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Abstract. An estimation problem is considered for a stochastic parabolic equation with an unknown ran-

dom coefficient. The additional randomness in the coefficient generalizes a popular estimation problem

that has been extensively studied in recent years. The filter estimate of the coefficient is constructed from
a finite-dimensional projection of the solution of the equation. Under certain conditions this estimate is

approximated using a generalized Kalman-Bucy filter whose filter variance tends to zero as the dimension
of the projection increases.
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1. Introduction

Stochastic partial differential equations (SPDEs) are becoming more and more popular as a modelling tool in
various branches of applied science. Hydrology [38, 39], mathematical finance [37], physical oceanography
[7, 32], and population biology [5, 6] are some of the areas currently using SPDE-based models. Numerous
other examples of applications of SPDEs can be found in the books [4, 10, 23] and in the classical paper
[40].

Successful utilization of any equation as a modelling tool requires rigorous results about existence, uniqueness,
and regularity properties of the solution under sufficiently general assumptions. Even though the whole topic
of SPDEs is relatively young, there are already many comprehensive studies of the analytical properties of
both linear and non-linear equations, for examples, [10, 23, 24, 34, 35, 40]. Still, these analytic results are
only the first step toward efficient practical use of SPDEs. Indeed, every time a real-life process is represented
by an equation, only the general form of the equation is known and the details must be determined by
reconciling the model with the observations of the process. In other words, an inverse problem must be
solved to find, on the basis of the observations, the coefficients, free terms, and, sometimes, initial and
boundary conditions in the equation.

For stochastic equations, inverse problems are usually solved by methods of statistical inference, using the
observations as the input of a suitable estimator. The key mathematical question is the asymptotic behavior
of the estimator, that is, whether the estimator approaches the true value, and how fast, as more and more of
the observations become available. In particular, long time asymptotic assumes increase of the observation
time, and small noise asymptotic, decrease of the noise intensity in the equation.

The first works on statistical inference for SPDEs [1, 2, 27] studied estimators in the long time asymptotic.
Later, models with small observation noise were introduced and studied [8, 12, 18, 19, 20, 21]. While
some of the papers address estimation of the initial condition and free force, the majority of the research has
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been on parameter estimation. The following model has become especially popular:

(1.1) du(t, x) = (A0 + θ(t, x)A1)u(t, x)dt+ εdW (t, x), 0 < t ≤ T, u|t=0 = u0,

where θ = θ(t, x) is an unknown coefficient, A0 and A1 are known differential operators so that A0 + θA1

is elliptic for all admissible values of θ, and W is a space-time white noise. The equation is considered on
a smooth compact manifold or in a smooth bounded domain with some boundary conditions. Long time
asymptotic means T →∞, and small noise, ε→ 0.

Under certain conditions, a consistent estimator of θ in (1.1) is possible even if T and ε are fixed. Any
computable estimator must be based on a finite dimensional projection of the solution of (1.1), and, if the
order of the operator A1 is sufficiently high, then the estimator can approach the true value as the dimension
of the projection increases even if the observation time and the noise intensity remain fixed. This asymptotic
behavior, known as spectral asymptotic, is much more interesting than either long time or small noise,
and has no analogs in finite-dimensional setting. The projection-based, or spectral, estimators were first
introduced in [13], and further studied in [17], for the model of the type (1.1) with one unknown scalar
parameter θ(t, x) = θ0 ∈ R and with commuting operators A0, A1. The commutativity assumption ensures
that the SPDE (1.1) is diagonalizable, that is, can be reduced to a system of uncoupled ordinary differential
equations. Further work in that direction included analysis of maximum likelihood-type estimators for several
scalar coefficients [11], sieve and kernel estimators for time-dependent coefficients θ = θ(t) [14, 15], and
Bayes-type estimators [3]. Non-diagonalizable models were also studied [16, 30].

In all the above works, the unknown coefficient θ was assumed deterministic. Additional randomness in θ
not only makes the model more general but also poses new and interesting mathematical challenges. When
θ = θ(t) is random, the corresponding estimation problem becomes the problem of filtering, with the solution
u of the SPDE (1.1) being the observation process. There are two classical filtering models, linear Gaussian
and nonlinear diffusion, that have been extensively studied from both theoretical and applied points of view.
Filtering problem for equation (1.1) does not fall into either of the categories. Indeed, to have existence and
uniqueness of solution of (1.1), the unknown process θ must be uniformly bounded and therefore modelled
by a nonlinear diffusion equation with degenerating coefficients, while the right-hand side of the observation
process u is linear in u. As a result, new constructions and technical tools are necessary to carry out the
analysis.

