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Abstract

In this paper we construct a kernel estimator of a time-varying coefficient of a strongly
elliptic partial differential operator in a stochastic parablic equation. The equation is assumed
diagonalizable, that is, all the operators have a common system of eigenfunctions. The mean-
square convergence of the estimator is established. The rate of convergence is determined both
by the smoothness of the true coefficient and the asymptotics of the eigenvalues of the operators
in the equation.

1 Introduction

Stochastic partial differential equations arise naturally to describe spatially distributed populations

(Dawson (1980)) or growth of interacting populations (De (1987)). Other applications include

oceanography where tracer evolution may be described by a stochastic PDE (see Piterbarg and

Rozovskii (1996) or Piterbarg (1998)).

After a suitable model is formulated for a particular application, it is necessary to estimate relevant

model parameters. In models described by linear stochastic partial differential equations (SPDEs),

such parameters are often the coefficients of the corresponding partial differential operators. Es-

timation problems for such SPDEs are entirely different from traditional problems of statistical

inference when the unknown function is the coefficient of the “leading” differential operator. In
∗Supported in part by NSF Grant DMS-9972016
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this case all the information about the unknown coefficient can be extracted from the observations

of the solution on a finite time interval with a fixed amplitude of the random perturbation.

One method to construct a computable estimator utilizes finite dimensional projections of the

observation process, for example, the first N (spatial) Fourier coefficients. The dimension of the

projection is used to describe the asymptotic properties of the estimate. The number of spatial

modes is also a natural asymptotic parameter from the physical point of view, as pointed out

by Piterbarg (1998). In parametric models, when the coefficient is a real number, this approach

was used by Huebner and Rozovskii (1995), who constructed the maximum likelihood estimate

on the basis of the first N Fourier coefficients of the process, and established the conditions for

consistency and asymptotic normality of the estimate in the limit N → ∞. Two special cases of

these results were discussed earlier by Huebner, Khasminskii and Rozovskii (1993). Parametric

models for infinite dimensional systems have also been studied by Piterbarg and Rozovskii (1997)

who analyzed the asymptotic properties of the maximum likelihood estimator in the discrete time

sampling case. Furthermore, Lototsky and Rozovskii (1999) studied parameter estimation when

the operators in the SPDEs do not commute. Mohapl (1997) constructed consistent estimators of

constant coefficients occuring in a hyperbolic SPDE with observations on a grid as the number of

time and number of space observations become larger. Other inverse problems for SPDEs in the

small noise asymptotics such as the estimation of a source are discussed in Chow, Ibragimov and

Khasminskii (1999).

In this paper we construct a kernel-type estimator for a time-varying parameter in a stochastic

parabolic equation. We study the optimal rate of convergence of such estimators. Although the

problem of nonparametric estimation for ordinary stochastic differential equations has received a

lot of attention (see e.g. Ibragimov and Khasminskii (1981), Kutoyants (1984) ), little has been

done concerning nonparametric estimation for infinite dimensional systems. For stochastic evolu-

tion systems Ibragimov and Khasminskii (1997) studied asymptotic properties of kernel estimators

of general functions in the small noise asymptotics when the probability measures generated by

the processes corresponding to different functions are equivalent. Other results, for example by

Aihara (1998), and Aihara and Sunahara (1988), are concerned with the problem of estimating

a spatially varying parameter in stochastic diffusion equations when the observation process is
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finite-dimensional.

For a stochastic ordinary differential equation, Kutoyants (1984) proved mean-square convergence

of a kernel-type estimator for the drift term. In this paper we utilize the methods developed by

Huebner and Rozovskii (1995) and by Kutoyants (1984) to construct an estimate of a coefficient

that is a function of time in a model described by a stochastic parabolic equation.

Suppose the process u(t, x) for t ∈ [0, T ] and x ∈ G ⊂ IRd is governed by the following equation:

du(t, x) = (A0 + θ0(t)A1) u(t, x) dt + dW (t, x), t ∈ (0, T ], x ∈ G
u(0, x) = u0(x)

with zero boundary conditions, where W (t, x) a cylindrical Brownian motion in L2([0, T ]×G) and

A0 + θ0(t)A1 is a strongly elliptic differential operator with the unknown coefficient θ0(t). Suppose

we observe finitely many Fourier coefficients u1(t), . . . , uN (t) for all t ∈ [0, T ]. Let Θ be the set

of admissible functions θ0. We are interested in the asymptotic properties of the kernel estimator

of θ0(t) as the number N of the observed Fourier coefficients increses. To simplify the analysis, it

is assumed that the equation is diagonalizable, that is, the operators A0 and A1 have a common

system of eigenfunctions. If the initial condition u0 is not random, then the Fourier coefficients

u1(t), . . . , uN (t) are independent Ornstein–Uhlenbeck process, and the drift of each process contains

the unknown function θ0(t) and the eigenvalues of the operators A0, A1.

