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1. Introduction

Let (Ω,F ,P) be a probability space with a Wiener process W = W (t), 0 ≤ t ≤ T . Consider
a random field u = u(x), x ∈ Rd, so that u ∈ L2(Ω;L2(Rd)) and u is measurable with respect
to the sigma-algebra FW

T generated by the Wiener process up to time T . If {ek, k ≥ 1} is an
orthonormal basis in L2(Rd) and {ξm,m ≥ 1} is an orthonormal basis in L2(Ω,FW

T ), then
we can write

(1.1) u(x) =
∑

m,k≥1

ϕK
m,kξmek(x),

where ϕm,k are some deterministic coefficients. The objective of the current work is to study
an approximation of u using representation (1.1) when the random field u is a solution
of a stochastic parabolic equation. For such random fields it is possible to derive explicit
representation for the coefficients ϕm,k and to get an upper bound on the approximation
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error in (1.1). The results are then used to derive an approximate algorithm for solving the
nonlinear filtering problem of diffusion processes with correlated noise.

The problem of nonlinear filtering can be briefly described as follows. Assume that (X =
X(t), Y = Y (t)), t ≥ 0, are two diffusion processes with values in Rd and Rr respectively, so
that X is the unobservable component and the observable component Y is given by

Y (t) =

∫ t

0

h(X(s))ds+W (t).

The problem is called noise-uncorrelated, if the Wiener process W = W (t), representing the
observation noise, is independent of X. The problem is called noise-correlated, if there is
correlation between W and X. If f = f(x) is a measurable function satisfying E|f(X(t))|2 <
∞, t ≥ 0, then the problem of nonlinear filtering is to find the best mean square estimate
f̂t of f(X(t)) given the trajectory Y (s), s ≤ t. It is known [12, 17, 26] that, under certain
regularity assumptions, we have

(1.2) f̂t =

∫
Rd f(x)p(t, x)dx∫

Rd p(t, x)dx
,

where p = p(t, x) is a random field called the unnormalized filtering density (UFD). The
problem of estimating f(X(t)) is thus reduced to the problem of computing the UFD p. It
is also known [26] that p = p(t, x) is the solution of the Zakai filtering equation, a stochastic
parabolic equation, driven by the observation process. The exact solution of this equation
can be found only in some special cases, and the development of numerical schemes for
solving the Zakai equation has become an area of active research.

Many of the existing numerical schemes for the Zakai equation use various generalizations of
the corresponding algorithms for the deterministic partial differential equations. Examples
of the corresponding algorithms can be found in Bennaton [1], Florchinger and LeGland
[7], Ito [11], etc. Because of the large amount of calculations, these algorithms cannot be
implemented in real time when the dimension of the state process is more than three. An
alternative approach is based on the Monte-Carlo method; see, for example, Del Moral et.
al [6].

In some applications, like target tracking, the filter estimate must be computed in real
time. Such applications require filtering algorithms with fast on line computations. When
the parameters of the model are known in advance, the real time computations can be
simplified by separating the deterministic and stochastic components of the Zakai equation
and performing the computations related to the deterministic component in advance. The
separation is based on the Wiener chaos decomposition of solutions of stochastic parabolic
equations. Starting with the works of Kunita [15], Ocone [25], and Lo and Ng [18], this
approach was further developed by Budhiraja and Kallianpur [2, 3, 4] and Mikulevicius and
Rozovskii [20, 21, 22, 23]. An algorithm to solve the Zakai equation using this approach for
the noise uncorrelated problem was suggested in Lototsky et al. [19]. The algorithm in [19]
was based on the following representation of the unnormalized filtering density. First, the
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UFD p(T, x) was expanded in the Wiener Chaos:

(1.3) p(T, x) =
∞∑

m=1

ϕm(T, x)ξm.

After that, the coefficients ϕm were expanded in the basis {ek} in L2(Rd), resulting in the
representation

(1.4) p(T, x) =
∞∑

m=1

(
∞∑

k=1

ϕm,k(T )ek(x)

)
ξm.

In other words, first, the stochastic variable was separated, and then, the spacial variable.

Alternatively, one can start with the Galerkin approximation of p:

(1.5) pK(t, x) =
K∑

k=1

pK
k (t)ek(x).

The coefficients pK
k (t) satisfy a system of stochastic ordinary differential equations driven by

the observation process. The solution of this system at time T is then expanded using the
Wiener Chaos decomposition. When combined with (1.5), the result is

(1.6) pK(T, x) =
K∑

k=1

(
∞∑

m=1

ϕK
m,k(T )ξm

)
ek(x).

In other words, first, the spacial variable is separated, then, the stochastic variable. First
suggested in [8] as a computational alternative to (1.4), this approach was further analyzed
in [9].

The order in which the variables are separated does make a difference. The algorithms based
on (1.4) and on (1.6) have different approximation errors and, unlike (1.4), analysis of (1.6)
is possible for noise correlated problem.

Recall that the Zakai filtering equation for the unnormalized filtering density p = p(t, x) is

(1.7) dp = L∗p dt+M∗p dY (t).

The elliptic differential operator L is the generator of the unobserved process X, while
the operator M is bounded in the noise uncorrelated problem and in unbounded in the
noise correlated problem. The presence of the unbounded operator in the stochastic part of
equation (1.7) for the noise correlated problem makes the analysis and implementation of the
numerical methods for the Zakai equation much more difficult (see, for example, Florchinger
and LeGland [7]).

The objective of the current work is to analyze the algorithm for solving the Zakai equation
using approximation (1.6). First, (1.6) is studied for an abstract stochastic evolution system.
In Section 2, the Galerkin approximation is investigated, and in Section 3, the Wiener chaos
decomposition for a system of stochastic ordinary differential equations. In each situation,
the rate of convergence is established in terms of the numbers of the basis function used. The
filtering problem is introduced in Section 4, the filtering algorithm is presented in Section
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5, and the convergence of the algorithm is studied in Section 6. The real time part of
the proposed algorithm does not require solving differential equations or using quadrature
methods to evaluate integrals in (1.2). The algorithm can also be used if the observations
are available in discrete time.

Unlike the previous works on the subject, this paper presents a unified treatment of both
noise-correlated and noise-uncorrelated problems with possibly degenerate diffusion in the
un-observed component. Another difference from the previous works on the subject is that
the error bound is derived not only for the filtering density but also for the optimal filter f̂t

with a large class of functions f .

2. Galerkin approximation of stochastic evolution equations

Consider the stochastic evolution system

(2.1) u(t) = u0 +

∫ t

T0

Au(s)ds+

∫ t

T0

r∑
l=1

Blu(s)dWl(s), T0 ≥ 0,

where W = W (t) is an r - dimensional standard Wiener process on a complete probability
space (Ω,F ,P), u0 is independent of W , and A and Bl, l = 1, . . . , r, are linear operators
acting in the scale of infinite dimensional Hilbert spaces {Ha, a ∈ R}. To simplify the
notation, both the inner product in H0 and the duality between H1 and H−1 will be denoted
by (·, ·)0; ‖ · ‖a is the norm in the space Ha. It will be assumed that equation (2.1) is either
coercive or dissipative [26, Chapter 3]. In particular, there exists a constant C∗ > 0 so that,
for every v ∈ H1,

(2.2) ‖Av‖−1 ≤ C∗‖v‖1, ‖Blv‖0 ≤ C∗‖v‖1, and 2(Av, v)0 +
r∑

l=1

‖Blv‖2
0 ≤ C∗‖v‖2

0.

If u0 ∈ H1, then there is a unique solution u = u(t) in the space L2(Ω × [T0, T ];H1) ∩
L2(Ω;C([T0, T ];H0)) (see Theorems 3.1.4 and 3.2.2 in [26]).

