiener Chaos solution of (1.1) is de-

fined as a formal Fourier series with respect to the Cameron–Martin basis �. By
construction, this solution is strong in the probabilistic sense, that is, uniquely de-
termined by the coefficients, free terms, initial condition and the Wiener process.
The coefficients in the Fourier series are computed by solving the correspond-
ing propagator, a lower-triangular system of deterministic parabolic equations,
uniquely determined by (1.1) (in earlier works, e.g., [28], the propagator is referred
to as S-system).

Of course, unless both (i) and (ii) hold, one could not expect the resulting
Fourier series to converge in L2(W;X). However, we demonstrate that under quite
general assumptions, the Fourier series converges in a “minimal” weighted Wiener
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Chaos space L2,Q(W;X). The construction of this space is quite simple (cf. [30]).
Given a sequence of positive numbers Q = {q1, q2, . . .}, we define L2,Q(W;X) as
the collection of sequences u = {uα,α ∈ J} with uα ∈ X so that

‖u‖2
L2,Q(W;X) := ∑

α∈J

q2α‖uα‖2
X < ∞,

where

qα = ∏
i,k

q
αk

i

k , α ∈ J.

We remark that the space L2(W;X) is a very special example of the sequence
spaces studied in [15–17].

Of course, the Wiener Chaos solution is a weak solution designed for dealing
with equations that do not have square integrable solutions. However, in some
problems, the Wiener Chaos solution serves as a convenient first step in the inves-
tigation of square integrable solutions. For example, this is the case in the proof
of the existence of square integrable solutions of degenerate parabolic SPDE’s
(Corollary 4.2 and Theorem 6.3).

Constructions based on various forms of the Wiener Chaos decomposition are
popular in the study of stochastic differential equations, both ordinary and with
partial derivatives. For stochastic ordinary differential equations, [20] used mul-
tiple Wiener integral expansion to study Itô’s diffusions with nonsmooth coeffi-
cients. More recently, LeJan and Raimond [23] used a similar approach in the
construction of stochastic flows. Various versions of the Wiener Chaos appear in
a number of papers on nonlinear filtering and related topics; see, for example,
[3, 24, 28, 31, 37]. The book by Holden et al. [12] presents a systematic approach
to the stochastic differential equations based on the white noise theory; see also
[11, 34] and the references therein.

The propagator was first introduced by Mikulevicius and Rozovskii [27], and
further studied in [24], as a numerical tool for solving the Zakai filtering equa-
tion. In [30], the propagator was used to construct a generalized solution of the
reaction–diffusion equation driven by the space–time white noise in several space
dimensions. A similar system can be derived for certain nonlinear equations, such
as the stochastic Navier–Stokes equation [29].

The main results of the paper are:

(1) Existence, uniqueness, regularity and the Krylov–Veretennikov formula for
the Wiener Chaos solution of (1.1) (Theorems 3.4, 4.1 and Corollary 4.2).

(2) A Feynman–Kac formula for Wiener Chaos solutions in L2,Q(W;L2(R
d))

(Theorem 5.1).
(3) Existence, uniqueness and regularity properties for the transport equation

with:

(a) a space–time white noise-type velocity field (Theorem 6.1);
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(b) an incompressible Kraichnan turbulent velocity field, the nonviscous
case (Theorem 6.3).

The paper is organized as follows. Section 2 introduces the Cameron–Martin
basis and the weighted Wiener Chaos spaces. Section 3 presents the general defi-
nition of the Wiener Chaos solution and establishes the connection with the tra-
ditional and the white noise solutions. In the three main Sections, 4, 5 and 6,
three types of stochastic equations are studied under three different sets of assump-
tions; these assumptions are listed at the beginning of the corresponding section.
Section 4 presents the basic existence/uniqueness/regularity result for an abstract
stochastic evolution equation under assumptions (A1)–(A3). Section 5 establishes
probabilistic and multiple Wiener integral representations of Wiener Chaos solu-
tions for stochastic partial differential equations in R

d with nonrandom coefficients
under assumptions (B0)–(B5). Finally, Section 6 illustrates the results of the pre-
vious two sections for several versions of the turbulent transport equation under
assumptions (S1)–(S3).

The following notation will be in force throughout the paper. � is the Laplace
operator, Di = ∂/∂xi , i = 1, . . . , d , and summation over the repeated indices is
assumed. The space of continuous functions is denoted by C, and H

γ
2 (Rd), γ ∈ R,

is the Sobolev space{
f :

∫
Rd

|f̂ (y)|2(1 + |y|2)γ dy < ∞
}
, where f̂ is the Fourier transform of f.

2. Weighted Wiener Chaos spaces. In this section we review the construc-
tion of the Cameron–Martin basis and define the spaces of generalized random
elements.

For a fixed T > 0, let F = (�,F , {Ft }0≤t≤T ,P) be a stochastic basis with the
usual assumptions and let W = (wk = wk(t), k ≥ 1,0 ≤ t ≤ T ) be a collection of
independent standard Brownian motions on F. Denote by F W

t the σ -algebra gen-
erated by the random variables {wk(s), k ≥ 1, s ≤ t}, and by L2(W), the Hilbert
space of F W

T -measurable square integrable random variables.
Our first step is to construct the Cameron–Martin basis, a special orthonormal

basis in the space L2(W).
Let m = {mk, k ≥ 1} be an orthonormal basis in L2((0, T )) so that each function

mk = mk(t) is bounded for t ∈ [0, T ]. Given such a basis m, define independent
standard Gaussian random variables

ξik =
∫ T

0
mi(s) dwk(s).

Consider the set of multi-indices

J =
{
α = (αk

i , i, k ≥ 1), αk
i ∈ {0,1,2, . . .},∑

i,k

αk
i < ∞

}
.
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The set J is countable, and, for every α ∈ J, only finitely many of αk
i are not equal

to zero. For α ∈ J, we write

|α| = ∑
i,k

αk
i , α! = ∏

i,k

αk
i !,

and define the collection � = {ξα,α ∈ J} of random variables so that

ξα = 1√
α!

∏
i,k

Hαk
i
(ξik),(2.1)

where

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2

is nth Hermite polynomial.