In the current paper, the filtering problem is studied for equation (1.1) with ε = 1, fixed T > 0, and a
diffusion process θ = θ(t) as the unknown coefficient. The underlying SPDE is assumed diagonalizable, and
a finite-dimensional projection of the solution represents the observation process. The unknown coefficient
is modelled by an Ito equation with coefficients degenerating at the end points of some interval. The special
form of degeneracy ensures that the process never leaves the interval, while the corresponding filtering
equations have a unique solution in a certain weighted function space. The filtering density satisfies a non-
linear Kushner-type equation, and admits an alternative representation as a normalized solution of a linear
Zakai-type equation. Under certain assumptions, an approximation of the optimal filter is constructed using
a generalization of the Kalman-Bucy filter. The same condition on the order of the operators as in [17]
ensures that, for every T > 0, the solution of the corresponding Ricatti equation, representing the filter
variance, tends to zero as the dimension of the observation process increases.

Section 2 presents the basic existence, uniqueness, and regularity results for equation (1.1) under the as-
sumption that the process θ is compactly supported. The filtering problem is studied in Section 3. The main
result is that the filtering density exists and is a smooth function with the same support as θ. The proof
is based on recent results about solvability of degenerate parabolic equations in domains [29]. The spectral
asymptotic of the filter is studied in Section 4 when θ can be approximated, in a certain sense, by a Gaussian
process.

2. Stochastic Parabolic Equations With Random Coefficients

Let G be either a smooth bounded domain in Rd or a smooth compact d-dimensional manifold without
boundary and with a smooth positive measure. Denote by C∞0 (G) the collection of infinitely differentiable,
compactly supported, complex-valued functions on G. Let A0 and A1 be differential or pseudo-differential
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operators on C∞0 (G). If G is a bounded domain, then, to simplify the presentation, all operators will be
considered with zero boundary conditions.

On a stochastic basis F = (Ω,F , {Ft}t≥0,P) with the usual assumptions (see, for example, [22]), consider a
cylindrical Brownian motion W = W (t, x). In other words, W is a random process with values in the set
D′(G) of distributions on G so that, for every ϕ ∈ C∞0 (G) with ‖ϕ‖L2(G) = 1, (W,ϕ)(t) is a standard Wiener
process on F, and for all ϕ1, ϕ2 ∈ C∞0 (G), E(W,ϕ1)(t)(W,ϕ2)(s) = min(t, s) · (ϕ1, ϕ2)L2(G).

For a predictable random process θ = θ(t) on F and a D′(G)-valued random variable u0, consider the
following equation:

(2.1)
du(t, x) = (A0 + θ(t)A1)u(t, x) dt+ dW (t, x), t ∈ (0, T ], x ∈ G,
u(0, x) = u0(x).

Definition 1. A predictable process u with values in D′(G) is called a solution of (2.1) if and only if, for
every ϕ ∈ C∞0 (G), the equality

(u, ϕ)(t) = (u0, ϕ) +
∫ t

0

(A∗0ϕ, u)(s)ds+
∫ t

0

θ(s)(A∗1ϕ, u)(s)ds+ (W,ϕ)(t)

holds with probability one for all t ∈ [0, T ] at once, where A∗i is the formal adjoint of Ai, that is, the operator
so that

(Aiφ1, φ2)0 = (A∗iφ2, φ1)0 for all φ1, φ2 ∈ C∞0 (G).

Remark 2.1. It is possible to consider a more general noise process W with a correlation operator B. As
long as B is invertible, the corresponding equation is reduced to (2.1) by applying the operator B−1 to every
term.

Definition 2. Equation (2.1) is called diagonalizable if and only if the following conditions hold:

D1: There is a complete orthonormal system {hk, k ≥ 1} in L2(G) so that

A0hk = κkhk, A1hk = νkhk.

D2: There exist positive finite limits limk→∞ |νk|k−m1/d and limk→∞ |κk|k−m0/d, where mi is the
order of the operator Ai.