Suppose there exists an orthonormal basis {ek, k ≥} in H0 so that ek ∈ H1 for all k. Consider
the following system of stochastic ordinary differential equations:

(2.3)

duK
k (t) =

K∑
n=1

(Aen, ek)0u
K
n (t)dt

+
r∑

l=1

K∑
n=1

(Blen, ek)0u
K
n (t)dWl(t), T0 < t ≤ T,

uK
k (T0) = (u0, ek)0, k = 0, . . . , K.

The function

uK(t) =
K∑

k=1

uK
k (t)ek
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is called the Galerkin approximation of u(t). It is proved in the following theorem that,
under some natural assumptions,

lim
K→∞

sup
T0≤t≤T

E‖u(t;T0;u0)− uK(t)‖2
0 = 0,

and the rate of convergence is determined.

2.1. Theorem. Let the following conditions be fulfilled:

1. The basis {ek} consists of the eigenfunctions of a linear operator Λ with the corre-
sponding eigenvalues λk. The operator Λ is a symmetric operator in H0 and there
exist numbers 0 < c1 < c2 and θ > 0 so that, for all k,

(2.4) c1 ≤ λkk
−θ ≤ c2;

2. ek ∈ H1 and ‖ek‖1 ≤ Cek
q, q ≥ 0;

3. supT0≤t≤T E‖Λνu(t)‖2
0 <∞ for some positive integer ν so that θ1 := νθ − 2q > 1.

Then

(2.5) sup
T0≤t≤T

E‖u(t)− uK(t)‖2
0 ≤ sup

T0≤t≤T
E‖Λνu(t)‖2

0

CeC(T−T0)

K2(θ1−1)
,

where C is a constant depending only on the constant C∗ in (2.2) and the numbers
c1, c2, Ce, ν, θ, q.

Proof. If ψk(t) := (u(t), ek)0, then

(2.6) E‖u(t)− uK(t)‖2
0 =

K∑
k=0

E|ψk(t)− uK
k (t)|2 +

∑
k>K

E|ψk(t)|2.

By assumptions 1 and 3 of the theorem,

(2.7) |ψk(t)| ≤
‖Λνu(t)‖0

λν
k

so that

(2.8) sup
T0≤t≤T

∑
k>K

E|ψk(t)|2 ≤ sup
T0≤t≤T

E‖Λνu(t)‖2
0

C

K2νθ−1
≤ sup

T0≤t≤T
E‖Λνu(t)‖2

0

C

K2(θ1−1)
.

For 1 ≤ k ≤ K define δk(t) := ψk(t)− uK
k (t), so that

∑K
k=1 E|ψk(t)− uK

k (t)|2 =
∑K

k=1 E|δk|2,
and also define

δ1,n(t) :=
∑
k>K

(Aek, en)0ψk(t), δl
2,n(t) :=

∑
k>K

(Blek, en)0ψk(t).
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Both δ1,n(t) and δl
2,n(t) are well defined due to (2.7) and assumptions 2 and 3 of the theorem.

Then

(2.9)

dδn(t) =
K∑

k=1

(Aek, en)0δk(t)dt+
r∑

l=1

K∑
k=1

(Blek, en)0δk(t)dWl(t)

+ δ1,n(t)dt+
r∑

l=1

δl
2,ndWl(t), T0 < t ≤ T ;

δn(T0) = 0, 1 ≤ n ≤ K,

and by the Ito formula,

(2.10)

K∑
n=1

E|δn(t)|2 = 2

∫ t

T0

K∑
n,k=1

(Aek, en)0Eδn(s)δk(s)ds

+
r∑

l=1

K∑
n=1

∫ t

T0

E

(
K∑

k=1

(Blek, en)0δk(s)

)2

ds+ 2
K∑

n=1

∫ t

T0

Eδ1,n(s)δn(s)ds

+2
r∑

l=1

K∑
n,k=1

∫ t

T0

(Blek, en)0Eδl
2,n(s)δk(s)ds+

r∑
l=1

K∑
n=1

∫ t

T0

E(δl
2,n(s))2ds.

It follows from the third inequality in (2.2) that

(2.11)

2

∫ t

T0

K∑
n,k=1

(Aek, en)0Eδn(s)δk(s)ds

+
r∑

l=1

K∑
n=1

∫ t

T0

E

(
K∑

k=1

(Blek, en)0δk(s)

)2

ds ≤ C
K∑

k=1

∫ t

T0

E(δk(s))
2ds.

The first two inequalities in (2.2) and assumption 2 imply

|(Aek, en)0| ≤ C‖ek‖1‖en‖1 ≤ Ckqnq, |(Blek, en)0| ≤ C‖ek‖1‖en‖0 ≤ Ckq,

so that by (2.7),

|δ1,n(t)| ≤ Cnq ‖Λνu(t)‖0

Kνθ−q−1
, |δl

2,n| ≤ C
‖Λνu(t)‖0

Kνθ−q−1
,

and

(2.12)

K∑
n=1

∫ T

T0

E(δ1,n(s))2ds+
r∑

l=1

K∑
n=1

∫ T

T0

E(δl
2,n(s))2ds

≤ (T − T0) sup
T0≤t≤T

E‖Λνu(t)‖2
0

(r + 1)C

K2(θ1−1)
.

After that (2.10)–(2.12) and the obvious inequality 2|ab| ≤ a2 + b2 imply

K∑
n=1

E|δn(t)|2 ≤ C

K∑
n=1

∫ t

T0

E|δn(s)|2ds+ (T − T0) sup
T0≤t≤T

E‖Λνu(t)‖2
0

(r + 1)C

K2(θ1−1)
,

6



so that by the Gronwall inequality

sup
T0≤t≤T

K∑
n=1

E|δn(t)|2 ≤ (T − T0) sup
T0≤t≤T

E‖Λνu(t)‖2
0 e

C(T−T0) (r + 1)C

K2(θ1−1)
.

Together with (2.6) and (2.8), the last inequality implies (2.5). Theorem 2.1 is proved. �

3. Wiener Chaos Expansion

On a complete probability space (Ω,F ,P) consider a system of stochastic ordinary differential
equations:

(3.1) U(t) = U0 +

∫ t

T0

AU(s)ds+

∫ t

T0

r∑
l=1

BlU(s)dWl(s) T0 ≥ 0,

where U(t), U0 ∈ RK , A,Bl ∈ RK×K , the matrices A,Bl are deterministic, and U0 is in-
dependent of the r-dimensional Wiener process W . The solution of (3.1) is denoted by
U(t;T0;U0).

In what follows, the Wiener chaos decomposition of U(t;T0;U0) will be derived and the
properties of the decomposition studied.

As the first step, recall the construction of an orthonormal basis in the space L2(Ω,FW
T0,t,P)

of square integrable random variables that are measurable with respect to the σ-algebra,
generated by the Wiener process up to time t. Let α be an r-dimensional multi-index,
that is, a collection α = (αl

k)1≤l≤r, k≥1 of nonnegative integers such that only finitely many
of αl

k are different from zero. The set of all such multi-indices will be denoted by J . For
α ∈ J define α! :=

∏
k,l(α

l
k!).

For a fixed t∗ > T0 choose a complete orthonormal system {mk} = {mk(s)}k≥1 in L2([T0, t
∗])

and define

ξk,l =

∫ t∗

T0

mk(s)dWl(s)

so that ξk,l are independent Gaussian random variables with zero mean and unit variance.

If

(3.2) H(x) := (−1)nex2/2 d
n

dxn
e−x2/2

is the n-th Hermite polynomial, then the collection{
ξα(WT0,t∗) :=

∏
k,l

(
Hαl

k
(ξk,l)√
αl

k!

