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Abstract. Time evolution of a passive scalar is considered in a turbulent homo-
geneous incompressible Gaussian flow. The turbulent nature of the flow results in
non-smooth coefficients in the corresponding evolution equation. A strong, in the
probabilistic sense, solution of the equation is constructed using Wiener Chaos ex-
pansion, and the properties of the solution are studied. Among the results obtained
are a certain Lp-regularity of the solution and Feynman-Kac-type, or Lagrangian,
representation formula. The results apply to both viscous and conservative flows.
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1. Introduction

If v = v(t, x) is a smooth vector field in Rd, then there exists a unique classical
solution θ = θ(t, x) of a non-viscous transport equation

(1.1)
∂θ

∂t
+ v · ∇θ = 0, t > 0, θ(0, x) = θ0(x).

This solution can be written as

(1.2) θ(t, x) = θ0(X
x
t,0),

where X = Xx
s,t is the flow generated by the vector field v:

(1.3)
dXx

s,t

dt
= v(t,Xx

s,t), t > s, Xx
s,s = x.

If the velocity field v is not smooth as a function of x, then, in general, there are
no existence results for equation (1.1), while equation (1.3) can have more than one
solution. Consequently, the connection between (1.1) and (1.3) becomes unclear and
representation (1.2) dubious.

For non-smooth vector fields v, analysis of either (1.1) or (1.3) is impossible without
further specifying the function v. It is shown in [11] that in many physical models,
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such as turbulent flows, etc., the function v = (v1(t, x), . . . , vd(t, x)) can be repre-
sented as

(1.4) vi(t, x) =
∑
k≥1

σi
k(x)ẇk(t),

where each σi
k(x) is Hölder continuous in x of order less than one,

∑
k≥1 σ

i
k(x)σ

j
k(y) =

Cij(x− y) for certain functions Cij, and (wk, k ≥ 1) are independent standard Brow-
nian motions on some probability space (Ω,F ,P). Equation (1.3) then becomes a
stochastic differential equation

(1.5) d(Xx
s,t)

i = σi
k(X

x
s,t)dwk(t), t > s, (Xx

s,s)
i = xi.

This equation does not, in general, have a strong solution, that is, Xx
s,t is not, in gen-

eral, measurable with respect to the sigma-algebra FW
s,t generated by the increments

wk(v)− wk(u), s ≤ u < v ≤ t, k ≥ 1. On the other hand, it is a standard fact that a
unique weak solution of (1.5) always exists under the above assumptions on σi

k (see
e.g. [1]).

In [11], the authors provide a systematic study of the family of operators

(1.6) Ss,t : f(x) 7→ E
(
f(Xx

s,t)|FW
s,t

)
for suitable functions f , where X is a weak solution of (1.5). If the functions σi

k are
Lipschits continuous, then Xx

s,t is FW
s,t -measurable. Moreover, it was shown in [13]

that in this case θ(t, x) = θ0(X
x
t,0) = St,0θ0(x) is a unique generalized solution of the

Stratonovich stochastic partial differential equation

(1.7) dθ +
∑
i,k

σi
k

∂θ

∂xi
◦ dwk, t > 0, θ(0, x) = θ0(x).

When the functions σi
k are not Lipschits continuous, the connection between the

operators Ss,t and equation (1.7) is not clear. In particular, (1.7) does not, in general,
have a solution in the traditional sense, classical or generalized, and, even if one defines
the solution to be St,0θ0(x) (cf. [5]), it is not clear in what sense the equation will
be satisfied. Finally, no existing results provide a way of computing the conditional
expectation in (1.6) for a particular vector field v.

The objective of the current paper is to show that if the vector field v is not smooth
but still divergence-free in the generalized sense and θ0 ∈ Lp(Rd), 2 ≤ p ≤ ∞, then
equation (1.7) has a unique strong generalized solution. More precisely, it is shown
that there exists a random field θ = θ(t, x) so that, for each t > 0,

• θ(t, ·) ∈ Lp(Ω× Rd), 2 ≤ p ≤ ∞.
• θ(t, ·) is FW

0,t -measurable.
• For every smooth compactly supported function ϕ,

(1.8) (θ, ϕ)(t) = (θ0, ϕ) +
∑
i,k

∫ t

0

(
θ, σi

k

∂ϕ

∂xi

)
(s) ◦ dwk(s)

with probability one, where (·, ·) denotes the inner product in Rd.



PASSIVE SCALAR EQUATION 3

This random field admits a Lagrangian representation

(1.9) θ (t, x) = E
(
θ0 (Xt,x (0)) |FW

t

)
(P− a.s.)

where

Xt,x (s) = x+

∫ t

s

σ (Xt,x (r))
←−−
dW (r) +

√
2ν
(
W̃ (t)− W̃ (s)

)
where W̃ is a standard Brownian motion independent of W. The solution of equation
(1.8) as well as its moments can be computed using the Wiener Chaos expansion (see
also Remark 5.6).