D3: There exist positive real numbers c1, c2 so that, for all t ∈ [0, T ] and ω ∈ Ω,

(2.2) −c1 < lim inf
k→∞

(κk + θ(t)νk)
k2m/d

, lim sup
k→∞

(κk + θ(t)νk)
k2m/d

< −c2,

where 2m = max(m0,m1).

Conditions D1–D3 hold in many physical models (see, for example, [32, 33]). A typical situation is when
the operators A0 and A1 commute and either A0 or A1 is uniformly elliptic and formally self-adjoint. More
details can be found in [36].

For ϕ ∈ C∞0 (G) define ϕk =
∫

G
ϕ(x)hk(x)dx. Conditions D1–D3 imply that, for every n > 0, there exists a

C = C(ϕ, n) > 0 so that |ϕk| ≤ Ck−n. Therefore, for every γ ∈ R, we can define the norm ‖ · ‖γ on C∞0 (G)
as follows:

‖ϕ‖2γ =
∑
k≥1

k2γ/d|ϕk|2.

Let Hγ be the completion of C∞0 (G) with respect to the norm ‖ · ‖γ . An element v ∈ Hγ is then identified
with a sequence {vk, k ≥ 1} of complex numbers so that ‖v‖2γ =

∑
k≥1 k

2γ/d|v|2 <∞. The numbers vk are
called Fourier coefficients of v, and v ∈ Hγ is represented as a formal Fourier series v(x) =

∑
k≥1 vkhk(x).

Remark 2.2. A similar construction of the Hilbert spaces Hγ can be carried out when equation (2.1) is not
diagonalizable; see [30] for details.
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Theorem 2.3. Assume that equation (2.1) is diagonalizable and u0 ∈ L2(Ω;Hr) for some r < −d/2. Then
there is a unique solution u of (2.1). This solution belongs to the space
L2(Ω× (0, T );Hm+r)

⋂
L2(Ω;C((0, T ),Hr)) and satisfies

E sup
0≤t≤T

‖u‖2r(t) + E
∫ T

0

‖u‖2m+r(t)dt ≤ K(C1, C2, d,m, r, T )
(
E‖u0‖2r + T

)
,

where m is from condition D3.

Proof. It is know (see, for example, [24]) that W (t, x) =
∑

k≥1 wk(t)hk(x), where wk, k ≥ 1, are indepen-
dent Wiener processes. As a result, for every r < −d/2, the process W is an Hr-valued continuous square
integrable martingale with quadratic variation 〈W 〉t = t

∑
k≥1 k

2r/d.

Next, conditions D1–D3 imply that, for every r ∈ R, there exist positive numbers C1, C2 so that, for all
ϕ ∈ C∞0 (G), t ∈ [0, T ], and ω ∈ Ω,

(2.3) <
(

((A0 + θ(t)A1)ϕ,ϕ)r

)
+ C1‖ϕ‖2r+m ≤ C2‖ϕ‖2r,

where <(·) is the real part of the expression. Indeed, it follows from (2.2) that

(1) There exists a positive number a1 so that, all k ≥ 1 and all t ∈ [0, T ], ω ∈ Ω,

|κk + θ(t)νk)| ≤ a1k
2m/d.

(2) There exists an integer k0 and a positive number a2 so that, for all k > k0 and all t ∈ [0, T ], ω ∈ Ω,

<(κk + θ(t)νk) ≤ −a2k
2m/d.

If ϕ(x) =
∑

k≥1 ϕkhk(x), then (A0 + θ(t)A1)ϕ(x) =
∑

k≥1(κk + θ(t)νk)ϕkhk(x) and

<
(

((A0 + θ(t)A1)ϕ,ϕ)r

)
=

∑
k≥1

<
(
κk + θ(t)νk

)
|ϕk|2k2r/d ≤ −a2

∑
k≥1

|ϕk|2k2(r+m)/d

+(a1 + a2)k
2m/d
0

∑
k≥1

|ϕk|2k2r/d = −a2‖ϕ‖2r+m + (a1 + a2)k
2m/d
0 ‖ϕ‖2r.