)
, α ∈ J

}
is an orthonormal system in L2(Ω,FW

T0,t∗ ,P). A theorem of Cameron and Martin [5] shows
that {ξα(WT0,t∗)}α∈J is actually a basis in that space.
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3.1. Theorem. If η ∈ L2(Ω,FW
T0,t∗ ,P), then

(3.3) η =
∑
α∈J

E[ηξα(WT0,t∗)]ξα(WT0,t∗)

and
E|η|2 =

∑
α∈J

|Eηξα(WT0,t∗)|2.

Proof. This theorem is proved in [5] and [10]. �

3.2. Theorem. If t∗ > T0 is fixed, then, for every s ∈ [T0, t
∗], the solution U(s;T0;U0)

can be written as

(3.4) U(s;T0;U0) =
∑
α∈J

1√
α!
ϕα(s;T0;U0)ξα(WT0,t∗),

and the following Parseval’s equality holds:

(3.5) E|U(s;T0;U0)|2 =
∑
α∈J

1

α!
E|ϕα(s;T0;U0)|2.

The coefficients of the expansion are RK-vector functions and satisfy the recursive system of
deterministic equations

(3.6)

∂ϕα(s;T0;U0)

∂s
= Aϕα(s;T0;U0) +

∑
k,l

αl
kmk(s)Blϕα(k,l)(s;T0;U0), T0 < s ≤ t∗;

ϕα(T0;T0;U0) = U01{|α|=0},

where α = (αl
k)1≤l≤r, k≥1 ∈ J and α(i, j) stands for the multi-index α̃ = (α̃l

k)1≤l≤r, k≥1 with

(3.7) α̃l
k =

{
αl

k if k 6= i or l 6= j or both

max(0, αj
i − 1) if k = i and l = j.

Proof. Assume first that U0 = g is deterministic; the Markov property of the solution of
(3.1) implies that, once the derivation is complete, we can replace g with U0.

If g is deterministic, then U(s;T0; g) ∈ L2(Ω,FW
T0,t∗ ,P) for s ≤ t∗, and Theorem 3.1 implies

(3.4) and (3.5).

To prove that the coefficients satisfy (3.6), define

Pt(z) = exp
{∫ t

T0

r∑
l=1

ml
z(s)dWl(s)−

1

2

∫ t

T0

r∑
l=1

|ml
z(s)|2ds

}
, T0 ≤ t ≤ t∗,

where ml
z =

∑
k≥1mk(s)z

l
k and {zl

k}, l = 1, . . . , r, k = 1, 2, . . . , is a sequence of real numbers

such that
∑

k,l |zl
k|2 <∞. Then direct computations show that

ξα(WT0,t∗) =
1√
α!

∂α

∂zα
Pt∗(z)

∣∣∣
z=0

,

8



where
∂α

∂zα
=
∏
k,l

∂αl
k

(∂zl
k)

αl
k

,

and also, that

E[ηξα(WT0,t∗)] =
∂α

∂zα
E[ηPt∗(z)]

∣∣∣
z=0

for every η ∈ L2(Ω,FW
T0,t∗ ,P). Consequently,

ϕα(s;T0; g) =
∂α

∂zα
E[U(s;T0; g)Pt∗(z)]

∣∣∣
z=0

=
∂α

∂zα
E[U(s;T0; g)Ps(z)]

∣∣∣
z=0

,

where the second equality follows from the martingale property of Ps(z) on
(Ω, {FW

T0,t}T0≤t≤t∗ ,P). It follows from the definition of Ps(z) that

dPs(z) =
r∑

l=1

ml
z(s)Ps(z)dWl(s), T0 ≤ s ≤ t; PT0(z) = 1.

Then (3.1) and the Ito formula imply that

U(s;T0; g)Ps(z) = g

+

∫ s

T0

(
AU(τ ;T0; g) +

r∑
l=1

BlU(τ ;T0; g)
)
ml

z(τ)Pτ (z)dτ

+

s∫
T0

r∑
l=1

(
BlU(τ ;T0; g) + U(τ ;T0; g)m

l
z(s)

)
Ps(z)dWl(τ).

Taking the expectation on both sides of the last equality and setting
ϕ(s, z;T0; g) := EU(s;T0; g)Ps(z) results in

ϕ(s, z;T0; g) = g +

∫ s

T0

(
Aϕ(τ, z;T0; g) +

r∑
l=1

ml
z(τ)Blϕ(τ, z;T0; g)

)
dτ.

Applying the operator
1√
α!

∂α

∂zα
and setting z=0 yields that the functions ϕα(s;T0; g) satisfy

(3.6). Theorem 3.2 is proved. �

For a multi-index α ∈ J define

• |α| :=
∑

l,k α
l
k (length of α);

• d(α) := max{k ≥ 1 : αl
k > 0 for some 1 ≤ l ≤ r} (order of α).

To study the rate of convergence of the series in (3.4), it is necessary to note that the
summation

∑
α∈J is double infinite:

(3.8)
∑
α∈J

=
∞∑

k=0

∑
|α|=k
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and there are infinitely many multi-indices α with |α| = k > 0.

Define Jn
N = {α ∈ J : |α| ≤ N, d(α) ≤ n} and then

(3.9) Un
N(s;T0;U0) =

∑
α∈Jn

N

1√
α!
ϕα(s;T0;U0)ξα(WT0,t∗).

Now the summation in (3.9) is over a finite set: if d(α) ≤ n, then there are at most (nr)k

multi-indices α with |α| = k.

3.3. Theorem. Let the constants C0, C1, C2 be such that |Av|2 ≤ C0|v|2, |eAtv|2 ≤ eC1t|v|2,
|Blv|2 ≤ C2|v|2 for every vector v ∈ RK. If the basis {mk} is the Fourier cosine basis

(3.10) m1(s)=
1√

t∗ − T0

; mk(s)=

√
2

t∗ − T0

cos

(
π(k − 1)(s− T0)

t∗ − T0

)
, k > 1; T0 ≤ s ≤ t∗,

then

(3.11)

E|U(t∗;T0;U0)− Un
N(t∗;T0;U0)|2 ≤ 2eC̄(t∗−T0)

(
[C2r(t

∗ − T0)]
N+1

(N + 1)!

+2C2r
(t∗ − T0)

2

n
[ε(B) + C0(1 + C2r(t

∗ − T0))(t
∗ − T0)]

)
E|U0|2,

where C̄ = C1 +C2r and 0 ≤ ε(B) ≤ 4; ε(B) = 0 if the matrices Bl commute (in particular,
if r = 1).

This Theorem is proved below in Section 7.

If t∗ − T0 = ∆, then (3.11) becomes

(3.12) E|U(t∗;T0;U0)− Un
N(t∗;T0;U0)|2 ≤ eC∆

(
(C∆)N+1

(N + 1)!
+

∆2

n
(ε(B) + C∆)

)
E|U0|2,

and the constant C depends only on the matrices A and Bl in (3.1).

4. Diffusion Filtering Model

Let (Ω,F ,P) be a complete probability space with independent standard Wiener processes
W = W (t) and V = V (t) of dimensions d1 and r respectively. Let X0 be a random variable
independent of W and V . In the diffusion filtering model, the unobserved d - dimensional
state (or signal) process X = X(t) and the r-dimensional observation process Y = Y (t) are
defined by the stochastic ordinary differential equations

(4.1)
dX(t) = b(X(t))dt+ σ(X(t))dW (t) + ρ(X(t))dV (t),
dY (t) = h(X(t))dt+ dV (t), 0 < t ≤ T ;
X(0) = X0, Y (0) = 0,

where b(x) ∈ Rd, σ(x) ∈ Rd×d1 , ρ(x) ∈ Rd×r, h(x) ∈ Rr.
10



Assumption R1. The functions σ and ρ are C3
b(Rd), that is, bounded and three times

continuously differentiable on Rd so that all the derivatives are also bounded; the functions
b and h are C2

b(R), and the random variable X0 has a density p0.