2. Passive Scalar in a Gaussian Field

We consider the following transport equation to describe the evolution of a passive
scalar θ in a random velocity field v:

(2.1) θ̇(t, x) =
1

2
ν∆θ(t, x)− v(t, x) · ∇θ(t, x) + f(t, x); x ∈ Rd, d > 1.

In (2.1), ∆ and ∇ denote the Laplace operator and the gradient, respectively. Our
interest in this equation is motivated by the on-going progress in the study of the
turbulent transport problem (E and Vanden Eijnden [5], Gawȩdzki and Kupiainen
[7], Gawȩdzki and Vergasola [6], Kraichnan [10], etc.)

We assume in (2.1) that v = v(t, x) ∈ Rd, d ≥ 2, is an isotropic Gaussian vector
field with zero mean and covariance E(vi(t, x)vj(s, y)) = δ(t − s)Cij(x − y), where
C = (Cij(x), i, j = 1, . . . , d) is a matrix-valued function. It is well-known (see, for
example, LeJan [11]) that in the physically interesting models, such as Kraichnan

velocity [10], the matrix-valued function C = C(x) has the Fourier transform Ĉ =

Ĉ(z) given by

(2.2) Ĉ(z) =
A0

(1 + |z|2)(d+α)/2

(
a
zz∗

|z|2
+

b

d− 1

(
I − zzT

|z|2

))
,

where z∗ is the row vector (z1, . . . , zd), z is the corresponding column vector, |z|2 =
z∗z, I is the identity matrix; α > 0, a ≥ 0, b ≥ 0, A0 > 0 are real numbers. Similar to
[11], we will assume that 0 < α < 2.

By direct computation (cf. [2]), the vector field v = (v1, . . . , vd) can be written as

(2.3) vi(t, x) =
∑
k≥0

σi
k(x)ẇk(t),

where ẇk(t), k ≥ 1, are independent standard Gaussian white noises and {σk, k ≥ 1}
is a CONS in the space HC , the reproducing kernel Hilbert space corresponding to the

kernel function C. The space HC is all or part of the Sobolev space H
(d+α)/2
2 (Rd; Rd).

It follows from (2.3) that
∑

k σ
i
k(x)σ

j
k(y) = Cij(x − y) for all x, y; in particular,

σi
k(x)σ

j
k(x) = Cij(0) for all x.

If a > 0 and b > 0, then the matrix Ĉ is invertible and

HC =

{
f ∈ Rd :

∫
Rd

f̂ ∗(z)Ĉ−1(z)f̂(z)dz <∞
}

= H
(d+α)/2
2 (Rd; Rd),



4 S. V. LOTOTSKY AND B. L. ROZOVSKII

because ‖Ĉ(z)‖ ∼ (1 + |z|2)−(d+α)/2.

If a > 0 and b = 0, then

HC =

{
f ∈ Rd :

∫
Rd

|f̂(z)|2(1 + |z|2)(d+α)/2dz <∞; zz∗f̂(z) = |z|2f̂(z)

}
,

the subset of gradient fields in H
(d+α)/2
2 (Rd; Rd), that is, the collection of vector fields

f with f̂(z) = zF̂ (z) for some scalar F ∈ H(d+α+1)/2
2 (Rd).

If a = 0 and b > 0, then

HC =

{
f ∈ Rd :

∫
Rd

|f̂(z)|2(1 + |z|2)(d+α)/2dz <∞; z∗f̂(z) = 0

}
,

the subset of divergence free fields in H
(d+α)/2
2 (Rd; Rd).

By the embedding theorems, each σi
k is a bounded continuous function on Rd; in fact,

every σi
k is Hölder continuous of order α/2. In addition, being an element of the

corresponding space HC , each σk is a gradient field if b = 0 and is divergence free if
a = 0.

To simplify the further presentation and to make the model (2.1) more physically
relevant, we consider the divergence-free velocity field and assume that the original
stochastic differential in (2.3) is in the sense of Stratonovich. Under these assump-
tions, equation (2.1) becomes

(2.4) dθ(t, x) =
1

2
ν∆θ(t, x)dt−

∑
k

σk(x) · ∇θ(t, x) ◦ dwk(t).

With divergence-free functions σk, the equivalent Itô formulation is

(2.5) dθ(t, x) =
1

2
(ν∆θ(t, x) + Cij(0)DiDjθ(t, x))dt− σi

k(x)Diθ(t, x)dwk(t),

where Di = ∂/∂xi and summation is carried out over the repeated indices.

We will study equation (2.5) under the following assumptions:

A1 There is a fixed stochastic basis F = (Ω,F , {Ft}t≥0,P) with the usual assump-
tions and (wk(t), k ≥ 1, t ≥ 0) is a collection of independent standard Wiener
processes on F.

A2 For each k, the vector field σk is a divergence-free element of the Sobolev space

H
(d+α)/2
2 (Rd; Rd), 0 < α < 2, d ≥ 2.