In Kutoyants (1984), the trend coefficient in a diffusion process was estimated from the N i.i.d.

copies of the process. Even though the observations uk in our case are not identically distributed,

we use a similar approach and consider the estimate θ̂N of θ0 as follows:

θ̂N (t) =
∫ T

0
RhN

(s− t)dXN (s),

where R is a kernel function, RhN
(s) = R(s/hN )/hN with hN → 0, N → ∞, and XN is a certain

process constructed from the observations u1, . . . , uN . We prove the mean-square convergence of

the type

lim
N→∞

sup
θ0∈Θ

sup
t∈[t1,t2]

NγE|θ̂N (t)− θ0(t)|2 < ∞,

and explicitely compute the rate γ > 0 which is determined by the parameter class Θ and the

orders of the operators A0, A1.

The paper is organized as follows. In Section 2 we introduce the mathematical model and the basic
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notations. The main results on the asymptotic properties of the kernel-type estimator, including

convergence rates, are proven in Section 3. An example follows in Section 4.

2 The Model

In this section we introduce the basic notations and assumptions about the model. It is important

to note that in estimation problems where the observations are generated by finite dimensional

processes it is assumed that either the noise intensity decreases or the time interval gets larger. For

our model both the noise intensity and the time interval stay fixed. The notation xN ∼ yN used in

the paper means that limN→∞ xN/yN = c where c 6= 0,∞.

Let (Ω,F , {Ft}0≤t≤T , P ) be a stochastic basis with the usual assumptions (see Jacod and Shiryayev

(1987)) and G, either a smooth bounded domain in IRd or a smooth d-dimensional compact man-

ifold (without boundary). We denote by A0 and A1 partial differential operators on G with real

coefficients. If G is a domain, then the operators are supplemented with zero boundary conditions.

We assume that

Aiu(x) =
∑

|α|≤mi

aα
i (x)u(α)(x), aα

i ∈ C∞
b (G), i = 0, 1, (2.1)

where α = (α1, . . . , αd), αi = 0, 1, . . . , |α| =
∑d

i=1 αi,

u(α)(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαd

d

,

and the functions aα
i (x) are known.

The observation process is governed by the following equation:

du(t, x) = (A0 + θ0(t)A1) u(t, x) dt + dW (t, x)
u(0, x) = u0(x),

(2.2)

where θ0 = θ0(t) is a bounded measurable function on [0, T ] and W = W (t, x) is a cylindrical Brow-

nian motion, that is, a distribution-valued process so that for every ϕ ∈ C∞
0 (G) with ‖ϕ‖L2(G) = 1,

(W,ϕ)(t) is a standard Wiener process, and for all ϕ1, ϕ2 ∈ C∞
0 (G), E(W,ϕ1)(t)(W,ϕ2)(s) =

min(t, s) · (ϕ1, ϕ2)L2(G) (see Walsh (1984) for more details).

A predictable process u with values in the set of distributions on C∞
0 (G) is called a solution of (2.2)

if for every ϕ ∈ C∞
0 (G) the equality

(u, ϕ)(t) = (u0, ϕ) +
∫ t

0
(A∗

0ϕ, u)(s)ds +
∫ t

0
θ0(s)(A∗

1ϕ, u)(s)ds + (W,ϕ)(t)
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holds with probability one for all t ∈ [0, T ] at once, where A∗
i is the formal adjoint of Ai, that is,

an operator so that

(Aiφ1, φ2)L2(G) = (A∗
i φ2, φ1)L2(G) for all φ1, φ2 ∈ C∞

0 (G).

The following assumptions will be in force throughout the paper:

(H1) There is a complete orthonormal system {ϕk}k≥1 in L2(G) so that

A0ϕk = κkϕk, A1ϕk = νkϕk.

(H2) The eigenvalues νk and κk satisfy |νk| ∼ km1/d and, uniformly in t ∈ [0, T ],

µk(t) := −(κk + θ0(t)νk) ∼ k2m/d, 2m = max{m0,m1}, which means that

αk ≤ −(κk + θ0(t)νk) ≤ βk

for all 0 ≤ t ≤ T and some αk ∼ βk ∼ k2m/d. Recall that m0 and m1 are the orders of the

operators A0 and A1.

Assumptions (H1) and (H2) hold in many physical models (see, for example, Piterbarg and Ro-

zovskii (1996)). A typical situation is when the operators A0 and A1 commute and either A0 or

A1 is uniformly elliptic and formally self-adjoint. For the sake of completeness we included in

Appendix a precise statement about the eigenvalues and eigenfunctions of elliptic operators. More

details can be found in Safarov and Vassiliev (1997).