Under Assumption R1 system (4.1) has a unique strong solution [13, Theorems 5.2.5 and
5.2.9].

If f = f(x) is a scalar measurable function on Rd so that sup0≤t≤T E|f(X(t))|2 <∞, then the

filtering problem for (4.1) is to find the best mean square estimate f̂t of f(X(t)), t ≤ T, given
the observations Y (s), 0 < s ≤ t. Denote by FY

t the σ-algebra generated by Y (s), 0 ≤ s ≤ t.
Then the properties of the conditional expectation imply that the solution of the filtering
problem is

f̂t = E
(
f(X(t))|FY

t

)
.

To derive an alternative representation of f̂t, some additional constructions will be necessary.

Define a new probability measure P̃ on (Ω,F) as follows: for A ∈ F ,

P̃(A) =

∫
A

Z−1
T dP,

where

Zt = exp

{∫ t

0

h∗(X(s))dY (s)− 1

2

∫ t

0

|h(X(s))|2ds
}

(here and below, if ζ ∈ Rk, then ζ is a column vector, ζ∗ = (ζ1, . . . , ζk), and |ζ|2 = ζ∗ζ). If

the function h is bounded, then the measures P and P̃ are equivalent. The expectation with
respect to the measure P̃ will be denoted by Ẽ.

The following properties of the measure P̃ are well known [12, 26]:

P1. Under the measure P̃, the distributions of the Wiener process W and the random
variable X0 are unchanged, the observation process Y is a standard Wiener process,
and the state process X satisfies

dX(t) = b(X(t))dt+ σ(X(t))dW (t) + ρ(X(t)) (dY (t)− h(X(t))dt) , 0 < t ≤ T ;
X(0) = X0;

P2. Under the measure P̃, the Wiener processes W and Y and the random variable X0

are independent of one another;
P3. The optimal filter f̂t satisfies

(4.2) f̂t =
Ẽ
[
f(X(t))Zt|FY

t

]
Ẽ[Zt|FY

t ]
.

Because of property P2 of the measure P̃ the filtering problem will be studied on the prob-
ability space (Ω,F , P̃). If the function h is bounded, then there is a continuous embedding

(4.3) L2(Ω, P̃) ⊂ L1(Ω,P).
11



Indeed, if ξ ∈ L2(Ω, P̃), then

Eξ = Ẽ(ZT ξ) ≤
√

ẼZ2
T

√
Ẽξ2 ≤ C

√
Ẽξ2,

because

ẼZ2
T = Ẽ

(
exp

{∫ T

0
|h(X(t))|2dt

}
exp

{
2
∫ T

0
h∗(X(t))dY (t)− 2

∫ T

0
|h(X(t))|2dt

})
≤ CẼ exp

{
2
∫ T

0
h∗(X(t))dY (t)− 2

∫ T

0
|h(X(t))|2dt

}
≤ C

where the last inequality follows from the property P2 of P̃ and Proposition 3.5.12 in [13].

Next, consider the partial differential operators

Lg(x) =
1

2

d∑
i,j=1

((σ(x)σ∗(x))ij + (ρ(x)ρ∗(x))ij)
∂2g(x)

∂xi∂xj

+
d∑

i=1

bi(x)
∂g(x)

∂xi

;

Mlg(x) = hl(x)g(x) +
d∑

i=1

ρil(x)
∂g(x)

∂xi

, l = 1, . . . , r;

and their adjoints

L∗g(x)=
1

2

d∑
i,j=1

∂2

∂xi∂xj

((σ(x)σ∗(x))ijg(x)+(ρ(x)ρ∗(x))ijg(x))−
d∑

i=1

∂

∂xi

(bi(x)g(x)) ;

M∗
l g(x) = hl(x)g(x)−

d∑
i=1

∂

∂xi

(ρil(x)g(x)) , l = 1, . . . , r.

Let Ha be the Sobolev space {f : (1 + |w|2)a/2f̂ ∈ L2(Rd)}, where f̂ = f̂(w) is the Fourier
transform of f ; H0 = L2(Rd) with the norm ‖ · ‖0. The inner product in L2(Rd) and the
duality between H1 and H−1 will be denoted by (·, ·)0. Note that the operators L,L∗ are
bounded from H1 to H−1, operators M,M∗ are bounded from H1 to L2(Rd), and, for every
g ∈ H1,

(4.4) 2(L∗g, g)0 +
r∑

l=1

‖M∗
l g‖2

0 ≤ C‖g‖2
0.

The following result is well known [26, Theorem 6.2.1].

4.1. Proposition. In addition to Assumption R1 suppose that the initial density p0

belongs to the space H1. Then there is a random field p = p(t, x), t ∈ [0, T ], x ∈ Rd, with
the following properties:

1. p ∈ L2(Ω× (0, T ), dP̃× dt;H1) ∩ L2(Ω, P̃;C([0, T ], L2(Rd))).
12



2. The function p(t, x) is a generalized solution of the stochastic partial differential equation

(4.5)
dp(t, x) = L∗p(t, x)dt+

r∑
l=1

M∗
l p(t, x)dYl(t), 0 < t ≤ T, x ∈ Rd;

p(0, x) = p0(x).

3. The equality

(4.6) Ẽ
[
f(X(t))Zt|FY

t

]
=

∫
Rd

f(x)p(t, x)dx

holds for all bounded measurable functions f .

The random field p = p(t, x) is called the unnormalized filtering density (UFD) and the ran-

dom variable φt[f ] = Ẽ
[
f(X(t))Zt|FY

t

]
, the unnormalized optimal filter. Under Assumption

R1, equation (4.5) is at least dissipative. If the matrix σσ∗ is uniformly positive definite,
then equation (4.5) is coercive rather than dissipative, and it is enough to assume that
p0 ∈ L2(Rd).

5. Approximation of the optimal filter

Let {ei, i ≥ 1} be an orthonormal basis in L2(Rd) so that every ei belongs to H1. Fix a
positive integer number K. Define the matrices AK = (AK

ij , i, j = 1, . . . , K) and BK
l =

(BK
l,ij, i, j = 1, . . . , K; l = 1, . . . , r), by

AK
ij = (L∗ej, ei)0, BK

l,ij = (M∗
l ej, ei)0.

Since ei ∈ H1 for all i, the matrices are well defined. The Galerkin approximation pK(t, x)
of p(t, x) is given by

(5.1) pK(t, x) =
K∑

i=1

pK
i (t)ei(x),

where the vector pK(t) = {pK
i (t), i = 1, . . . , K} is the solution of the system of stochastic

ordinary differential equations

(5.2) dpK(t) = AKpK(t)dt+
r∑

l=1

BK
l p

K(t)dYl(t)

with the initial condition pK
i (0) = (p0, ei)0. Note that the matrices BK

l , l = 1, . . . , r, do not,
in general, commute with each other even if ρ(x) ≡ 0.

We next use Theorem 3.2 to derive the Cameron-Martin version of the Wiener chaos expan-
sion of the solution of (5.2).

Let 0 = t0 < t1 . . . < tM = T be a uniform (for simplicity) partition of the interval [0, T ] with
step ∆ and let {mk(t), k ≥ 1} be an orthonormal basis in L2([0,∆]). Denote by J the set of
all multi-indices α = {αl

k, l = 1, . . . , r, k ≥ 1, αl
k = 0, 1, 2, . . .} so that |α| =

∑
l,k α

l
k <∞.
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Define random variables

(5.3) ξi
k,l =

∫ ti

ti−1

mk(s− ti−1)dYl(s),

and then, for α ∈ J ,

(5.4) ξi
α =

1√
α!