A3 For all x, y in Rd,
∑

k σ
i
k(x)σ

j
k(y) = Cij(x− y) and the matrix-valued function

C = C(x) satisfies (2.2).
A4 The initial condition θ0 is non-random and belongs to L2(Rd); ν ≥ 0 is a real

number.

The objective is to establish existence, uniqueness, and regularity properties of the
solution of (2.5) using Wiener Chaos.
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3. A Review of the Wiener Chaos

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assumptions. On F
consider a collection (wk(t), k ≥ 1, t ≥ 0) of independent standard Wiener processes.
For a fixed 0 < T <∞, let FW

T be the sigma-algebra generated by wk(t), k ≥ 1, 0 <
t < T , and denote by L2(FW

T ) the collection of FW
T -measurable square integrable

random variables.

Fix the Fourier cosine basis {mk, k ≥ 1, } in L2((0, T )) with

(3.1) m1(t) =
1√
T
, mk(t) =

√
2

T
cos

(
π(k − 1)t

T

)
, k ≥ 2.

Consider the collection of multi-indices

J =
{
α = (αk

i , i, k ≥ 1), αk
i ∈ {0, 1, 2, . . .},

∑
i,k

αk
i <∞

}
.

The set J is countable, and, for every α ∈ J , only finitely many of αk
i are not equal

to zero. For α ∈ J , define |α| =
∑
i,k

αk
i , α! =

∏
i,k

αk
i !, and

(3.2) ξα =
1√
α!

∏
i,k

Hαk
i
(ξik), where ξik =

∫ T

0

mi(s)dwk(s)

and

Hn(t) = et2/2 d
n

dtn
e−t2/2

is n-th Hermite polynomial. In particular, if α ∈ J is such that αk
i = 1 if i = j and

k = l, and αk
i = 0 otherwise, then ξα = ξjl.

Definition 3.1. The space L2(FW
T ) is called the Wiener Chaos space. The N-th

Wiener Chaos is the linear subspace of L2(FW
T ), generated by ξα, |α| = N .

The following is a classical result of Cameron and Martin [4].

Theorem 3.1. The collection {ξα, α ∈ J } is an orthonormal basis in the space
L2(FW

T ).

In addition to the original source [4], the proof of this theorem can be found in many
other places, for example, in [8]. By Theorem 3.1 every element v of L2(FW

T ) can be

written as v =
∑
α∈J

vαξα, where vα = E(vξα).

4. The Wiener Chaos Solution of the Passive Scalar Equation

With summation convention in force, define the operators A = 1
2
(ν∆ + Cij(0)DiDj)

andMk = σi
k(x)Di. Equation (2.5) then becomes

θ(t, x) = θ0(x) +

∫ t

0

Aθ(s, x)ds+

∫ t

0

Mkθ(s, x)dwk(s)ds.
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From now on in this section, dependence of various functions on x will not be shown
explicitly.

Notice that, for every function f ∈ H1
2 (Rd),

(4.1)
∑
k≥1

‖Mkf‖2L2(Rd) = (σj
kσ

i
kDif,Djf) = (Cij(0)Dif,Djf),

where (·, ·) is the inner product in L2(Rd). Since the matrix C(0) is positive definite,
we conclude that there exist positive numbers c1, c2 so that, for every function f ∈
H1

2 (Rd),

(4.2) c1‖∇f‖2L2(Rd) ≤
∑
k≥1

‖Mkf‖2L2(Rd) ≤ c2‖∇f‖2L2(Rd).

Equality (4.1) also shows that equation (2.5) is a stochastic parabolic equation [14];
the equation is super-parabolic if ν > 0 and is fully degenerate if ν = 0.

For α ∈ J , define functions θα by

(4.3) θα(t) = θ0I(|α| = 0) +

∫ t

0

Aθα(s)ds+

∫ t

0

∑
i,k

√
αk

iMkθα−(i,k)(s)mi(s)ds,

where α−(i, k) is the multi-index with components(
α−(i, k)

)l

j
=

{
max(αk

i − 1, 0), if i = j and k = l,
αl

j, otherwise.

Lemma 4.1. Under assumptions A2–A4, the system of equations (4.3) has a unique
solution so that every θα is a smooth bounded function of x for t > 0 and, if Tt, t ≥ 0,
is the heat semigroup generated by the operator A, then, for every N ≥ 0,∑

|α|=N

|θα(t, x)|2

=
∞∑

k1,...,kN=1

∫ t

0

∫ sN

0

. . .

∫ s2

0

|Tt−sN
MkN

. . . Ts2−s1Mk1Ts1θ0(x)|2dsN ,

(4.4)

where dsN = ds1 . . . dsN , and∑
|α|=N

|∇θα(t, x)|2

=
∞∑

k1,...,kN=1

∫ t

0

∫ sN

0

. . .