THEOREM 2.1. The collection � = {ξα,α ∈ J} is an orthonormal basis
in L2(W).

PROOF. This is a version of the classical result by Cameron and Martin [4].
�

Using the Cameron–Martin basis � in L2(W), we now define the space of gen-
eralized random elements.

Let X be a Banach space and Q = {q1, q2, . . .}, a sequence of positive numbers.
Define

qα = ∏
i,k

q
αk

i

k , α ∈ J.(2.2)

DEFINITION 2.2. (i) The Q-weighted Wiener Chaos space L2,Q(W;X) is the
collection of sequences u = {uα,α ∈ J} with uα ∈ X so that

‖u‖2
L2,Q(W;X) := ∑

α∈J

q2α‖uα‖2
X < ∞.

(ii) The Q−-weighted Wiener Chaos space L2,Q−(W;X) is the collection of se-
quences u = {uα,α ∈ J} with uα ∈ X so that

‖u‖2
L2,Q− (W;X) := ∑

α∈J

q−2α‖uα‖2
X < ∞.

The space X will be omitted from the notation if X = R. The sequence Q will
be omitted from the notation if Q = 1, that is, if qk = 1 for all k.
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Given a u = {uα,α ∈ J} ∈ L2,Q(W;X), we call each uα a generalized Fourier
coefficient of u and identify u with a formal Fourier series

u = ∑
α∈J

uαξα.

The members of the set L2,Q(W;X) are called X-valued generalized random
elements. Similarly, the members of the set L2,Q(W;L1((0, T );X)) are called
X-valued generalized random processes.

For u ∈ L2,Q(W;X) and v ∈ L2,Q−(W) we define

〈〈u, v〉〉 = ∑
α∈J

uαvα;(2.3)

the series in (2.3) converges in the norm of X by the Cauchy–Schwartz inequality.

3. Linear stochastic evolution equations and the propagator. In this sec-
tion we define the Wiener Chaos solution and establish its connection with the
traditional and white noise solutions. To motivate the definition, we start by re-
viewing the main results about the traditional solution.

Let (V ,H,V ′) be a normal triple of Hilbert spaces so that V ⊂ H ⊂ V ′ with
both embeddings continuous; for the complete definition of the normal triple see
Section 3.1 in [35]. Denote by 〈v′, v〉, v′ ∈ V ′, v ∈ V , the duality between V and V ′
relative to the inner product in H .

For t ∈ [0, T ], consider families of linear operators A = A(t) and Mk = Mk(t)

so that, for each t , the operators A(t) :V → V ′, Mk(t) :V → H are bounded.
Consider the following equation:

u(t) = u0 +
∫ t

0

(
Au(s) + f (s)

)
ds +

∫ t

0

(
Mku(s) + gk(s)

)
dwk(s),(3.1)

0 ≤ t ≤ T .

Recall that summation convention over the pairs of repeated indices is in force.
We proceed with a review of the traditional approach. Assume that, for all

v ∈ V , t ∈ [0, T ], ∑
k≥1

‖Mk(t)v‖2
H < ∞,(3.2)

and the nonrandom input data u0, f and gk satisfy

‖u0‖2
H +

∫ T

0
‖f (t)‖2

V ′ dt + ∑
k≥1

∫ T

0
‖gk(t)‖2

H dt < ∞.(3.3)
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DEFINITION 3.1. An F W
t -adapted process u ∈ L2(W;L2((0, T );V )) is

called a square integrable solution of (3.1) if, for every v ∈ V , there exists a mea-
surable subset �′ of � with P(�′) = 1, so that, for all 0 ≤ t ≤ T , the equality

(
u(t), v

)
H = (u0, v)H +

∫ t

0
〈Au(s) + f (s), v〉ds

(3.4)

+ ∑
k≥1

∫ t

0

(
Mku(s) + gk(s), v

)
H dwk(s)

holds on �′. Similarly, u ∈ L2((0, T );V ) is a solution of the deterministic equa-
tion

u(t) = u0 +
∫ t

0
Au(s) ds +

∫ t

0
f (s) ds

if, for every v ∈ V and t ∈ [0, T ], equality (3.4) holds with Mk = gk = 0.

Existence and uniqueness of the traditional solution of (3.1) are established un-
der an additional assumption about the operators A and Mk .

DEFINITION 3.2. Equation (3.1) is called strongly parabolic if there exists
a positive number ε and a real number C0 so that, for all v ∈ V and t ∈ [0, T ],

2〈A(t)v, v〉 + ∑
k≥1

‖Mk(t)v‖2
H + ε‖v‖2

V ≤ C0‖v‖2
H .(3.5)

Equation (3.1) is called weakly parabolic (or degenerate parabolic) if condi-
tion (3.5) holds with ε = 0.

THEOREM 3.3. If (3.3) holds and (3.1) is strongly parabolic, then there exists
a unique square integrable solution of (3.1). The solution process u belongs to

L2
(
W;L2

(
(0, T );V )) ∩ L2

(
W;C

(
(0, T ),H

))
and satisfies

E

(
sup

0≤t≤T

‖u(t)‖2
H +

∫ T

0
‖u(t)‖2

V dt

)
(3.6)

≤ C(C0, ε, T )

(
‖u0‖2

H +
∫ T

0
‖f (t)‖2

V ′ dt + ∑
k≥1

∫ T

0
‖gk(t)‖2

H dt

)
.

PROOF. This follows, for example, from Theorem 3.1.4 in [35]. �

When (3.1) is weakly parabolic, then the solvability result is somewhat differ-
ent; see Section 3.2 in [35] for details.