∏
k,l

Hαl
k
(ξi

k,l),

where Hn(t) = (−1)net2/2 d
n

dtn
e−t2/2.

The following result is a direct consequence of Theorem 3.2.

5.1. Theorem. For every i = 1, . . . ,M , the solution of (5.2) can be written in L2(Ω; RK)
as

(5.5) pK(ti) =
∑
α∈J

1√
α!
ϕK

α (∆; pK(ti−1))ξ
i
α, i = 1, . . . ,M,

where, for s ∈ (0,∆] and ζ ∈ RK, the functions ϕK
α (s; ζ) are the solutions of

(5.6)

∂ϕK
α (s; ζ)

∂s
= AKϕK

α (s; ζ) +
∑
k,l

αl
kmk(s)B

K
l ϕ

K
α(k,l)(s; ζ), 0 < s ≤ ∆,

ϕK
α (0; ζ) = ζ1{|α|=0},

and α(i, j) stands for the multi-index α̃ = (α̃l
k)1≤l≤r, k≥1 with

(5.7) α̃l
k =

{
αl

k if k 6= i or l 6= j or both

max(0, αj
i − 1) if k = i and l = j.

For fixed positive integers N and n define the set Jn
N as the collection of multi-indices α from

J such that |α| ≤ N and αl
k = 0 if k > n. The approximation pK,n

N (ti) of pK(ti) is defined by

(5.8) pK,n
N (t0) = pK(0), pK,n

N (ti) =
∑

α∈Jn
N

1√
α!
ϕK

α (∆; pK,n
N (ti−1))ξ

i
α, i = 1, . . . ,M.

Note the pK,n
N (ti) is a vector in RK . Let U = {uj, j = 1, . . . , K} be a basis in RK . The

vector pK,n
N (ti) can then be written as

pK,n
N (ti) =

K∑
j=1

pK,n
N,j (ti;U)uj,

14



and by the recursive definition of pK,n
N (ti),

pK,n
N (ti+1) =

∑
α∈Jn

N

ϕK
α (∆; pK,n

N (ti))ξ
i
α

=
∑

α∈Jn
N

K∑
j=1

ϕK
α (∆;uj)pK,n

N,j (ti;U)ξi
α.

Once again, ϕk
α(∆,ui) is a vector in RK , so we write

ϕK
α (∆,uj) =

K∑
k=1

qK,α
jk (U)uk,

and conclude that

(5.9) pK,n
N,j (ti+1;U) =

∑
α∈Jn

N

K∑
k=1

qK,α
jk (U)pK,n

N,k(ti;U)ξi
α.

Then

(5.10) pK,n
N (ti, x) =

K∑
j,k=1

pK,n
N,j (ti+1;U)uj

kek(x)

is an approximation of the unnormalized filtering density.

Suppose that the basis functions ek and the function f are such that

(5.11) fk =

∫
Rd

f(x)ek(x)dx

is defined for every k = 1, . . . , K. It follows from (5.10) that

(5.12) φ̃i[f ] =
K∑

j,k=1

pK,n
N,j (ti+1;U)uj

kfk

is an approximation of the unnormlized optimal filter.

The following is a possible algorithm for computing approximations of the unnormlized
filtering density and optimal filter using (5.10) and (5.12).

1. Preliminary computations (before the observations are available):

(1) Choose suitable basis functions {ek, k = 1, . . . , K} in L2(Rd), {mi, i = 1, . . . , n} in
L2([0,∆]), and a standard unit basis {uj, j = 1, . . . K} in RK, that is, ui

i = 1,
uj

i = 0 otherwise.
(2) for α ∈ Jn

N and j, k = 1, . . . , K compute

qK,α
jk = ϕK

α,j(∆;uk) (using (5.6)), fk =

∫
Rd

f(x)ek(x)dx, p
K,n
N,k(t0) =

∫
Rd

p0(x)ek(x)dx;
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2. Real − time computations, i− th step (as the observations become available): compute

ξi
α, α ∈ Jn

N (according to (5.3) and (5.4));

QK
jk(ξ

i) =
∑

α∈Jn
N

qK,α
jk ξi

α;

(5.13) pK,n
N,j (ti) =

K∑
k=1

QK
jk(ξ

i)pK,n
N,k(ti−1), j = 1, . . . , K;

then, if necessary, compute

(5.14) pK,n
N (ti, x) =

K∑
j=1

pK,n
N,j (ti)ej(x),

(5.15) φ̃ti [f ] =
K∑

j=1

fjp
K,n
N,j (ti),

and

(5.16) f̃ti =
φ̃ti [f ]

φ̃ti [1]
.

5.2. Remark. The main advantage of the above algorithm as compared to most other
schemes for solving the Zakai equation is that the time consuming computations, including
solving partial differential equations and computing integrals, are performed in advance,
while the real-time part is relatively simple even when the dimension d of the state process
is large. Here are some other features of the algorithm:

(1) The overall amount of preliminary computations does not depend on the number of
the on-line time steps;

(2) Formulas (5.15) and (5.16) can be used to compute an approximation to f̂ti , for ex-
ample, conditional moments, without the time consuming computations of pκ,n

N (ti, x)
and the related integrals;

(3) Only the coefficients pK,n
N,j (ti) must be computed at every time step while the approx-

imate filter f̃ti and/or UFD pK,n
N (ti, x) can be computed as needed, for example, at

the final time moment.
(4) The real-time part of the algorithm can be easily parallelized.

(5) Even though the coefficients qK,α
jk are computed according to (5.6), their values can

be further adjusted by simulating the state and observation processes and computing
the corresponding filter estimates.

(6) If n = 1, then each ξi
α depends only on the increments Yl(ti) − Yl(ti−1) of the ob-

servation process. For n > 1 and k > 1, the integral

∫ ti

ti−1

mk(s − ti−1)dYl(s) can

be reduced to a usual Riemann integral and then approximated by the trapezoidal
16



rule. In general, successful implementation and testing of the algorithm will require
effective numerical methods for stochastic ODEs (see, for example, [14, 16, 24]).

6. Rate of convergence

To study the convergence of the algorithm, it is necessary to specify the bases {ek, k ≥ 1}
on Rd and {mi, i ≥ 1} on [0,∆].

Let {ek, k ≥ 1} be the Hermite basis in L2(Rd). The basis can be described as follows.
Denote by Γ the set of ordered d-tuples γ = (γ1, . . . , γd) with γj = 0, 1, 2, . . .. For γ ∈ Γ
define

Hγ(x) =
d∏

j=1

Hγj
(xj),

where

Hk(t) =
(−1)n

√
2nπ1/2n!

et2 d
n

dtn
e−t2

With this definition, Hγ is the eigenfunction of the self-adjoint operator Λ = −∇2+(1+|x|2):
ΛHγ = λγeγ,

where ∇2 is the Laplace operator and λγ = (2|γ|+ d+ 1).

To define an ordering of the set Γ, we define |γ| =
∑d

j=1 γj and then say that γ < τ if

|γ| < |τ | or if |γ| = |τ | and γ < τ under the lexicographic ordering, that is, γi0 < τi0 , where
i0 is the first index for which γi 6= τi. The basis {ek}k≥1 is then the set {Hγ(x), γ ∈ Γ}
together with the above ordering of the set Γ so that Λek = λkek and λk � k1/d.

Next, we define an orthonormal basis {mk} in L2([0,∆]) by

m1(s) =
1√
∆

; mk(s) =

√
2

∆
cos

(
π(k − 1)s

∆

)
, k > 1; 0 ≤ s ≤ ∆.