∫ s2

0

|∇Tt−sN
MkN

. . . Ts2−s1Mk1Ts1θ0(x)|2dsN

(4.5)

where dsN = ds1 . . . dsN

Proof. The results follow directly from (4.3) by induction on |α|; details can be
found in [12, Proposition A.1]. �

Theorem 4.2. Under assumptions A1–A4, fix T > 0 and, for α ∈ J , define θα(t)
and ξα by (4.3) and (3.2), respectively. Then the following holds.
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(1) For every ν ≥ 0 and every t ∈ [0, T ], the series

(4.6)
∑
α∈J

θα(t)ξα

converges in L2(Ω;L2(Rd)) to a process θ = θ(t).
(2) If ν > 0, then, for every ϕ ∈ C∞

0 (Rd), the process θ satisfies

(θ, ϕ)(t) = (θ0, ϕ)− 1

2
ν

∫ t

0

(∇θ,∇ϕ)(s)ds− 1

2

∫ t

0

Cij(0)(Diθ,Djϕ)(s)ds

−
∫ t

0

(σi
kDiθ, ϕ)dwk(s)

(4.7)

with probability one for all t ∈ [0, T ] at once, where (·, ·) is the inner product
in L2(Rd). Also,

(4.8) E‖θ‖2L2(Rd)(t) + ν

∫ t

0

E‖∇θ‖2L2(Rd)(s)ds = ‖θ0‖2L2(Rd).

(3) If ν = 0, then, for every ϕ ∈ C∞
0 (Rd), the process θ satisfies

(4.9) (θ, ϕ)(t) = (θ0, ϕ) +
1

2

∫ t

0

Cij(0)(θ,DiDjϕ)(s)ds+

∫ t

0

(θ, σi
kDiϕ)dwk(s)

with probability one for all t ∈ [0, T ] at once. Also,

(4.10) E‖θ‖2L2(Rd)(t) ≤ ‖θ0‖2L2(Rd).

Remark 4.3. Equalities (4.7) and (4.9) mean that θ = θ(t, x) is the solution of the
transport equation (2.5) in the traditional sense of the theory of stochastic partial
differential equations, that is, it is a strong solution in the stochastic sense, satisfying
the corresponding equation in the generalized function sense. The solution is also
unique in the class of L2((0, T ) × Ω;L2(Rd)) random functions, because any other
solution will automatically have the same Wiener Chaos expansion. Without going
into the details, we mention that the uniqueness can, in fact, be established in a much
wider class of generalized random functions.

The proof of Theorem 4.2 is carried out in three steps: (1) establishing convergence
of (4.6) and the corresponding energy estimates; (2) establishing predictability of θ;
(3) establishing equalities (4.7) and (4.9).

Convergence of (4.6) and the corresponding energy estimates (Step 1) will follow
from the following two lemmas.

Lemma 4.4. Assume that ν ≥ 0. Define θN(t, x) =
∑N

n=0

∑
|α|=n θα(t, x)ξα. Then,

for all t ∈ [0, T ],

E‖θN‖2L2(Rd)(t) = ‖θ0‖2L2(Rd) − ν
N∑

n=0

∑
|α|=n

∫ t

0

‖∇θα‖2L2(Rd)(s)ds

−
∞∑

k1,...,kN+1=1

∫ t

0

. . .

∫ s2

0

‖MkN+1
Ts−sN

MkN
. . . Ts2−s1Mk1Ts1θ0‖2L2(Rd)ds

Nds.

(4.11)
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Proof. By Lemma 4.1, after integration with respect to x,

∑
|α|=N

‖θα‖2L2(Rd)(t)

=
∞∑

k1,...,kN=1

∫ t

0

∫ sN

0

. . .

∫ s2

0

‖Tt−sN
MkN

. . . Ts2−s1Mk1Ts1θ0‖2L2(Rd)ds
N .

(4.12)

If FN(t) =
∑

|α|=N ‖θα(t)‖2L2(R), then

d

dt
FN(t)

=
∞∑

k1,...,kN=1

∫ t

0

∫ sN−1

0

. . .

∫ s2

0

‖MkN
Tt−sN−1

MkN−1
. . . Ts2−s1Mk1Ts1θ0‖2L2(R)ds

N−1

+ 2
∞∑

k1,...,kN=1

∫ t

0

. . .

∫ s2

0

(ATt−sN
M . . . Ts1u0, Tt−sN

M . . . Ts2−s1MkN
Ts1θ0) ds

N .

(4.13)

It remains to notice that, for every smooth function f = f(x),

2(Af, f) = −ν‖∇f‖2L2(R) −
∑
k≥1

‖Mkf‖2L2(R).

Equality (4.11) now follows. �

Notice that (4.11) implies both the L2(Ω;L2(Rd)) convergence of the series
∑

α

θα(t)ξα

for every t ∈ [0, T ] and inequality (4.10).