As an element of the Hilbert space L2(W;L2((0, T );V )), the traditional solu-
tion of (3.1) admits a representation u(t) = ∑

α∈J uα(t)ξα in the Cameron–Martin
basis �.
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THEOREM 3.4. An F W
t -adapted process u is a square integrable solution

of (3.1) if and only if u(t) = ∑
α∈J uα(t)ξα so that the Fourier coefficients uα

satisfy

∑
α∈J

(∫ T

0
‖uα(t)‖2

V dt + sup
0≤t≤T

‖uα(t)‖2
H

)
< ∞,(3.7)

and solve the propagator

uα(t) = u0I (|α| = 0) +
∫ t

0

(
Auα(s) + f (s)I (|α| = 0)

)
ds

(3.8)

+
∫ t

0

∑
i,k

√
αk

i

(
Mkuα−(i,k)(s) + gk(s)I (|α| = 1)

)
mi(s) ds,

where α−(i, k) is the multi-index with components

(
α−(i, k)

)l
j =

{
max(αk

i − 1,0), if i = j and k = l,

αl
j , otherwise.

Before presenting the proof, we define the Wiener Chaos solution of (3.1). The
definition is motivated by Theorem 3.4.

DEFINITION 3.5. A V -valued generalized random process u is called a
Wiener Chaos solution of (3.1) if the generalized Fourier coefficients uα,α ∈ J,
of u are a solution of the propagator (3.8).

To prove Theorem 3.4 and to derive an alternative characterization of the Wiener
Chaos solution, we need a few additional constructions.

Denote by H the set

H = ⋃
n≥1

L∞
(
(0, T );R

n)
.

If h ∈ H , then there exists an N ≥ 1 so that

h = (h1, . . . , hN),

with each hk ∈ L∞((0, T )). We define

E(t, h) = exp

(
N∑

k=1

(∫ t

0
hk(s) dwk(s) − 1

2

∫ t

0
|hk(s)|2 ds

))
, h ∈ H ,

E(h) = E(T ,h),(3.9)

hik =
∫ T

0
hk(t)mi(t) dt, mi ∈ m,
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and

hα = ∏
i,k

h
αk

i

ik , α ∈ J.

The following properties of the process E(t, h) are verified by direct calculation:

E(h) = ∑
α∈J

hα

√
α! ,(3.10)

E(t, h) = 1 +
∫ t

0
E(s, h)hk(s) dwk(s).(3.11)

One consequence of (3.10) is that E(h) ∈ L2,Q(W) for every weight sequence Q,
with ‖E(h)‖2

L2,Q(W) = exp(
∑N

k=1 q2
k‖hk‖2

L2((0,T ))). Another consequence of (3.10)
is an alternative representation of ξα :

ξα = 1√
α!

∂ |α|

∂hα
E(h)

∣∣∣∣
h=0

.(3.12)

REMARK 3.6. By Lemma 4.3.2 in [32], the family {E(h), h ∈ H} is dense in
L2(W) and therefore in every L2,Q(W).

PROOF OF THEOREM 3.4. (i) Assume that u = u(t) is a traditional solution
of (3.1). Equation (3.12) implies

uα(t) = E(u(t)ξα) = 1√
α!

∂ |α|

∂hα
E(u(t)E(h))

∣∣∣∣
h=0

.

Using the F W
t -measurability of u(t) and the martingale property (3.11) of E(t, h),

we derive

E(u(t)E(h)) = E
(
u(t)E(E(h)|F W

t )
) = E

(
u(t)E(t, h)

)
,

and (3.8) follows after applying the Itô formula to the product u(t)E(t, h) and dif-
ferentiating the resulting equation with respect to h. By Theorem 3.3.3(iii) in [22],
this differentiation with respect to h is justified.

The same arguments show that the time evolution of

ξα(t) := E(ξα|F W
t )(3.13)

is described by

ξα(t) = I (|α| = 0) +
∫ t

0

∑
i,k

√
αk

i ξα−(i,k)(s)mi(s) dwk(s).(3.14)

(ii) Conversely, assume that condition (3.7) holds. Then the process u(t) =∑
α∈J uα(t)ξα satisfies

u ∈ L2
(
W;L2

(
(0, T );V )) ∩ L2

(
W;C

(
(0, T );H ))

,
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and the function uh = E(uE(h)) belongs to L2((0, T );V )∩C((0, T );H). By Par-
sevall’s identity and relation (3.10),

uh = ∑
α∈J

hα

√
α!uα.

Using (3.8), we conclude that, for every ϕ ∈ V and h ∈ H , the function uh satisfies

(
uh(t), ϕ

)
H = (u0, ϕ)H +

∫ t

0

(
Auh(s), ϕ

)
H ds +

∫ t

0
〈f (s), ϕ〉ds

+ ∑
α∈J

hα

α!
∑
i,k

∫ t

0

√
αk

i mi(s)
((

Mkuα−(i,k)(s), ϕ
)
H

+ (
gk(s), ϕ

)
HI (|α| = 1)

)
ds.

To simplify the above equality note that if I (t) = ∫ t
0 (Mku(s), ϕ)H dwk(s), then

the F W
t -measurability of I (t) and relation (3.14) imply

E(I (t)ξα) = E(I (t)ξα(t)) =
∫ t

0

∑
i,k

√
αk

i mi(s)
(
Mkuα−(i,k)(s), ϕ

)
H ds.(3.15)

Similarly,

E

(
ξα

∫ t

0
gk(s) dwk(s)

)
= ∑

i,k

∫ t

0

√
αk

i mi(s)
(
gk(s), ϕ

)
HI (|α| = 1) ds.

Therefore,
∑
α∈J

hα

α!
∑
i,k

∫ t

0

√
αk

i mi(s)
((

Mkuα−(i,k)(s), ϕ
)
H + (

gk(s), ϕ
)
HI (|α| = 1)

)
ds

= E

(
E(h)

∫ t

0

((
Mku(s), ϕ

)
H + (

gk(s), ϕ
)
H

)
dwk(s)

)
.

As a result,

E
(
E(h)

(
u(t), ϕ

)
H

) = E
(
E(h)(u0, ϕ)H

) + E

(
E(h)

∫ t

0
〈Au(s), ϕ〉ds

)

+ E

(
E(h)

∫ t

0
〈f (s), ϕ〉ds

)
(3.16)

+ E

(
E(h)

∫ t

0

((
Mku(s), ϕ

)
H + (

gk(s), ϕ
)
H

)
dwk(s)

)
.