6.1. Definition. The filtering model (4.1) is called ν-regular for some positive integer
ν if the functions σ and ρ belong to C2ν+3

b , the functions b and h belong to C2ν+2
b , and

Λνp0 ∈ H1.

6.2. Theorem. If the filtering model (4.1) is ν-regular, in the sense of Definition 6.1, for
some ν > d+ 1 and

Cρ = max
i,l

sup
x∈Rd

|ρil(x)|2,

then
(6.1)

max
0≤i≤M

Ẽ‖p(ti, ·)− pK,n
N (ti, ·)‖2

0 ≤
C(ν, T )

K2(ν−d−1)/d

+

(
C

(1 + CρK
1/d)∆ + (K2/d + CρK

3/d)∆2

n
+

(C(1 + CρK
1/d))N+1∆N

(N + 1)!

)
eC(1+CρK1/d)T .
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The number C(ν, T ) depends on ν, T , and the parameters of the model (coefficients of the
equations (4.1)). The number C depends only on the parameters of the model.

If, in addition, (1 + |x|2)−wf ∈ L2(Rd) for some w ≥ 0 so that ν > d+ 1 + w and
Λν((1 + |x|2)wp0) ∈ H1, then
(6.2)

max
0≤i≤M

Ẽ|φti [f ]− φ̃ti [f ]|2 ≤ C(ν, T, w)Cf

K2(ν−w−d−1)/d

+Cf

(
C

(1 + CρK
1/d)∆ + (K2/d + CρK

3/d)∆2

n
+

(C(1 + CρK
1/d))N+1∆N

(N + 1)!

)
eC(1+CρK1/d)T .

The number C(ν, T, w) depends on ν, T, w, and the parameters of the model; the number C
depends only on w and the parameters of the model; Cf =

∫
Rd(1 + |x|2)−2w|f(x)|2dx.

Proof. By Theorem 2.1,

(6.3) Ẽ‖p(ti, ·)− pK(ti, ·)‖2
0 ≤

C(ν, T )

K2(ν−d−1)/d
.

Indeed, by Theorem 4.3.2 in [26], sup0<t<T Ẽ‖Λνp(t, ·)‖2
0 ≤ eCT‖Λνp0‖2

0, where C depends
only on ν and the parameters of the model. Also, in the notations of Theorem 2.1, θ = 1/d,
q = 1/(2d), and θ1 = (ν − 1)/d.

To simplify the further presentation, set κ = K1/d and define Cκ = 1 +Cρκ. Then, to prove
(6.1), it remains to show that

Ẽ|pK(ti)− pK,n
N (ti)|2 ≤

(
C
Cκ∆ + κ2Cκ∆

2

n
+

(CCκ)
N+1∆N

(N + 1)!

)
eCCκT ,

and by Theorem 3.3 this inequality holds if, for every vector ζ ∈ RK ,

(6.4) |AKζ|2 ≤ Cκ2|ζ|2, |BK
l ζ|2 ≤ CCκ|ζ|2, |etAK

ζ|2 ≤ eCt|ζ|2.

Because of the multi-step approximation, we, as usual, loose one power of ∆ in (3.12). In-
equalities (6.4) are verified by direct calculations using that the operators Λ−1L and Λ−1/2Ml

are bounded in L2(Rd).

To prove (6.2), let β(x) =
√

1 + |x|2 and, for w ∈ R, define the space L2,w(Rd) = {f : fβw ∈
L2(Rd)}. Clearly, L2,w(Rd) is a Hilbert space with inner product (f, g)0,w = (fβw, gβw)0 and
norm ‖f‖2

0,w = (f, f)0,w. Then

(6.5) |φti [f ]− φ̃ti [f ]|2 ≤ Cf‖p(ti, ·)− pK,n
N (ti, ·)‖2

0,2w.

Using the calculus of pseudo-differential operators [27, Chapter 4], we conclude that, for
every g ∈ L2,2w(Rd),

(6.6) ‖g‖0,2w = ‖β2wg‖0 ≤ C‖Λ−wβ2wΛwg‖0 ≤ C‖Λwg‖0.

Therefore, by Theorem 2.1 and Theorem 4.3.2 in [26],

(6.7) Ẽ‖p(ti, ·)− pK(ti, ·)‖2
0,2w ≤

C(ν, T )

K2(ν−w−d−1)/d
.
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Next, (6.6) implies

Ẽ‖pK(ti, ·)− pK,n
N (ti, ·)‖2

0,2w ≤ C

K∑
k=1

λ2w
k Ẽ|pK

k (ti)− pK,n
N,k(ti)|2.

Define the diagonal matrix Λ̂ = (Λ̂ij)i,j=1,...,K by Λ̂ii = λw
i . Then define the matrices

ÂK = Λ̂AKΛ̂−1, B̂K
l = Λ̂BK

l Λ̂−1,

and the vectors p̂(t) = Λ̂pK(t), p̂n
N(ti) = Λ̂pK,n

N (ti). With these definitions, the vector p̂K(t)
is the solution of

dp̂K(t) = ÂK p̂K(t)dt+
r∑

l=1

B̂K
l p̂(t)dYl(t)

with the initial condition p̂K
k (0) = λw

k (p0, ek)0, the vector p̂K,n
N (t) satisfies

p̂K,n
N (t0) = p̂K(0), p̂K,n

N (ti) =
∑

α∈Jn
N

1√
α!
ϕ̂K

α (∆; p̂K,n
N (ti−1))ξ

i
α, i = 1, . . . ,M,

and

(6.8) Ẽ‖pK(ti, ·)− pK,n
N (ti, ·)‖2

0,w ≤ CẼ|p̂K(ti)− p̂K,n
N (ti)|2.

The functions ϕ̂K
α satisfy the equations (5.6) with ÂK and B̂K

l instead of AK and BK .

Direct computations show that, for all ζ ∈ RK ,

(6.9) |ÂKζ|2 ≤ Cκ2|ζ|2, |B̂K
l ζ|2 ≤ CCκ|ζ|2, |etÂK

ζ|2 ≤ eCt|ζ|2,

with C depending on w and the parameters of the filtering model. By Theorem 3.3 we then
conclude that

Ẽ|p̂K(ti)− p̂K,n
N (ti)|2 ≤

(
C
Cκ∆ + κ2Cκ∆

2

n
+

(CCκ)
N+1∆N

(N + 1)!

)
eCCκT .

Together with (6.5), (6.6), and (6.8), the last inequality implies (6.2).

Theorem 6.2 is proved. �

7. Proof of Theorem 3.3

The proof requires an explicit formula for the solution of (3.6). We begin with some auxiliary
constructions.

Every multi-index α with |α| = k can be identified with the set Kα = {(iα1 , qα
1 ), . . . , (iαk , q

α
k )}

so that iα1 ≤ iα2 ≤ . . . ≤ iαk and if iαj = iαj+1, then qα
j ≤ qα

j+1. The first pair (iα1 , q
α
1 ) in Kα is

the position numbers of the first nonzero element of α. The second pair is the same as the
first if the first nonzero element of α is greater than one; otherwise, the second pair is the
position numbers of the second nonzero element of α and so on. As a result, if αq

j > 0, then
19



exactly αq
j pairs in Kα are (j, q). The set Kα will be referred to as the characteristic set

of the multi-index α. For example, if r = 2 and

α =

(
0 1 0 2 3 0 0 . . .
1 2 0 0 0 1 0 . . .