The statement of the theorem now follows from Theorem 3.1.4 and Remark 3.4.9 in [35]. �

The Fourier coefficients uk = uk(t), k ≥ 1, of the solution of (2.1) satisfy the following uncoupled system of
stochastic ordinary differential equations

(2.4)
duk(t) = (κk + θ(t)νk)uk(t) dt+ dwk(t), 0 < t ≤ T,
uk(0) = u0,k.

As a result, under conditions D1–D3, the infinite collection of equations (2.4) is equivalent to (2.1), and the
solution of (2.1) can be written as a Fourier series

(2.5) u(t, x) =
∑
k≥1

uk(t)hk(x),

converging in the corresponding Hilbert space. Note that condition D1 implies equations (2.4) for the Fourier
coefficients of u, while conditions D2 and D3 ensure the appropriate convergence of the Fourier series (2.5).

Example. The following equation is a one-dimensional version of the heat balance equation from physical
oceanography [7, 32]:

(2.6) du(t, x) = (uxx − θ(t)ux(t, x)− u(t, x))dt+ dW (t, x), 0 < t ≤ T, 0 < x < 1,

with periodic boundary conditions. In this example, G = S1, a circle, A0 = d2

dx2 − 1, A1 = − d
dx , so that

m0 = 2m = 2, m1 = 1. With a suitable ordering, hk(x) = e2πikx, where i =
√
−1, so that κk = −4π2k2 − 1,

νk = −2πik, and condition (2.2) holds as long as there exist real number aθ, bθ so that θ(t) ∈ [aθ, bθ] for all
t ∈ [0, T ] and ω ∈ Ω.
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Alternatively, one can consider

(2.7) du(t, x) = (θ(t)uxx − ux(t, x)− u(t, x))dt+ dW (t, x), 0 < t ≤ T, 0 < x < 1,

with periodic boundary conditions. Then A0 = − d
dx − 1, A1 = d2

dx2 , so that m0 = 1, m1 = 2. In this case,
condition (2.2) holds as long as there exist positive numbers aθ and bθ so that θ(t) ∈ [aθ, bθ] for all t ∈ [0, T ]
and ω ∈ Ω.

�

Remark 2.4. While it is possible to construct a path-wise solution of equation (2.1) if the numbers C1 and
C2 in condition (2.3) are random and not uniformly bounded, this path-wise construction complicates the
further analysis and is not discussed in the current paper.

3. Optimal Nonlinear Filtering of Diagonalizable Equations

Consider the problem of estimating the random process θ from the observations of the first N Fourier
coefficients (2.4) of the solution of the diagonalizable equation (2.1). The solution of this estimation problem
is, of course, impossible without additional assumptions about the process θ.

Condition (2.2) implies that the process θ is uniformly bounded: there exist real numbers aθ, bθ so that, for
all ω ∈ Ω,

(3.1) inf
0≤t≤T

θ(t) ≥ aθ, sup
0≤t≤T

θ(t) ≤ bθ.

If A1 is not the leading operator, that is, if m1 < m0 = 2m, then there are no further restrictions on the
numbers aθ, bθ. If A1 is the leading operator, that is, m0 < m1 = 2m, then (2.2) implies aθ > 0, that is,
θ must be uniformly positive. Finally, if m0 = m1 = 2m, then the bounds on aθ, bθ will be determined by
the asymptotic behavior of the sequences k−2m/dνk and k−2m/dκk; this asymptotic behavior depends on the
particular operators (see [36] for details).

A possible model for θ is the Ito diffusion equation:

(3.2) dθ(t) = B(t, θ(t))dt+ r(t, θ(t))dV (t),

where B and r are sufficiently regular functions and, for simplicity, the Wiener process V is independent of
W . The initial choice of the functions B and r might not guarantee that (3.1) holds. Below is a general
procedure for modifying equation (3.2) to ensure that condition (3.1) holds.

Let ρ = ρ(x) be a smooth, compactly supported function on R so that

(1) There exist finite nonzero limits limx→aθ
ρ(x)/(x− aθ) and limx→bθ

ρ(x)/(bθ − x);
(2) ρ(x) > 0 for x ∈ (aθ, bθ);
(3) ρ(x) = 1 on [aθ + δ, bθ − δ] for some sufficiently small δ > 0.

Such a function exists and can be constructed by appropriately mollifying the characteristic function of the
interval [aθ, bθ]. Note that ρ(aθ) = ρ(bθ) = 0, while the first derivative of ρ at those points is not zero.