Equality (3.16) and Remark 3.6 imply that, for each t and each ϕ, (3.4) holds with
probability 1. Due to continuity of u, a single probability-1 set can be chosen for
all t ∈ [0, T ].

Theorem 3.4 is proved. �
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Theorem 3.4 implies that, if it exists, the traditional solution of (3.1) coincides
with the Wiener Chaos solution.

We now give an alternative characterization of the Wiener Chaos solution.

THEOREM 3.7. A V -valued generalized random process u is a Wiener Chaos
solution of (3.1) if and only if, for every h ∈ H , the function uh(t) = 〈〈u(t),E(h)〉〉
is a solution of the equation

uh(t) = u0 +
∫ t

0

(
Auh(s) + f (s) + hk(s)Mkuh(s) + hk(s)gk(s)

)
ds.(3.17)

PROOF. Assume that u is a Wiener Chaos solution of (3.1), that is, u ∈
L2,Q(W;V ) for some Q and each uα is a solution of (3.8). By definition (2.3)
and relation (3.10),

uh = ∑
α∈J

hα

√
α!uα.(3.18)

Then (3.17) follows from (3.8). Indeed,

∑
α

hα

√
α!

∑
i,k

√
αk

i Mkuα−(i,k)mi = ∑
α

∑
i,k

hα−(i,k)

√
α−(i, k)!Mkuα−(i,k)mihik

= ∑
i,k

(∑
α

hα

√
α

Mkuα

)
mihik = hkMkuh.

Computations for the other terms are similar.
Conversely, assume that u ∈ L2,Q(W;L2((0, T );V )) and uh ∈ L2((0, T );V )

is a solution of (3.17). By relation (3.18),

uα = 1√
α!

∂ |α|

∂hα
uh

∣∣∣∣
h=0

.

Then term-by-term differentiation in (3.17) implies (3.8). Theorem 3.7 is proved.
�

To conclude this section, we briefly discuss the relation between the Wiener
Chaos and white noise solutions. While the white noise solution for (3.1) has not
been defined in general, analysis of the particular cases [11, 12, 34] shows that
the white noise solution exists provided (3.17) has a solution that is an analytic
function of h. The white noise solution of (3.1) is constructed as an element of the
space

(S)−ρ(X) =
{
uα :

∑
α∈J

r2
α,�‖uα‖2

X < ∞ for some � > 0

}
,
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where

r2
α,� = (α!)−ρ

∏
i,k

(2ik)−�αk
i , ρ ∈ [0,1];

(S)−0(R
d) is known as the space of Hida distributions [11]. Even though (S)−ρ(X)

is not, in general, related to L2,Q(W;X), in many examples one can take either
qk = q or qk = Cqk for some q < 1. For such weights,

L2,Q(W;X) ⊂ (S)−0(X)

with strict inclusion, so that the Wiener Chaos approach provides better regularity
results. In addition, we remark that in contrast to the Wiener Chaos solutions, the
white noise solutions are weak solutions in the probabilistic sense.

4. Linear evolution equations in weighted Wiener Chaos spaces. In this
section we present the main existence, uniqueness and regularity result for the
Wiener Chaos solution of (3.1). We make the following assumptions:

(A1) There exist positive numbers C1 and δ so that, for every v ∈ V and t ∈ [0, T ],
〈A(t)v, v〉 + δ‖v‖2

V ≤ C1‖v‖2
H .(4.1)

(A2) There exists a real number C2 and a sequence of positive numbers Q =
{qk, k ≥ 1} so that, for every v ∈ H and t ∈ [0, T ],

2〈A(t)v, v〉 + ∑
k≥1

q2
k‖Mk(t)v‖2

H ≤ C2‖v‖2
H .(4.2)

(A3) The initial condition u0 is nonrandom and belongs to H ; the process f =
f (t) is deterministic and

∫ T
0 ‖f (t)‖2

V ′ dt < ∞; each gk = gk(t) is a deter-
ministic process and

∑
k≥1

∫ T

0
q2
k‖gk(t)‖2

H dt < ∞.

Denote by (Pt,s,0 ≤ s ≤ t ≤ T ) the semigroup generated by the operator A;
Pt := Pt,0. In other words, the solution of the equation

v(t) = v0 +
∫ t

s
Av(τ) dτ +

∫ t

s
f (τ ) dτ, 0 ≤ s ≤ t ≤ T ,

v0 ∈ H,f ∈ L2((0, T );V ′), is written as

v(t) = Pt,sv0 +
∫ t

s
Pt,τ f (τ ) dτ.

This solution exists by assumption (A1) and Theorem 3.3. Denote by u(0) the
solution of (3.8) when |α| = 0.
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THEOREM 4.1. Under assumptions (A1)–(A3), (3.1) has a unique Wiener
Chaos solution. The solution u = u(t) has the following properties:

(1) For every γ ∈ (0,1),

u ∈ L2,γQ

(
W;L2

(
(0, T );V )) ∩ L2,γQ

(
W;C

(
(0, T );H ))

.(4.3)

(2) For every 0 ≤ t ≤ T , u(t) ∈ L2,Q(W;H) and the following relations hold:∑
|α|=n

qαuα(t)ξα

= ∑
k1,...,kn≥1

∫ t

0

∫ sn

0

· · ·
∫ s2

0
Pt,sn

�Mkn · · ·Ps2,s1(4.4)

× ( �Mk1u(0) + qk1gk1(s1)
)
dwk1(s1) · · ·dwkn(sn),

n ≥ 1,

where �Mk = qkMk ;

‖u(t)‖2
L2,Q(W;H)

(4.5)
≤ 3eC2t

(
‖u0‖2

H + Cf

∫ t

0
‖f (s)‖2

V ′ ds + ∑
k≥1

∫ t

0
q2
k‖gk(s)‖2

H ds

)
,

where the number C2 is from (4.2) and the positive number Cf depends only on δ

and C1 from (4.1).

PROOF. The arguments build on the techniques from [25].

(1) By Theorem 3.3, there exists a unique traditional solution of equation

v(t) = u0 +
∫ t

0

(
Av(s) + f (s)

)
ds

(4.6)

+ ∑
k≥1

∫ t

0

(
Mkv(s) + gk(s)

)
γ qk dwk(s).