Lemma 4.5. If ν > 0, then, for every t ∈ [0, T ],
(4.14)

lim
N→∞

∞∑
k1,...,kN+1=1

∫ t

0

. . .

∫ s2

0

‖MkN+1
Ts−sN

MkN
. . . Ts2−s1Mk1Ts1θ0‖2L2(Rd)ds

Nds = 0.

Proof. Define

FN(t)

=
∞∑

k1,...,kN+1=1

∫ t

0

. . .

∫ s2

0

‖MkN+1
Ts−sN

MkN
. . . Ts2−s1Mk1Ts1θ0‖2L2(Rd)ds

Nds.
(4.15)

By (4.2) and Lemma 4.1, FN(t) ≤ c2
∑

|α|=N

∫ t

0
‖∇θα‖2L2(Rd)

(s)ds. Lemma 4.4

then implies that the series
∑

N≥0 FN(t) converges for all t ∈ [0, T ]. Therefore,
limN→∞ FN(t) = 0 and the statement of the lemma follows.

�
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Note that (4.11) and (4.14) imply (4.8).

Remark 4.6. Analysis of the above proofs shows that the conclusions of Lemmas 4.1,
4.4 and 4.5 do not depend on the choice of the basis {mi, i ≥ 1} in L2((0, T )). In other
words, if {mi, i ≥ 1} is any orthonormal basis in L2((0, T )) and θ is defined by (4.6),
then, for each t ∈ [0, T ], θ(t) belongs to L2(Ω;L2(Rd)), satisfies the corresponding
energy estimate, and is FW

T -measurable.

The next lemma shows that the construction of the process θ does not depend on the
choice of the basis {mi, i ≥ 1} in L2((0, T )). The lemma is also the key to establishing
predictability of θ.

Lemma 4.7. Let θ be the process defined by (4.6) and let m̄i(t), i ≥ 1, be another

orthonormal basis in L2((0, T )). Then θ(t) =
∑
α∈J

θ̄α(t)ξ̄α, where

ξ̄α =
1√
α!

∏
i,k

Hαk
i
(ξ̄ik), ξ̄ik =

∫ T

0

m̄i(s)dwk(s),

and the coefficients θ̄α(t) satisfy the system of equations (4.3) with m̄i instead of mi.

Proof. Let h = (h1(t), . . . , hN(t)) be a finite collection of bounded measurable func-
tion on (0, T ). Define

(4.16) E(h) = exp

(
N∑

k=1

∫ T

0

hk(t)dwk(t)−
1

2

N∑
k=1

∫ T

0

|hk(t)|2dt

)
.

Setting hk,i =
∫ T

0
hk(t)mi(t)dt, we rewrite (4.16) as

E(h) = exp

(∑
i,k

(
hk,iξki −

1

2
|hk,i|2

))
and conclude that

(4.17) E(h) =
∑
α∈J

hα

√
α!
ξα, where hα =

∏
i,k

h
αk

i
k,i.

If θh(t) = E (θ(t)E(h)), then, by combining equations (4.3), (4.6), and (4.17), we get

(4.18) θh(t) = θ0 +

∫ t

0

Aθh(s)ds+

∫ t

0

hk(s)Mkθh(s)ds.

Next, let θ̄α(t) be the solution of the system of equations (4.3) with m̄i instead of mi.
It follows from Remark 4.6 that, for each t ∈ [0, T ], the process θ̄(t) =

∑
α θ̄α(t)ξ̄α(t)

is an element of L2(Ω;L2(Rd)). Also, defining θ̄h(t) = E
( ¯θ(t)E(h)

)
and observing

that E(h) = exp

(∑
i,k

(
h̄k,iξ̄ki −

1

2
|h̄k,i|2

))
, where h̄k,i =

∫ T

0
hk(t)m̄i(t)dt, we get

θ̄h(t) = θ0 +

∫ t

0

Aθ̄h(s)ds+

∫ t

0

hk(s)Mkθ̄h(s)ds.
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Uniqueness of solution of this parabolic equation implies the equality θh(t) = θ̄h(t) in
L2(Rd) for all t ∈ [0, T ] and all finite collections h1, . . . , hN of bounded measurable
functions on (0, T ). Since the corresponding collection of E(h) is everywhere dense in
L2(FW

T ), it follows that, for each t ∈ [0, T ], θ(t) = θ̄(t) as elements of L2(Ω;L2(Rd)).
Lemma 4.7 is proved. �

We can now establish predictability of θ (Step 2).

Lemma 4.8. The process θ defined by (4.6) is predictable. If, in addition, ν > 0,
then ∇θ is also predictable.