Consider the following modification of equation (3.2):

(3.3) dθ(t) = ρ(θ(t))B(t, θ(t))dt+ ρ(θ(t))r(t, θ(t))dV (t)

with some initial condition θ0, independent of V and W .

Proposition 3.1. Assume that, for 0 ≤ t ≤ T and x ∈ [aθ, bθ], the functions B = B(t, x) and r = r(t, x)
are deterministic, bounded, and Lipschitz continuous in x, uniformly in (t, x). Then equation (3.3) has a
unique strong solution for every square-integrable initial condition. If the initial condition θ0 is a random
variable whose distribution is supported in [aθ, bθ], then the solution of (3.3) satisfies (3.1).

Proof. Recall that ρ is a smooth compactly supported function. Assumptions about B and r imply that
the coefficients in (3.3) are bounded and uniformly Lipschitz continuous in x. The first statement of the
proposition is then a consequence of the general solvability theorem for the Ito equations (see, for example,
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Theorem 5.2.1 in [31]). The second statement of the proposition is the consequence of the uniqueness of
solution of (3.3). Indeed, by assumption on the function ρ, ρ(aθ) = ρ(bθ) = 0, which means that the constant
functions θ(t) = aθ and θ(t) = bθ satisfy (3.3). Therefore, each solution of (3.3) starting in [aθ, bθ] will stay
in that interval for all t > 0. �

The above proposition shows that (3.3) is an acceptable model of the coefficient process θ. The filtering
problem can now be stated for the unobserved state process θ and the observation process u1, . . . , uN :

(3.4)
dθ(t) = ρ(θ(t))B(t, θ(t))dt+ ρ(θ(t))r(t, θ(t))dV (t),
duk(t) = (κk + θ(t)νk)uk(t)dt+ dwk(t), k = 1, . . . , N.

The filtering problem for (3.4) consists in computing the conditional density of θ(t) given the observations
up to time t. It is known [35, Chapter 6] that, under certain regularity assumptions, the conditional
density in the diffusion filtering model satisfies a nonlinear stochastic parabolic equation, also know as
Kushner’s equation. Alternatively, the density can be computed by normalizing the solution of the linear
Zakai equation. While the usual regularity assumptions for diffusion filtering models are not satisfied for
(3.4), the corresponding equations can still be derived and studied.

Recall that the filtering density for (3.4) is a random field Π = Π(t, x) so that, for every bounded measurable
function F = F (x),

E(F (θ(t))|uk(s), k = 1, . . . , N ; 0 < s ≤ t) =
∫

R
f(x)Π(t, x)dx.

Under condition (3.1), it is natural to expect Π to be supported in [aθ, bθ] for all t.

Let

(Lf)(t, x) = ρ(x)B(t, x)f ′(x) +
1
2
ρ2(x)r2(t, x)f ′′(x)

be the generator of θ. If the functions B and r are sufficiently smooth in x, then the adjoint L∗ of L is
defined by

(L∗f)(t, x) = − ∂

∂x
(ρ(x)B(t, x)f(x)) +

1
2
∂2

∂x2

(
ρ2(x)r2(t, x)f(x)

)
.

Theorem 3.2. Let the following conditions be fulfilled:
1. The functions B and r are infinitely differentiable in x on [aθ, bθ] so that each derivative with respect to
x is uniformly bounded as a function of t and x.
2. There exists an ε > 0 so that r2(t, x) ≥ ε for all t ∈ [0, T ] and x ∈ [aθ, bθ].
3. The Wiener process V is independent of W .
4. The initial condition θ0 is independent of V and W and has a density Π0 ∈ C∞0 ((aθ, bθ)).

Then the filtering density Π = Π(t, x) for (3.4) exists and has the following properties:

(1) For every t ∈ [0, T ] and P–a.a. ω ∈ Ω, the support of Π is [aθ, bθ] and the function Π is infinitely
differentiable with respect to x with all the derivatives vanishing at points aθ and bθ.

(2) The function Π is a path-wise solution of the non-linear equation

(3.5) dΠ(t, x) = (L∗Π)(t, x)dt+
N∑

k=1

(
(κk + xνk)Π(t, x)− H̄k(t)Π(t, x)

)
uk(t)(duk(t)− H̄k(t)dt)

with initial condition Π0, where H̄k(t) =
∫

Rd(κk + xνk)Π(t, x)dx.