By Theorems 3.4 and 3.7, vα = γ |α|qαuα , and (4.3) follows.
(2) Direct computations show that, for |α| = 1 with αk

i = 1, the corresponding
solution uα := u(ik) of (3.8) is

u(ik)(t) =
∫ t

0
Pt,s

(
Mku(0)(s) + gk(s)

)
mi(s) ds.(4.7)
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Since ξ(ik) = ξik = ∫ T
0 mi(s) dwk(s), we conclude that

∑
i≥1

uik(t)ξ(ik) =
∫ t

0
Pt,s

(
Mku(0)(s) + gk(s)

)
dwk(s)

or ∑
|α|=1

qαuα(t)ξα = ∑
k≥1

∫ t

0
Pt,s

( �Mku(0)(s) + qkgk(s)
)
dwk(s).

Continuing by induction on |α| and using the relation between the Hermite poly-
nomials and the iterated Itô integrals ([13], Theorem 3.1), we derive (4.4).

An immediate consequence of (4.4) is the following energy equality:∑
|α|=n

q2α‖uα(t)‖2
H

= ∑
k1,...,kn≥1

∫ t

0

∫ sn

0
(4.8)

· · ·
∫ s2

0

∥∥Pt,sn
�Mkn · · ·Ps2,s1

( �Mk1u(0) + qk1gk1

)∥∥2
H dsn,

where dsn = ds1 · · ·dsn.
To derive (4.5), consider first the homogeneous equation with f = gk = 0 and

define Fn(t) = ∑
|α|=n q2α‖uα(t)‖2

H , n ≥ 0. Note that u(0)(t) = Ptu0.
By assumption (4.2),

d

dt
F0(t) ≤ C2F0(t) − ∑

k≥1

‖ �MkPtu0‖2
H .(4.9)

For n ≥ 1, the energy equality (4.8) implies

d

dt
Fn(t) = ∑

k1,...,kn≥1

∫ t

0

∫ sn−1

0
· · ·

∫ s2

0

∥∥ �MknPt,sn−1
�Mkn−1 · · · �Mk1Ps1u0

∥∥2
H dsn−1

+ ∑
k1,...,kn≥1

∫ t

0

∫ sn

0
· · ·

∫ s2

0
2
〈
APt,sn

�Mkn · · · �Mk1Ps1u0,(4.10)

Pt,sn
�Mkn · · · �Mk1Ps1u0

〉
dsn.

By assumption (4.2),

∑
k1,...,kn≥1

∫ t

0

∫ sn

0
· · ·

∫ s2

0
2
〈
APt,sn

�Mkn · · · �Mk1Ps1u0,

Pt,sn
�Mkn · · · �Mk1Ps1u0

〉
dsn(4.11)
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≤ − ∑
k1,...,kn+1≥1

∫ t

0

∫ sn

0
· · ·

∫ s2

0

∥∥ �Mkn+1Pt,sn
�Mkn · · · �Mk1Ps1u0

∥∥2
H dsn

+ C2
∑

k1,...,kn≥1

∫ t

0

∫ sn

0
· · ·

∫ s2

0

∥∥Pt,sn
�Mkn · · · �Mk1Ps1u0

∥∥2
H dsn.

As a result, for n ≥ 1,

d

dt
Fn(t) ≤ C2Fn(t)

+ ∑
k1,...,kn≥1

∫ t

0

∫ sn−1

0
· · ·

∫ s2

0

∥∥ �MknPt,sn−1
�Mkn−1 · · · �Mk1Ps1u0

∥∥2
H dsn−1(4.12)

− ∑
k1,...,kn+1≥1

∫ t

0

∫ sn

0
· · ·

∫ s2

0

∥∥ �Mkn+1Pt,sn
�Mkn · · · �Mk1Ps1u0

∥∥2
H dsn.

Consequently,

d

dt

N∑
n=0

∑
|α|=n

q2α‖uα(t)‖2
H ≤ C2

N∑
n=0

∑
|α|=n

q2α‖uα(t)‖2
H ,(4.13)

so that, by the Gronwall inequality,

N∑
n=0

∑
|α|=n

q2α‖uα(t)‖2
H ≤ eC2t‖u0‖2

H(4.14)

or

‖u(t)‖2
L2,Q(W;H) ≤ eC2t‖u0‖2

H .(4.15)

The remaining two cases, namely, u0 = gk = 0 and u0 = f = 0, are analyzed in
the same way, and then (4.5) follows by the triangle inequality. Theorem 4.1 is
proved. �

COROLLARY 4.2. Let aij , bi, c, σik, νk be deterministic measurable functions
of (t, x) so that

|aij (t, x)| + |bi(t, x)| + |c(t, x)| + |σik(t, x)| + |νk(t, x)| ≤ K,

i, j = 1, . . . , d, k ≥ 1, x ∈ R
d,0 ≤ t ≤ T ;(

aij (t, x) − 1
2σik(t, x)σjk(t, x)

)
yiyj ≥ 0,

x, y ∈ R
d,0 ≤ t ≤ T ; and ∑

k≥1

|νk(t, x)|2 ≤ Cν < ∞,
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x ∈ R
d,0 ≤ t ≤ T . Consider the equation

du = (
Di(aijDju) + biDiu + cu + f

)
dt

(4.16)
+ (σikDiu + νku + gk) dwk.

Assume that the input data satisfy u0 ∈ L2(R
d), f ∈ L2((0, T );H−1

2 (Rd)),∑
k≥1 ‖gk‖2

L2((0,T )×Rd )
< ∞, and there exists an ε > 0 so that

aij (t, x)yiyj ≥ ε|y|2, x, y ∈ R
d,0 ≤ t ≤ T .

Then there exists a unique Wiener Chaos solution u = u(t, x) of (4.16). The solu-
tion has the following regularity:

u(t, ·) ∈ L2
(
W;L2(R

d)
)
, 0 ≤ t ≤ T ,(4.17)

and

E‖u‖2
L2(R

d )
(t)

(4.18)
≤ C∗

(
‖u0‖2

L2(R
d )

+ ‖f ‖2
L2((0,T );H−1

2 (Rd ))
+ ∑

k≥1

‖gk‖2
L2((0,T )×Rd )

)
,

where the positive number C∗ depends only on Cν,K,T and ε.