)
,

then the nonzero elements are α2
1 = α1

2 = α6
1 = 1, α2

2 = α1
4 = 2, α1

5 = 3, and the
characteristic set is Kα ={(1, 2), (2, 1), (2, 2), (2, 2), (4, 1), (4, 1), (5, 1), (5, 1), (5, 1), (6, 2)}.
In the future, when there is no danger of confusion, the superscript α in i and q will be omitted
so that (ij, qj) will be written instead of (iαj , q

α
j ).

Let Pk be the permutation group of the set {1, . . . , k}. For a given α ∈ J with |α| = k and
the characteristic set {(i1, q1), . . . , (ik, qk)} define

Eα(sk; lk) :=
∑
σ∈Pk

mi1(sσ(1))1{lσ(1)=q1} · · ·mik(sσ(k))1{lσ(k)=qk}.

The following notations are introduced to simplify the further presentation:

• sk, the ordered set (s1, . . . , sk); ds
k := ds1 . . . dsk;

• lk, the ordered set (l1, . . . , lk);
• Φt = eAt;
• F (t; sk; lk; g) := Φt−sk

BlkΦsk−sk−1
. . . Bl1Φs1−T0g, k ≥ 1;

•
∫ (k,t)

T0

(· · · )dsk :=

∫ t

T0

∫ sk

T0

. . .

∫ s2

T0

(· · · )ds1 . . . dsk;

•
∑
lk

:=
r∑

l1,...,lk=1

.

Note that

(7.1) |F (t; sk; lk; g)|2 ≤ Ck
2 e

C1(t−T0)|g|2,
∫ (k,t)

T0

dsk =
(t− T0)

k

k!
,
∑
lk

1 = rk.

7.1. Proposition. If α ∈ J is a multi-index with |α| = k and the characteristic set
{(i1, q1), . . . , (ik, qk)}, then, for t ∈ [T0, t

∗], the corresponding solution ϕα(t;T0;U0) of (3.6)
is given by

(7.2)

ϕα(t;T0;U0) =∑
σ∈Pk

∑
lk

(k,t)∫
T0

F k(t; sk; lk;U0)miσ(k)
(sk)1{lk=qσ(k)} · · ·miσ(1)

(s1)1{l1=qσ(1)}ds
k, k>1;

ϕα(t;T0;U0) =

∫ t

T0

Φt−s1Bq1Φs1−T0U0mi1(s1)ds1, k = 1;

ϕα(t;T0;U0) = Φt−T0U0, k = 0,
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and

(7.3)
∑
|α|=k

|ϕα(t;T0;U0)|2

α!
=
∑
lk

∫ (k,t)

T0

|F (t; sk; lk;U0)|2dsk.

Proof. To simplify the notations, the arguments T0 and U0 will be omitted wherever
possible. Representation (7.2) is obviously true for |α| = 0. Then the general case |α| ≥ 1
follows by induction from the variation of parameters formula.

To prove (7.3), first of all note that∑
σ∈Pk

miσ(k)
(sk)1{lk=qσ(k)} · · ·miσ(1)

(s1)1{l1=qσ(1)}

=
∑
σ∈Pk

mik(sσ(k))1{lσ(k)=qk} · · ·mi1(sσ(1))1{lσ(1)=q1}.

Indeed, every term on the left corresponding to a given σ0 ∈ Pk coincides with the term on
the right corresponding to σ−1

0 ∈ Pk.

Then (7.2) can be written as ϕα(t) =
∑

lk

∫ (k,t)

T0
F (t; sk; lk)Eα(sk; lk)dsk. Using the notation

G(t; sk; lk) :=
∑
σ∈Pk

Φt−sσ(k)
Blσ(k)

. . .Φsσ(2)−sσ(1)
Blσ(1)

Φsσ(1)−T0g1sσ(1)<...<sσ(k)<t,

it can be rewritten as

(7.4) ϕα(t) =
1

k!

∑
lk

∫
[T0,t∗]k

G(t; sk; lk)Eα(sk; lk)dsk.

Since for every t ∈ [T0, t
∗] the function G(t; sk; lk) is symmetric,

G(t; sk; lk) =
∑
|β|=k

cβ(t)Eβ(sk; lk)√
β!k!

with some vector coefficients cβ(t). This and (7.4) imply |ϕα(t)|2/α! = |cα|2/k! and so∑
|α|=k

|ϕα(t)|2

α!
=

1

k!

∑
|α|=k

|cα(t)|2 =
1

k!

∫
[T0,t∗]k

|G(t; sk; lk)|2dsk

=
1

k!

∑
lk

∫
[T0,t∗]k

∣∣∣∑
σ∈Pk

Φt−sσ(k)
Blσ(k)

. . .Φsσ(2)−sσ(1)
Blσ(1)

Φsσ(1)−T0g1sσ(1)<...<sσ(k)<t

∣∣∣2dsk

=
∑
lk

∫ (k,t)

T0

|F (t; sk; lk)|2dsk,

which proves (7.3). Proposition 7.1 is proved. �
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We continue by considering the truncation only of the length of α. Define JN = {α ∈ J :
|α| ≤ N} and

(7.5) UN(s;T0;U0) =
∑

α∈JN

1√
α!
ϕα(s;T0;U0)ξα(WT0,t∗).

Note that the summation in (7.5) is still infinite.

7.2. Proposition. In the notations of Theorem 3.3,

(7.6) sup
s∈[T0,t∗]

E|U(s;T0;U0)− UN(s;T0;U0)|2 ≤
[C2r(t

∗ − T0)]
N+1

(N + 1)!
eC̄(t∗−T0) E|U0|2.

Proof. To simplify the presentation, the arguments T0 and U0 will be omitted wherever
possible.

By Theorem 7.1,

(7.7)
∑
|α|=k

|ϕα(s)|2

α!
=
∑
lk

∫ (k,s)

T0

|F (s; sk; lk)|2dsk.

Since the random variables ξα(WT0,t) are uncorrelated and are independent of U0, formulas

(5.5) and (7.5) imply E|U(s)− UN(s)|2 =
∑

k>N

∑
|α|=k

E|ϕα(s)|2
α!

. By (7.1),∑
k>N

∑
|α|=k

E|ϕα(s)|2

α!
≤ eC1(s−T0) E|U0|2

∑
k>N

(C2r(s− T0))
k

k!

≤ (C2r(t
∗ − T0))

N+1

(N + 1)!
eC̄(t∗−T0) E|U0|2,

which completes the proof of Proposition 7.2. �

Now we truncate the sum in (7.5) even more by restricting α to the set Jn
N .

7.3. Proposition. In the notations of Theorem 3.3 and Proposition 7.2,

(7.8)
E|UN(t∗;T0;U0)− Un

N(t∗;T0;U0)|2 ≤ 2C2r e
C̄(t∗−T0)

(
ε(B)

(t∗ − T0)
2

n

+ C0 (1 + (t∗ − T0)C2r)
(t∗ − T0)

3

n

)
E|U0|2.

Proof. To simplify the presentation, the arguments T0 and U0 will be omitted wherever
possible.

If α is a multi-index with |α| = k and the characteristic set {(iα1 , qα
1 ) . . . , (iαk , q

α
k )}, then

iαk = d(α), the order of α, and so the set Jn
N can be described as {α ∈ J : |α| ≤ N ; iα|α| ≤ n}.

Since the random variables ξα are uncorrelated and are independent of U0,

E|Un
N(t∗)− UN(t∗)|2 =

∞∑
b=n+1

N∑
k=1

∑
|α|=k;iαk =b

E|ϕα(t∗)|2

α!
.
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The problem is thus to estimate
∞∑

b=n+1

N∑
k=1

∑
|α|=k;iαk =b

|ϕα(t∗)|2

α!
.