Proof. While (3.5) is the formal Kushner equation for (3.4), the coefficients in (3.4) do not satisfy several
technical assumptions that are traditionally used in the literature to derive the equation and study its prop-
erties. Specifically, the operator L is not uniformly elliptic (because of the function ρ) and the observation
functions Hk(x, y) = (κk + νkx)y are not bounded in either x or y. This difficulty is resolved by using
approximations and certain results about solvability of stochastic parabolic equations in weighted spaces.
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For M = 1, 2, . . ., define the stopping time

τM = inf

{
t > 0 :

N∑
k=1

|uk(t)| > M

}
;

if sup0<t<T

∑N
k=1 |uk(t)| ≤M , we set τM = T . Note that limM→∞ τM = T with probability one. It follows

from Theorem 3.2, Remark 3.4, and Theorem 4.2 in [29] that equation (3.5) has a unique solution ΠM on
the random interval [0, τM ] in a certain weighted space. This solution is the filtering density for (3.4) on
[0, τM ]. The support and smoothness properties of ΠM follow from the embedding theorems for the weighted
spaces [28]. If M2 > M1, then, by uniqueness, ΠM1 = ΠM2 on [0, τM1 ]. We then set Π(t, x) = ΠM (t, x) on
[0, τM ]. �

Theorem 3.3. Under the assumptions of Theorem 3.2, the filtering density Π can be represented as

(3.6) Π(t, x) =
p(t, x)∫

R p(t, x)dx
,

and the random field p has the following properties:

(1) For every t ∈ [0, T ] and P–a.a. ω ∈ Ω, the support of p is [aθ, bθ] and the function p is infinitely
differentiable with respect to x with all the derivatives vanishing at points aθ and bθ

(2) The function p is a path-wise solution of the linear equation

dp(t, x) = (L∗p)(t, x)dt+
N∑

k=1

(κk + xνk)p(t, x)uk(t)duk(t)

with initial condition Π0.

This theorem is proved in the same way as Theorem 3.2.

Remark 3.4.
1. The smoothness conditions on the coefficients B and r can be relaxed, with the appropriate loss of
smoothness for Π and p.

2. A more general form of equation (3.3) can be considered to include some, or all, of wk from the obser-
vations, and the results similar to Theorems 3.2 and 3.3 can be established for the corresponding filtering
problem.

4. Linear Filtering

The objective of this section is to study the following modification of the filtering problem (3.4):

(4.1)
dθ(t) = a(t)θ(t)dt+ b(t)dV (t),
duk(t) = (κk + θ(t)νk)uk(t)dt+ dwk(t), k = 1, . . . , N,

a = a(t) and b = b(t) are measurable and bounded functions on [0, T ]. If θ0 is a Guassian random variable,
then the solution θ = θ(t) of the equation

(4.2) dθ(t) = a(t)θ(t)dt+ b(t)dV (t), 0 < t ≤ T, θ(0) = θ0,

is a Gaussian process. While such a process cannot appear as a coefficient in (2.1) (condition (3.1) is not
satisfied), the finite system (4.1) has a unique strong solution and the corresponding optimal filter has a
much simpler structure than the one provided by Theorem 3.2. Moreover, this filter can be considered an
approximate solution of the filtering problem for

(4.3)
dθ(t) = ρ(θ(t))a(t)θ(t)dt+ ρ(θ(t))b(t)dV (t),
duk(t) = (κk + θ(t)νk)uk(t)dt+ dwk(t), k = 1, . . . , N.

Indeed, if sup0<t<T |b(t)| is small, then the trajectories of (4.2) are close to the solution of the deterministic
equation ẋ(t) = a(t)x(t). With a suitable choice of the function a = a(t) and initial condition θ0, sufficiently
many realizations of the process (4.2) will stay inside the interval [aθ + δ, bθ − δ] for all t ∈ [0, T ], and, for
such realizations, the solutions of (4.1) and (4.3) coincide.
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We therefore consider (4.1) under the following assumptions:

(L1): The functions a = a(t) and b = b(t) are measurable and bounded on [0, T ];
(L2): The Wiener processes V and wk, k = 1, . . . , N, are independent;
(L3): The initial conditions (θ0, u0,1, . . . u0,N ) are independent of the Wiener processes V and wk, k =

1, . . . , N.
(L4): E(θ40 +

∑N
k=1 u

4
0,k) <∞.