PROOF. Direct computation shows that the operators

A = Di(aijDj ) + biDi + c, Mk = σikDi + νk

satisfy assumptions (A1) and (A2) in the normal triple (H 1
2 (Rd),L2(R

d),

H−1
2 (Rd)) with qk = 1. Then relations (4.17) and (4.18) follow from (4.5). �

Note that in contrast to the statement of this corollary, all previous results con-
cerning (4.16) required additional regularity of the coefficients and input data; see,
for example, [35], Section 4.2.

Theorem 4.1 is a bona fide extension of Theorem 3.3. Indeed, if condition (3.5)
holds so that (3.1) is strongly parabolic, then, taking Q = 1, we recover the state-
ment of Theorem 3.3. Further analysis of condition (3.5) indicates that, for a
strongly parabolic equation, one can find an admissible weight sequence Q so that
qk = q > 1. Since for Q > 1 we have a strict inclusion L2,Q(W;X) ⊂ L2(W;X),
Theorem 4.1 represents an improvement of Theorem 3.3 for strongly parabolic
equations.

For weakly parabolic equations, similarly to the proof of Corollary 4.2, one can
take Q = 1, and then Theorem 4.1 represents an extension of the existing results
([35], Sections 3.2 and 4.2).

For nonparabolic equations, the results of Theorem 4.1 are completely new.
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REMARK 4.3. The formal Fourier series u = ∑
α∈J uαξα for the Wiener

Chaos solution is a generalization of the representation formula for solutions of
SODE’s, derived by ([20], Theorem 4) using iterated Itô integrals; see also [23],
Theorem 3.2. Indeed,

∑
α∈J

uαξα = ∑
n≥0

( ∑
|α|=n

uαξα

)
,

and equality (4.4) connects the inner sum on the right with the iterated integrals.
See also Example 5.2 below.

5. Probabilistic representation of Wiener Chaos solutions. As before, let
F = (�,F , {Ft }0≤t≤T ,P) be a stochastic basis with the usual assumptions and let
W = {wk(t), k ≥ 1,0 ≤ t ≤ T } be a collection of standard Wiener processes on F.

Consider the linear equation in R
d

du = (aijDiDju + biDiu + cu + f )dt + (σikDiu + νku + gk) dwk(5.1)

under the following assumptions:

(B0) All coefficients, free terms and the initial condition are nonrandom.
(B1) The functions aij = aij (t, x) are measurable and bounded in (t, x), and

(i)

|aij (t, x) − aij (t, y)| ≤ C|x − y|, x, y ∈ R
d,0 ≤ t ≤ T ,

with C independent of t, x, y;
(ii) the matrix (aij ) is uniformly positive definite, that is, there exists a δ > 0

so that, for all vectors y ∈ R
d and all (t, x), aij yiyj ≥ δ|y|2.

(B2) The functions bi = bi(t, x), c = c(t, x) and νk = νk(t, x) are measurable and
bounded in (t, x).

(B3) The functions σik = σik(t, x) are continuous and bounded in (t, x).
(B4) There exists a p ≥ d + 1 so that the functions f = f (t, x) and gk = gk(t, x)

belong to

Lp

(
(0, T );L2(R

d) ∩ Lp(Rd)
)
.

(B5) The initial condition u0 = u0(x) belongs to L2(R
d) ∩ W 2

p(Rd), p ≥ d + 1,
where W 2

p is the Sobolev space {f :f,Dif,DiDjf ∈ Lp(Rd)}.
Under assumptions (B2)–(B4), there exists a sequence Q = {qk, k ≥ 1} of posi-

tive numbers with the following properties:

(P1) The matrix A with Aij = aij − (1/2)
∑

k≥1 qkσikσjk satisfies Aij (t, x)yiyj ≥
0, x, y ∈ R

d , 0 ≤ t ≤ T .
(P2) There exists a number C > 0 so that∑

k≥1

(
sup
t,x

|qkνk(t, x)|2 +
∫ T

0
q2
k‖gk‖2

L2(R
d )

(t) dt

)
≤ C.
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For the matrix A and each t, x, we have Aij (t, x) = σ̃ik(t, x)σ̃jk(t, x), where
the functions σ̃ik are bounded. This representation might not be unique; see, for
example, [9], Theorem III.2.2 or [36], Lemma 5.2.1. Given any such representation
of A, consider the following backward Itô equation:

Xt,x,i(s) = xi +
∫ t

s
Bi

(
τ,Xt,x(τ )

)
dτ + ∑

k≥1

∫ t

s
qkσik

(
τ,Xt,x(τ )

)←−−
dwk(τ )

(5.2)

+
∫ t

s
σ̃ik

(
τ,Xt,x(τ )

)←−−
dw̃k(τ ); s ∈ (0, t), t ∈ (0, T ], t-fixed,

where Bi = bi − ∑
k≥1 q2

k σikνk and w̃k, k ≥ 1, are independent standard Wiener
processes on F that are independent of wk, k ≥ 1. This equation might not have
a strong solution, but does have weak, or martingale, solutions due to assumptions
(B1)–(B3) and properties (P1) and (P2) of the sequence Q; this weak solution is
unique in the sense of probability law ([36], Theorem 7.2.1).

Let Q be the operator

Q : {uα,α ∈ J} �→ {qαuα,α ∈ J}.
THEOREM 5.1. Under assumptions (B0)–(B5), (5.1) has a unique Wiener

Chaos solution u = u(t, x). If Q is a sequence with properties (P1) and (P2), then
u(t, ·) ∈ L2,Q(W;L2(R

d)), 0 ≤ t ≤ T , and the following representation holds:

u(t, x) = Q−1
E

(∫ t

0
f

(
s,Xt,x(s)

)
γ (t, s, x) ds

+ ∑
k≥1

∫ t

0
qkgk

(
s,Xt,x(s)

)
γ (t, s, x)

←−−
dwk(s)(5.3)

+ u0(Xt,x(0))γ (t,0, x)|F W
t

)
,

t ≤ T ,x ∈ R
d , where Xt,x(s) is a weak solution of (5.2) and

γ (t, s, x) = exp

(∫ t

s
c
(
τ,Xt,x(τ )

)
dτ + ∑

k≥1

∫ t

s
qkνk

(
τ,Xt,x(τ )

)←−−
dwk(τ )

(5.4)

− 1
2

∫ t

s

∑
k≥1

q2
k

∣∣νk

(
τ,Xt,x(τ )

)∣∣2 dτ

)
.