Proof. Fix t∗ ∈ (0, T ) and consider a special basis m̄i(t) in L2((0, T )) so that
each m̄i is supported either in [0, t∗] or in [t∗, T ]. Denote by ξ̄α, α ∈ J , the cor-
responding orthonormal basis in L2(FW

T ). Then the definition of ξ̄α implies that
ξ̄α = ξ̄β(0, t∗)ξ̄γ(t

∗, T ), where ξ̄β(0, t∗), the up-to-t∗ component, is FW
t∗ -measurable

and ξ̄γ(t
∗, T ), the after-t∗ component, is independent of FW

t∗ . Accordingly, each multi-
index α ∈ J will be represented as α = (β, γ) to account for the up-to-t∗ and after-t∗

components. By Lemma 4.7,

θ(t) =
∑
α∈J

θ̄α(t)ξ̄α =
∑
α∈J

θ̄β,γ(t)ξ̄β(0, t∗)ξ̄γ(t
∗, T ), t ∈ [0, T ],

and the coefficients θ̄α satisfy the system of equations (4.3) with m̄i instead of mi.
Then, for t ≤ t∗, the function m̄i appears in the system if and only if m̄i is supported
in [0, t∗]. It follows by induction on β that, for t ∈ [0, t∗], θ̄β,γ(t) = 0 if |γ| > 0. On
the other hand, E(ξ̄γ(t

∗, T )|FW
t∗ ) = Eξ̄γ(t∗, T ) = 0 for all γ with |γ| > 0. As a result,

E(θ(t∗)|FW
t∗ ) =

∑
α∈J

θ̄β,0ξ̄β(0, t∗) = θ(t∗),

that is, θ(t∗) is FW
t∗ -measurable for every t∗ ∈ (0, T ). The same arguments prove

predictability of ∇θ if ν > 0. Lemma 4.8 is proved. �

To complete the proof of Theorem 4.2, it remains to establish equalities (4.7) and
(4.9) (Step 3). As in the proof of Lemma 4.7, set θh(t) = E(θ(t)E(h)) with E(h)
defined by (4.16).

If ϕ ∈ C∞
0 (Rd), then equation (4.3) implies

(θh, ϕ)(t) = (θ(0), ϕ) +

∫ t

0

(θh,A∗ϕ)(s)ds

+
∑
α∈J

hα

α!

∑
i,k

∫ t

0

√
αk

imi(s)(θα−(i,k),M∗
kϕ)(s)ds,

where ∗ means the adjoint of the operator, (·, ·) is the inner product in Rn, and hα

is defined in (4.17). Predictability and integrability properties of θ imply that the

stochastic integral I(t) =
∫ t

0
(θ(s),M∗

kϕ)dwk(s) is well defined. If ξα(t) = E(ξα|FW
t ),
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then, according to [13],

(4.19) dξα(t) =
∑
i,k

√
αk

i ξα−(i,k)(t)mi(t)dwk(t).

By FW
t -measurability of I(t),

(4.20) Iα(t) = E
(
I(t)E(ξα|FW

t )
)

= E(I(t)ξα(t)),

and then, by the Itô formula,

(4.21) E(I(t)ξα(t)) =

∫ t

0

∑
i,k

√
αk

imi(s)(θα−(i,k),M∗
kϕ)(s)ds.

Together with (4.17), the last equality implies∑
α∈J

zα

α!

∑
i,k

∫ t

0

√
αk

imi(s)(θα−(i,k),M∗
kϕ)(s)ds = E

(
E(h)

∫ t

0

(θ(s),M∗
kϕ)dwk(s)

)
.

As a result,

E (E(h)(θ, ϕ)(t)) = (θ(0), ϕ) + E
(
E(h)

∫ t

0

(θ,A∗ϕ)(s)ds

)
+ E

(
E(h)

∫ t

0

(θ(s),Mkϕ)dwk(s)

)
.

(4.22)

Equality (4.22) and density of the collection {E(h)} in L2(FW
T ), together with as-

sumption A4 and equality EE(h) = 1, imply

(4.23) (θ, ϕ)(t) = (θ(0), ϕ) +

∫ t

0

(θ,A∗ϕ)(s)ds+

∫ t

0

(θ,M∗
kϕ)(s)dwk(s).

If ν = 0, then the last equality coincides with (4.9). If ν > 0, then (4.8) implies that
(4.23) can be rewritten as (4.7).

Theorem 4.2 is proved. �

The Cameron-Martin Theorem 3.1 and Theorem 4.2 provide the following simple
formulae for computing the first and the second moments of a solution of the passive
scalar equations (4.7) and (4.9):

Corollary 1. Under the assumptions of Theorem 4.2, for all s, t and almost all x, y,

Eθ (t, x) = θα (t, x) I|α|=0

and

Eθ (t, x) θ (s, y) =
∑
α∈J

θα (t, x) θα (s, y) .
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5. Lagrangian Representation of a Solution

Let W̃ = (w̃k(s), k = 1, ..., d, s ≥ 0) be a collection of independent standard Wiener
Processes. Assume that W̃ is independent of W = (wk(s), k ≥ 1, s ≥ 0) and ν ≥ 0.
For a fixed t <∞, consider the following backward Itô equation (see e.g. [14]):

−dsX
i
t,x (s) =

√
2ν
←−
dw̃i (s) + σi

k (Xt,x (s))
←−−
dwk (s) , s ∈ [0, t),(5.1)

X i
t,x (t) = x.