By Theorem 7.1 the corresponding solution ϕα of (3.6) can be written as

(7.9) ϕα(t∗) =
∑
lk

∫ (k,t∗)

T0

F (t∗; sk; lk)Eα(sk, lk)dsk.

According to (3.7), the characteristic set of α(ik, qk) is {(i1, q1), . . . , (ik−1, qk−1)};
therefore, it is possible to write

Eα(sk) =
k∑

j=1

mik(sj)1{lj=qk}Eα(ik,qk)(s
k
j ; l

k
j ),

where sk
j (resp. lkj ) denotes the same set (s1, . . . , sk) (resp. (l1, . . . , lk)) with omitted sj

(resp. lj); for example, sk
1 = (s2, . . . , sk).

As a result, after changing the order of integration in the multiple integral, equality (7.9)
can be rewritten as

(7.10) ϕα(t∗)=
k∑

j=1

∑
lkj

(k−1,t∗)∫
T0

(∫ sj+1

sj−1

F (t∗; sk; lk)mik(sj)1{lj=qk}dsj

)
Eα(ik,qk)(s

k
j ; l

k
j )ds

k
j ,

where s0 := T0; sk+1 := t∗.

Denote

Mk(s) :=

√
2(t∗ − T0)

π(k − 1)
sin
(π(k − 1)(s− T0)

(t∗ − T0)

)
; k > 1, T0 ≤ s ≤ t∗,

and Fj :=
∂F (t∗; sk; lk)

∂sj

. Then, as long as ik = b > 1, integration by parts in the inner

integral on the right hand side of (7.10) yields:∫ sj+1

sj−1

F (t∗; sk; lk)mb(sj)dsj

= F (t∗; sk; lk)Mb(sj)
∣∣∣sj=sj+1

sj=sj−1

−
∫ sj+1

sj−1

Fj(t
∗; sk; lk)Mb(sj)dsj.

For each j, let us rename the remaining variables sk
j in (7.10) as follows: ti := si, i ≤

j − 1; ti := si+1, i > j − 1, or, symbolically, tk−1 := sk
j . We will set t0 := T0, tk := t∗ and

denote by tk−1,j, j = 1, . . . , k − 1, the set tk−1 in which tj is repeated twice (e.g. tk−1,1 =
(t1, t1, . . . , tk−1), etc.); also tk−1,0 := (t0, t1, t2, . . . , tk−1), t

k−1,k := (t1, . . . , tk−1, tk).

The similar changes will also be made with the set lk: for fixed j, there are k− 1 free indices
l1, . . . , lj−1, lj+1, . . . , lk and they are renamed just like sk to form the set lk−1 (in this case, the
same symbols are used). Similarly, lk−1,j denotes the set (l1, . . . , lj−1, qk, lj, . . . , lk−1). After
these transformations, Eα(ik,qk)(s

k
j ; l

k
j ) becomes Eα(ik,qk)(t

k−1; lk−1) - independent of j, and
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F (t∗; sk; lk)1{lj=qk}Mb(sj)
∣∣∣sj=sj+1

sj=sj−1

= F (t∗; tk−1,j; lk−1,j)Mb(tj)− F (t∗; tk−1,j−1; lk−1,j)Mb(tj−1), j = 1, . . . , k.

Therefore, if d(α) = b > 1 and |α| = k > 0, then

ϕα(t∗) =
∑
lk−1

(k−1,t∗)∫
T0

(
f

(1)
b (t∗; tk−1; lk−1)

+ f
(2)
b (t∗; tk−1; lk−1)

)
Eα(ik,qk)(t

k−1; lk−1)dtk−1,

where

f
(1)
b (t∗; tk−1; lk−1) =

k∑
j=1

(
F (t∗; tk−1,j; lk−1,j)Mb(tj)

− F (t∗; tk−1,j−1; lk−1,j)Mb(tj−1)
)

if k > 1,

f
(1)
b = 0 if k = 1 – because Mb(t0) = Mb(tk) = 0 (this is the only place where the choice of
{mk} really makes the difference), and

f
(2)
b (t∗; tk−1; lk−1) = −

∫ t1

T0

F1(t
∗; s, tk−1; qk, l

k−1)Mb(s)ds

−
k−1∑
j=2

∫ tj

tj−1

Fj(t
∗; . . . , tj−1, s, tj, . . . ; l

k−1,j)Mb(s)ds

−
∫ tk

tk−1

Fk(t
∗; tk−1, s; lk−1, qk)Mb(s)ds.

Note that if the operators Bl commute with each other, then f
(1)
b (t∗; tk−1; lk−1) is identically

equal to zero for all k.

Since |α(i|α|, q|α|)| = |α| − 1 and α! ≥ α(i|α|, q|α|)!, it now follows from (7.10) that∑
|α|=k;iαk =b

|ϕα(t∗)|2

α!

=
∑

|α|=k;iαk =b

r∑
qk=1

∣∣∣ 1√
α!

∑
lk−1

∫ (k−1,t∗)

T0

(f
(1)
b + f

(2)
b )Eα(b,qk)dt

k−1
∣∣∣2

≤
r∑

qk=1

∑
|β|=k−1

∣∣∣ 1√
β!

∑
lk−1

∫ (k−1,t∗)

T0

(f
(1)
b + f

(2)
b )Eβdt

k−1
∣∣∣2,

and the proof of Proposition 7.1 shows that the last expression is equal to

(7.11)
r∑

qk=1

∑
lk−1

∫ (k−1,t∗)

T0

∣∣∣f (1)
b (t∗; tk−1; lk−1) + f

(2)
b (t∗; tk−1; lk−1)

∣∣∣2dtk−1.
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Definition of f
(1)
b implies

(7.12) |f (1)
b |2 = 0, k = 1; |f (1)

b |2 ≤ k(C2)
kε(B)(t∗ − T0)

(b− 1)2
eC1(t∗−T0) |U0|2, k ≥ 2.

Next, direct computations yield

Fj(t
∗; sk; lk) = Φt∗−sk

Blk . . .Φsj+1−sj
BljAΦsj−sj−1

. . .Φs1−T0U0

− Φt∗−sk
Blk . . . AΦsj+1−sj

BljΦsj−sj−1
. . .Φs1−T0U0,

so that by assumption (3) of the theorem, |Fj(t
∗; sk; lk)|2 ≤ C0(C2)

keC1(t∗−T0) |U0|2.

After that the definition of f
(2)
b implies:

|f (2)
b |2 ≤ 4C0k(C2)

keC1(t∗−T0)|U0|2(t∗ − T0)

∫ t∗

T0

(Mb(s))
2ds

≤ C0k(C2)
k(t∗ − T0)

3

(b− 1)2
eC1(t∗−T0) |U0|2 ;

so, since

(k−1,t∗)∫
T0

dtk−1 = (t∗ − T0)
k−1/(k − 1)!, (7.11), (7.12) and the last inequality yield

E|UN(t∗)− Un
N(t∗)|2 =

∑
b≥n+1

N∑
k=1

∑
|α|=k;iαk =b

E|ϕα(t∗)|2

α!

≤ C2re
C1(t∗−T0)

[
ε(B)(t∗ − T 2

0 )
∑
k≥0

k + 2

k + 1

(C2r(t
∗ − T0))

k

k!

+C0(t
∗ − T0)

3
∑
k≥0

(k + 1)(C2r(t
∗ − T0))

k

k!

]
E|U0|2

∑
b≥n

1

b2

≤ 2C2r e
C̄(t∗−T0)

n

[
ε(B)(t∗ − T0)

2 + (1 + (t∗ − T0)C2r)C0(t
∗ − T0)

3
]
E|U0|2.

This completes the proof of Proposition 7.3. The statement of Theorem 3.3 now follows from
Propositions 7.2 and 7.3.
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