PROOF. It is enough to establish (5.3) when t = T . Consider the equation

dU = (aijDiDjU + biDiU + cU + f )dt

(5.5) + ∑
k≥1

(σikDiU + νkU + gk)qk dwk
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with initial condition U(0, x) = u0(x). In Theorem 4.1, take Q = 1 and consider
the normal triple (H 1

2 (Rd),L2(R
d),H−1

2 (Rd)). Then (5.5) has a unique Wiener
Chaos solution U and

U(t, ·) ∈ L2
(
W;L2(R

d)
)
, 0 ≤ t ≤ T .

By construction, process u = Q−1U is the corresponding Wiener Chaos so-
lution of (5.1). To establish representation (5.3), consider the function Uh =
E(UE(h)), h ∈ H . According to Theorem 3.7, the function Uh is the unique solu-
tion of the equation

dUh = (aijDiDjUh + biDiUh + cUh + f )dt
(5.6)

+ ∑
k≥1

(σikDiUh + νkUh + gk)qkhk dt

with initial condition Uh|t=0 = u0. We also define

Y(T , x) =
∫ T

0
f

(
s,XT,x(s)

)
γ (T , s, x) ds

+ ∑
k≥1

∫ T

0
gk

(
s,XT,x(s)

)
γ (T , s)qk

←−−
dwk(s)(5.7)

+ u0(XT,x(0))γ (T ,0, x).

By direct computation,

E
(
E

(
E(h)Y (T , x)|F W

T

)) = E
(
E(h)Y (T , x)

) = E
′Y(T , x),

where E
′ is the expectation with respect to the measure dP

′
T = E(h) dPT and PT

is the restriction of P to F W
T .

Under assumptions (B0)–(B5), the solution Uh of (5.6) is continuous in (t, x)

and has a probabilistic representation via the Feynmann–Kac formula; see [21],
Section 1.6. Using the Girsanov theorem ([14], Theorem 3.5.1), this representation
can be written as Uh(T , x) = E

′Y(T , x) or

E
(
E(h)U(T , x)

) = E
(
E(h)EY(t, x)|F W

T

)
.

By Remark 3.6, the last equality implies U(T , x) = E(Y (T , x)|F W
T ) as elements

of L2(W).
Theorem 5.1 is proved. �

EXAMPLE 5.2 (Krylov–Veretennikov formula). Consider the equation

du = (aijDiDju + biDiu) dt +
d∑

k=1

σikDiudwk, u(0, x) = u0(x).(5.8)
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Assume (B0)–(B5) and suppose that aij (t, x) = 1
2σik(t, x)σjk(t, x). By Corol-

lary 4.2, (5.8) has a square integrable solution such that

E‖u‖2
L2(R

d )
(t) ≤ C∗‖u0‖2

L2(R
d )

.

By Theorem 4.1 with Q = 1,

u(t, x) =
∞∑

n=1

∑
|α|=n

uα(t, x)ξα

= u0(x)
(5.9)

+
∞∑

n=1

d∑
k1,...,kn=1

∫ t

0

∫ sn

0
· · ·

∫ s2

0
Pt,snσjknDj

· · ·Ps2,s1σik1DiPs1,0u0(x) dwk1(s1) · · ·dwkn(sn),

where Pt,s is the semigroup generated by the operator A = aijDiDju + biDiu.
On the other hand, in this case, Theorem 5.1 yields

u(t, x) = E
(
u0(Xt,x(0))|F W

t

)
,

where W = (w1, . . . ,wd) and

Xt,x,i(s) = xi +
∫ t

s
bi

(
τ,Xt,x(τ )

)
dτ +

d∑
k=1

∫ t

s
σik

(
τ,Xt,x(τ )

)←−−
dwk(τ ),

(5.10)

s ∈ (0, t), t ∈ (0, T ], t-fixed.

Thus, we have arrived at the Krylov–Veretennikov formula (cf. [20], Theorem 4):

E
(
u0(Xt,x(0))|F W

t

)

= u0(x) +
∞∑

n=1

d∑
k1,...,kn=1

∫ t

0

∫ sn

0
· · ·

∫ s2

0
Pt,snσjknDj(5.11)

· · ·Ps2,s1σik1Diu(0)(x) dwk1(s1) · · ·dwkn(sn).

6. Passive scalar in a Gaussian field. The following viscous transport equa-
tion is used to describe time evolution of a passive scalar θ in a given velocity
field v:

θ̇ (t, x) = ν�θ(t, x) − v(t, x) · ∇θ(t, x) + f (t, x); x ∈ R
d, d > 1.(6.1)

In the Kraichnan model of turbulent transport [10, 18], using the results from
[1] and [23], (6.1) can be written as an Itô stochastic evolution equation:

dθ(t, x) = (
ν�θ(t, x) + f (t, x)

)
dt − σk(x) · ∇θ(t, x) dwk(t),(6.2)

where
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(S1) {wk(t), k ≥ 1, t ≥ 0} is a collection of independent Wiener processes.
(S2) {σk, k ≥ 1} is an orthonormal basis in the space HC , the reproducing kernel

Hilbert space corresponding to the spatial covariance function C of v, so that
σ i

k(x)σ
j
k (y) = Evi(x)vj (y) = Cij (x − y) and Cij (0) = δij . The space HC is

all or part of the Sobolev space H(d+γ )/2(Rd;R
d), γ ∈ (0,2).

(S3) The initial condition θ0 is nonrandom and belongs to L2(R
d).