Due to our assumption that div(σk) = 0, the Itô and the Stratonovitch forms of this
equation coincide.

Since each σi
k (x) is a continuous function and, by assumption, σi

k (x)σj
k (x) = Cij (0) ,

it follows that, for some δ > 0, (σ (x)σ∗ (x) y, y) ≥ δ |y|2 for all y ∈ Rd. There-
fore, equation (5.1) has a martingale solution, that is, there exist a stochastic basis

F = (Ω,F , {Ft}t≥0,P) with the usual assumptions, a collection B =
(
W̃ ,W

)
=

(w̃k(s), k = 1, ..., d, wk(s), k ≥ 1, s ≥ 0) of independent standard Wiener processes
adapted to {Fs}s≥0, and a process Xt,x (s) on F with values in Rd so that the following
equality holds P− a.s. for all s < t :

(5.2) Xt,x (s) = x+

∫ t

s

σ (Xt,x (r))
←−−
dW (r) +

√
2ν
(
W̃ (t)− W̃ (s)

)
.

Remark 5.1. With Yt,x (s) = Xt,x (t− s) and Bt (s) = B (t) − B (t− s) , equation
(5.2) can be rewritten as follows

Yt,x (s) = x+

∫ s

0

σ (Yt,x (r)) dWt (r) +
√

2νW̃t (t− s) ,

where Wt (r) := W (t)−W (t− r) .

Note that the martingale, or weak, solution of (5.1) is not necessarily FB
s −adapted.

Moreover, a priori there is no guarantee that a solution of equation (5.1) can be
constructed on a preselected stochastic basis and for a given collection B of Wiener
process. Roughly speaking, these limitations constitute the difference between a mar-
tingale solution and a strong, in probabilistic sense, solution, also known as pathwise
solution; see, for example, Ikeda, Watanabe [9] or Anulova et. al [1].

On the contrary, we have proved in Theorem 4.2 that equation (2.5) has a unique
FW

s −adapted solution for any ν ≥ 0 on any stochastic basis and for any collection
W of independent standard Wiener processes on this basis. In particular, we can
and will assume that there is a pathwise unique solution θ = θ (t, x) of (2.5) on F
driven by W. Therefore, unless Xt,x (0) is FW

t −measurable, it is unrealistic to expect
the classic Lagrangian representation of the solution to the passive scalar equation
θ (t, x) = θ0 (Xt,x (0)) .

However, the following generalization of this formula holds true.

Theorem 5.2. For every T <∞ and almost all x,

θ (T, x) = E
(
θ0 (XT,x (0)) |FW

T

)
(P− a.s.)
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Proof. As in the proof of Lemma 4.7, define E(h) according to (4.16) and the function
θh so that (4.18) holds.

On the other hand, by Girsanov’s theorem

E
(
E(h)E

(
θ0 (XT,x (0)) |FW

t

))
= E (E(h)θ0 (XT,x (0))) = E′ (θ0 (XT,x (0))) ,

where E′ is expectation with respect to the measure dP′T = E(h)dPT and PT is a
restriction of the measure P to FT . Moreover, PT − a.s. the process XT,x (s) is a
martingale solution of the equation

XT,x (s) = x+

∫ T

s

σk (XT,x (r))hk (r) dr +

∫ T

s

σ (XT,x (r))
←−−
dW ′ (r)

+
√

2ν
(
W̃ ′ (T )− W̃ ′ (s)

)
, s ≤ T.

By the Feynman-Kac formula, the function ψh (s) := E′ (θ0 (Xt,x (s))) is also a so-
lution of the equation (4.18) . From the uniqueness of solution of (4.18) , it follows
that E

(
E(h)E

(
θ0 (XT,x (0)) |FW

T

))
= E (E (h) θ (T, x)) for every finite collection h of

bounded measurable functions on [0, T ]. Since the collection of all such E(h) is ev-
erywhere dense in L2

(
Ω,FW

t

)
, we have that, P−a.s., θ (T, ·) = E

(
θ0 (Xt,· (0)) |FW

T

)
as elements of L2

(
Ω; Rd

)
. This completes the proof of Theorem 5.2. �

Theorem 5.3. The energy equality E‖θ‖2L2(Rd)(t) = ‖θ0‖2L2(Rd) holds if and only if,
for almost all x,

(5.3) E
(
θ0 (Xt,x (0)) |FW

t

)
= θ0 (Xt,x (0)) , (P−a.s.)

Proof. Suppose that condition (5.3) holds. The transition probability density of the
process X is homogeneous, i.e. it is of the form p (t, x− y) . Then, we have

E‖θ‖2L2(Rd)(t) =

∫
Rd

E |θ0 (Xt,x (0))|2 dx =

∫
Rd

∫
Rd

|θ0 (y)|2 p (t, x− y) dxdy

= ‖θ0‖2L2(Rd).