(L5): The conditional distribution of θ0 given u0,1, . . . u0,N is P-a.s. Gaussian.

It turns out that under these assumptions the conditional distribution of θ given the observations uk is
Gaussian, and the best mean-square estimate of θ(t) given uk(s) can be computed from a generalized Kalman-
Bucy filter.

Theorem 4.1. Under assumptions (L1)–(L5), the conditional distribution of θ(t) given Fu
N,t = σ(uk(s), k =

1, . . . , N, 0 ≤ s ≤ t), is P-a.s. Gaussian with parameters

θ̂N (t) = E(θ(t)|Fu
N,t), γN (t) = E

(
(θ(t)− θ̂N (t))2|Fu

N,t

)
.

The functions θ̂N (t) and γN (t) satisfy the following system of equations:

dθ̂N (t) = a(t)θ̂N (t) + γN (t)
N∑

k=1

νkuk(t)
(
duk − (κkuk(t) + νkuk(t)θ̂N (t))dt

)
,

γ̇N (t) = 2a(t)γN (t) + b2(t)− γ2
N (t)

N∑
k=1

ν2
ku

2
k(t),

(4.4)

with initial conditions

θ̂N (0) = E(θ0|u0,1, . . . u0,N ), γN (0) = E
(
(θ0 − θ̂N (0))2|u0,1, . . . u0,N

)
.

Proof. The result essentially follows from Theorems 8.1 in [25], and 12.6 and 12.7 in [26]. The main
condition to verify is

(4.5)
∫ T

0

E|uk(t)θ(t)|2dt <∞.

Note that θ is a Gaussian process independent of all wk; E(θ(t)) = E(θ0)A(t);
E|θ(t)|2 = A2(t)

(
E|θ0|2 +

∫ t

0
A−2(s)b2(s)ds

)
, where A(t) = exp

(∫ t

0
a(s)ds

)
. Also, uk(t) = u0,kAk(t) +∫ t

0
(Ak(t)/Ak(s))dwk(s), where Ak(t) = exp

(∫ t

0
(κk + νkθ(s))ds

)
. Then both E|θ(t)|4 and E|uk(t)|4 exist

and are continuous functions of t, so that (4.5) holds. �

As was mentioned above, Theorem 4.1 and equations (4.4) can provide an approximate solution of the
filtering problem for the nonlinear model (4.3). The central question in the study of equations (4.4) is the
asymptotic behavior of the filter variance γN (t) as more and more observations become available. When
the observations come from a diagonalizable SPDE (2.1), there are two ways to increase the amount of
information from the observations: to increase t or to increase N . Computing limt→∞ γN (t) for fixed N
requires no additional knowledge about equation (2.1) and is completely analogous to the corresponding
problem for ordinary differential equations (see, for example, [26, Chapter 14]). Computing limN→∞ γN (t)
for fixed t has no analogs in the literature and will be discussed next.

Theorem 4.2. Consider filtering problem for (4.3) under the following assumptions:

(1) The distribution of the random variable θ0 is supported in [aθ, bθ];
(2) u0 ∈ L2(H−d/2) is deterministic.

Define γN (t) according to (4.4) with some γN (0) > 0. If

(4.6) q =
2(m1 −m)

d
≥ −1,
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then, with probability one, limN→∞ γN (t0) = 0 for every 0 < t0 ≤ T . If, in addition,

inf
0≤t≤T

|b(t)| > 0,

then, for every 0 < t0 ≤ T , there exists, with probability one, a finite positive limit limN→∞ ψNγN (t0) ,
where

(4.7) ψN =

{√
lnN, q = −1

N (q+1)/2, q > −1.

The proof of this theorem is based on the following two results about the Ricatti equation.

Lemma 4.3. Assume that x = x(t) ≥ 0 is a solution of ẋ(t) = α1(t)x(t)−β1(t)x2(t)+γ1(t), and y = y(t) ≥ 0
is a solution of ẏ(t) = α2(t)y(t)−β2(t)y2(t)+γ2(t) so that x(t0) ≥ y(t0) ≥ 0, and, for all t ≥ t0, α1(t) ≥ α2(t),
β2(t) ≥ β1(t) ≥ 0, γ1(t) ≥ γ2(t) ≥ 0. Then x(t) ≥ y(t) for all t ≥ t0.