Using the Wiener Chaos approach, it is possible to consider velocity fields v
that are even more turbulent, for example,

vi(t, x) = ∑
k≥0

σ i
k(x)ẇk(t),(6.3)

where {σk, k ≥ 1} is an orthonormal basis in L2(R
d;R

d). With v as in (6.3), the
passive scalar equation (6.2) becomes

θ̇ (t, x) = ν�θ(t, x) + f (t, x) − ∇θ(t, x) · Ẇ (t, x),(6.4)

where Ẇ = Ẇ (t, x) is a d-dimensional space–time white noise.
In [6] and [34], a similar equation is studied using the white noise approach.

For more related results and references, see [12], Section 4.3. We will consider an
even more general equation.

THEOREM 6.1. Suppose that ν > 0 is a real number, the functions σ i
k(x) are

bounded and measurable, θ0 ∈ L2(R
d) and f ∈ L2((0, T );H−1

2 (Rd)).
Fix ε > 0 and let Q = {qk, k ≥ 1} be a sequence so that, for all x, y ∈ R

d ,

2ν|y|2 − ∑
k≥1

q2
k σ i

k(x)σ
j
k (x)yiyj ≥ ε|y|2.

Then there exists a unique Wiener Chaos solution of (6.2). This solution satisfies

θ ∈ L2,Q

(
W;L2

(
(0, T );H 1

2 (Rd)
)) ∩ L2,Q

(
W;C

(
(0, T );L2(R

d)
))

.

PROOF. The result follows from Theorem 4.1, with A = ν�, Mk = σ i
kDi , in

the normal triple (H 1
2 (R),L2(R),H−1

2 (R)). �

REMARK 6.2. If maxi supx |σ i
k(x)| ≤ Ck , k ≥ 1, then a possible choice of Q is

qk = (δν)1/2/(d2kCk), 0 < δ < 2.
If σ i

k(x)σ
j
k (x) ≤ Cσ < +∞, i, j = 1, . . . , d , x ∈ R

d , then a possible choice of
Q is qk = ε(2ν/(Cσ d))1/2, 0 < ε < 1.

When ν = 0, (6.2) describes nonviscous transport [8] and can still be studied if
interpreted in the Stratonovich sense:

du(t, x) = f (t, x) dt − σk(x) · ∇θ(t, x) ◦ dwk(t).(6.5)
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In what follows, we assume that f = 0, each σk is divergence free and
σ i

k(x)σ
j
k (x) = δij . Then (6.5) has an equivalent Itô form

dθ(t, x) = 1
2�θ(t, x) dt − σ i

k(x)Diθ(t, x) dwk(t).(6.6)

The following result (cf. [25]) summarizes the main facts about the Wiener Chaos
solution of (6.6)

THEOREM 6.3. In addition to (S1)–(S3), assume that each σk is divergence
free. Then there exists a unique Wiener Chaos solution θ = θ(t, x) of (6.6). This
solution has the following properties:

(i) For each t ∈ [0, T ], θ(t, ·) ∈ L2(R
d).

(ii) For every ϕ ∈ C∞
0 (Rd) and all t ∈ [0, T ], the equality

(θ, ϕ)(t) = (θ0, ϕ) + 1
2

∫ t

0
(θ,�ϕ)(s) ds +

∫ t

0
(θ, σ i

kDiϕ)dwk(s)(6.7)

holds in L2(W), where (·, ·) is the inner product in L2(R
d).

(iii) If θ0 ∈ W 2
p(Rd), p ≥ d + 1, and X is a weak solution of

Xt,x = x +
∫ t

0
σk(Xs,x) dwk(s),(6.8)

then

θ(t, x) = E
(
θ0(Xt,x)|F W

t

)
, 0 ≤ t ≤ T ,x ∈ R

d .(6.9)

(iv) For 1 ≤ p < ∞ and r ∈ R, denote by Lp,(r)(R
d) the space of measurable

functions with finite norm

‖f ‖p

Lp,(r)(R
d )

:=
∫

Rd
|f (x)|p(1 + |x|2)pr/2 dx.

Then there exists a number K depending only on p and r so that

E‖θ‖p

Lp,(r)(R
d )

(t) ≤ eKt‖θ0‖p

Lp,(r)(R
d )

, t > 0.(6.10)

In particular, if r = 0, then K = 0.

PROOF. (i) This follows from Theorem 4.1, because (6.6) is weakly parabolic
and one can take Q = 1.

(ii) Since for each k we have Diσ
i
k = 0 in the sense of distributions, the same

arguments as in the proof of the second part of Theorem 3.4 result in (6.7).
(iii) Equality (6.9) follows from Theorem 5.1 after observing that the time-

homogeneity of σk allows us to rewrite the corresponding backward equation
as (6.8).
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(iv) To prove (6.10), denote by St : θ0(·) �→ θ(t, ·), t > 0, the solution operator
for (6.6). Direct calculations show that, for every r ∈ R, assumptions (A1)–(A2)
of Theorem 4.1 are satisfied with V = H 1

2,(r)(R
d) := {f :f,Dif ∈ Lp,(r)(R

d)},
H = L2,(r)(R

d), V ′ = H−1
2,(r)(R

d) and Q = 1. Then St is a bounded linear operator

from L2,(r)(R
d) to L2,(r)(� × R

d) and

‖Stθ0‖L2,(r)(�×Rd ) ≤ eK2t‖θ0‖L2,(r)(R
d )

for every r ∈ R, where the number K2 depends only on r , and

‖f ‖2
L2,(r)(�×Rd )

:= E‖f ‖2
L2,(r)(R

d )
.

The calculations also show that K2 = 0 if r = 0.
By (6.9), St is a bounded linear operator from L∞(Rd) to L∞(� × R

d) and

‖Stθ0‖L∞(�×Rd ) ≤ ‖θ0‖L∞(Rd ).

Interpreting the last inequality in the weighted spaces L∞,(r) with weight r = 0,
we interpolate between L∞ = L∞,(0) and L2,(r) and derive (6.10) from the Stein
interpolation theorem in weighted spaces (see, e.g., [2], Theorem 4.3.6). Theo-
rem 6.3 is proved. �
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suggestions.
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