Assume now that for every t, there exists a set Γ ⊆ Rd of positive Lebesgue measure
such that E

(
θ0 (Xt,x (0)) |FW

t

)
6= θ0 (Xt,x (0)) . By Minkovski’s inequality,

E
∣∣E (θ0 (Xt,x (0)) |FW

t

)∣∣2 ≤ E |θ0 (Xt,x (0))|2 and the equality holds only if

E
(
θ0 (Xt,x (0)) |FW

t

)
= θ0 (Xt,x (0)) . Therefore,

E‖θ‖2L2(Rd)(t) = E
∫

Rd

∣∣E (θ0 (Xt,x (0)) |FW
t

)∣∣2 dx < ∫
Rd

E |θ0 (Xt,x (0))|2 dx

=

∫
Rd

∫
Rd

E |θ0 (y)|2 p (t, x− y) dydx = ‖θ0‖2L2(Rd).

Theorem 5.3 is proved. �

Remark 5.4. Obviously, in all interesting scenarios, (5.3) does not hold if ν > 0. If
ν = 0, condition (5.3) is equivalent to the assumption that Xt,x (s) is a strong solution
of equation (5.1) .
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Theorems 4.2 and 5.2 imply the following estimate on the norm of the solution of
equation (2.5).

Theorem 5.5. If θ0 ∈ Lp(Rd), 2 ≤ p < ∞, then, for every t ≥ 0, the solution
θ = θ(t, x) of (2.5) satisfies

(5.4) E‖θ‖p
Lp(Rd)

(t) ≤ ‖θ0‖pLp(Rd)
.

Proof. Denote by St : θ0(·) 7→ θ(t, ·), t > 0, the solution operator for equation (2.5).
By Theorem 4.2, St is a bounded linear operator from L2(Rd) to L2(Ω× Rd) and

‖Stθ0‖L2(Ω×Rd) ≤ ‖θ0‖L2(Rd).

By Theorem 5.2, St is a bounded linear operator from L∞(Rd) to L∞(Ω× Rd) and

‖Stθ0‖L∞(Ω×Rd) ≤ ‖θ0‖L∞(Rd).

Inequality (5.4) now follows from the Riesz Convexity Theorem (see, for example, [3,
Theorem 4.1.7].) �

Remark 5.6. It could be shown that the adjoint to the solution operator in Theorem
3.2 [11] is a generalized solution of equation (4.7) with ν ≥ 0 . However, since we are
considering a much more specialized situation, the proof of the existence presented in
this paper is simpler. The main novel elements of our paper include:

(1) The uniqueness of a strong solution of the unforced incompressible passive scalar
equation for a suitable class of initial conditions.

(2) The Lp regularity of the solution (in terms of the Lp regularity of the initial
condition).

(3) A procedure for computing the solution and the moments of the passive scalar
equation via the stochastic Fourier coefficients θα.
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[6] K. Gawȩdzki and M. Vergassola, Phase Transition in the Passive Scalar Advection, Physica D

138 (2000), 63–90.
[7] K. Gawedzki and A. Kupiainen, Universality in Turbulence: an Exactly Solvable Model, Low-

dimensional Models in Statistical Physics and Quantum Field Theory, Springer, Berlin, 1996,
pp. 71–105.

[8] T. Hida, H-H. Kuo, J. Potthoff, and L. Sreit, White Noise, Kluwer Academic Publishers, Boston,
1993.

[9] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-
Holland Pub. Co., Amsterdam, 1981.



PASSIVE SCALAR EQUATION 15

[10] R. H. Kraichnan, Small-Scale Structure of a Scalar Field Convected by Turbulence, Phys. Fluids
11 (1968), 945–963.

[11] Y. LeJan and O. Raimond, Integration of Brownian Vector Fields, Ann. Probab. 30 (2002),
no. 2, 826–873.

[12] S. Lototsky, R. Mikulevicius, and B. L. Rozovskii, Nonlinear Filtering Revisited: A Spectral
Approach, SIAM Journal on Control and Optimization 35 (1997), no. 2, 435–461.

[13] R. Mikulevicius, and B. L. Rozovskii, Linear Parabolic stochastic PDE’s and Wiener chaos,
SIAM J. Math. Anal. 29 (1998), no. 2, 452–480.

[14] B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic Publishers, Boston, 1990.

Current address, S. V. Lototsky: Department of Mathematics, USC, Los Angeles, CA 90089

E-mail address, S. V. Lototsky: lototsky@math.usc.edu

URL: http://math.usc.edu/∼lototsky

Current address, B. L. Rozovskii: Department of Mathematics, USC, Los Angeles, CA 90089

E-mail address, B. L. Rozovskii: rozovski@math.usc.edu

URL: http://www.usc.edu/dept/LAS/CAMS/usr/facmemb/boris/main.htm