Proof. If z(t) = x(t)−y(t), then direct computations show that ż(t) = A(t)z(t)+F (t), where F (t) ≥ 0, t ≥
t0. Since z(t0) ≥ 0, it follows that z(t) ≥ 0 for all t ≥ t0. �

Lemma 4.4. Let yN = yN (t), N ≥ 1, t ≥ 0, be a positive solution of

(4.8) ẏN (t) = αyN (t)− β2ψ2
Ny

2
N (t) + γ,

where α ∈ R, β > 0, γ > 0, and ψN is defined in (4.7). Then, for every t > 0,

lim
N→∞

ψNyN (t) =
√
γ/β.

Proof. This result follows from the explicit formula for yN (t) [31, Example 6.2.12]. The formula can easily
be derived by observing that the equation for yN is separable. �

Proof of Theorem 4.2. Since for each t ∈ (0, T ] the random variables uk(t), k = 1, . . . , N , are conditionally
independent given θ, the strong law of large numbers implies that, under condition (4.6), for every t0 > 0,
there exists, with probability one, a finite positive limit limN→∞ ψ−1

N

∑N
k=1 ν

2
ku

2
k(t0); see the proof of Lemma

2.2 in [17] for details. By Lemma 4.3, there exist a non-negative function yN satisfying (4.8) and an integer-
valued random variable µ satisfying P(0 < µ <∞) = 1 so that, for all N > µ, γN (t0) ≤ yN (t0). By Lemma
4.4 we conclude that limN→∞ γN (t0) = 0 with probability one. If |b(t)|2 ≥ ε > 0 for all t, then, by Lemma
4.3, there exist non-negative functions yN , ỹN , both satisfying equations of the type (4.8), and a positive
integer-valued random variable µ satisfying P(µ <∞) = 1 so that, for all N > µ, ỹN (t0) ≤ γN (t0) ≤ yN (t0).
By Lemma 4.4 we conclude that limN→∞ ψNγN (t0) exists and is positive. Theorem 4.2 is proved. �

Theorem 4.2 shows that, under condition (4.6), the variance of the linear filter tends to zero as more and
more of the spatial Fourier coefficients of the solution of (2.1) are included in the observation process. The
question remains open whether a similar result holds for the non-linear filter. In the example at the end of
Section 2, condition (4.6) holds for both equations; for equation du = ∆u − ~v · ∇u + θ(t)u with a known
vector ~v, this condition holds if and only if d ≥ 2 [17].

Equations (4.4) can be solved explicitly if a(t) = b(t) = 0. In that case, θ(t) = θ0 and

θ̂N (T ) =
m0 + γ0

∑N
k=1

∫ T

0
νkuk(t)(duk(t)− κkuk(t))dt

1 + γ0

∑N
k=1

∫ T

0
ν2

ku
2
k(t)dt

,

γN (T ) =
γ0

1 + γ0

∑N
k=1

∫ T

0
ν2

ku
2
k(t)dt

,

(4.9)

where m0 = E(θ0), γ0 = var(θ0), and u0 is assumed deterministic. If (4.6) holds, then direct computations
show that limN→∞ θ̂N (T ) = θ0 with probability one. Similarly, limN→∞ ψ2

NγN (T ) has a positive finite limit
with probability one, which does not contradict Theorem 4.2. For a constant coefficient θ, expression (4.9)
is an example of the Bayes estimator.
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It is known from [17] that, if θ(t) = θ, a real number, then the maximum likelihood estimator θ̂N of θ is
given by

(4.10) θ̂N =
∑N

k=1

∫ T

0
νkuk(t)(duk(t)− κkuk(t))dt∑N

k=1

∫ T

0
ν2

ku
2
k(t)dt

.

By comparing (4.9) with (4.10), we conclude that, for every α < 1, limN→∞ ψα
N (θ̂N (T ) − θ̂N ) = 0 with

probability one and in every Lq(Ω). The results of [17] then imply that the Bayes estimator (4.9) is consistent,
both with probability one and in every Lq(Ω), asymptotically normal with rate ψN , and asymptotically
efficient.
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