To state the result about existence and uniqueness of the solution of (2.2) we need some additional

constructions. For f ∈ C∞
0 (G) and s ∈ IR define

‖f‖2
s =

∑
k≥1

k2s/d|(f, ϕk)L2(G)|2,

and then define the space Hs(G) as the completion of C∞
0 (G) with respect to the norm ‖·‖s. There

is a one-to-one correspondence between the elements v ∈ Hs(G) and sequences {vk}k≥1 so that

‖v‖2
s =

∑
k≥1

k2s/d|vk|2 < ∞;

we call {vk} the (spatial) Fourier coefficients of v. The Fourier coefficients of the cylindrical

Brownian motion W are {wk}k≥1, independent standard Brownian motions, and therefore W ∈

L2(Ω× (0, T );H−s(G)) for every s > d/2.
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Proposition 2.1 Under assumptions (H1) and (H2), if u0 ∈ L2(Ω; H−s(G)) for some s > d/2,

then there is a unique solution of (2.2) that belongs to the space L2(Ω × (0, T );Hm−s(G)) ∩

L2(Ω; C((0, T ),H−s(G))); the solution satisfies

E sup
0≤t≤T

‖u‖2
−s(t) + E

∫ T

0
‖u‖2

m−s(t)dt ≤ K(d, m, s, T, θ0)
(
E‖u0‖2

−s + T
)

.

Proof. This follows from Theorem 3.1.4 in Rozovskii (1990).

Remark 2.2 1. The process W in equation (2.2) can have an invertible correlation operator B

as long as the eigenfunctions of B are also ϕk. We can then reduce the equation to the standard

form with cylindrical Brownian motion by replacing the initial condition u0 with B−1u0 and the

operators Ai, i = 0, 1, with B−1AiB.

2. In principle, we can consider more general models, for example, equations with other boundary

conditions or other types of operators. All we need is that the operators in the equation have the

properties (H1) and (H2).

3 Main Result

If u = u(t, x) is a solution of (2.2) with the operators A0, A1 satisfying (H1), and {ϕk}k≥1 is the

common system of eigenfunction for A0, A1, then uk(t) = (u, ϕk)(t) is a solution of

duk(t) = −µk(t)uk(t) dt + dwk(t)
uk(0) = u0k,

(3.1)

where µk(t) = −(κk+θ0(t)νk) and κk, νk are the eigenvalues of A0, A1. The objective is to construct

a kernel estimate of θ0(t) for every t ∈ (0, T ) on the basis of uk(t), t ∈ (0, T ), k = 1, . . . , N .

Recall that the function R = R(t), t ∈ IR is called a compactly supported kernel of order K ≥ 1 if

R has the following properties:

1. R(t) = 0 for large |t|,

2.
∫
IR R(t)dt = 1,

3.
∫
IR tjR(t)dt = 0 for j = 1, . . . ,K.
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For example, R(t) = 3(3 − 5t2)/8 I(|t| ≤ 1) is a compactly supported kernel of order 3. More

examples and a general procedure for constructing such kernels are presented in Devroye (1987)

and Müller (1984). As usual, a scaled kernel R(t/hN )/hN will be used with some bandwidth hN

so that 0 < hN → 0, N →∞. The exact asymptotics of hN will be specified later.

Formally, the estimate of θ0 at point t0 is constructed as a weighted sum of the integrals

1
hN

∫ T

0
R

(
t− t0
hN

)
duk(t)− κkuk(t)dt

uk(t)
.

However his expression must be modified, since this integral may not be defined due to the vanishing

Fourier coefficients uk(t). Let {vN , N ≥ 1} be a sequence of positive real numbers so that vN ↓ 0

as N →∞. The random processes Uk,N = Uk,N (t), k = 1, . . . , N , t ∈ (0, T ), are defined by

Uk,N (t) =

{
1/uk(t), |uk(t)| > vN ,
1/vN , |uk(t)| ≤ vN .

To formulate the main result we need the following weight sequence

Fν,N =
N∑

k=1

νk,

where νk are the eigenvalues of A1.

For every t ∈ (0, T ), we define the estimate θ̂N (t) of θ0(t) as follows:

θ̂N (t) =
1

hNFν,N

N∑
k=1

∫ T

0
R

(
s− t

hN

)
Uk,N (s)(duk(s)− κkuk(s)ds). (3.2)

It is clear that a consistent estimate of θ0(t) at fixed t is possible only if the function θ0 is sufficiently

smooth. Therefore we define the class of functions under consideration as follows.

Definition 3.1 For a positive real number β represented as β = K +α, where K ≥ 0 is an integer

and α ∈ (0, 1], denote by Θβ
L the set of K times continuously differentiable functions on (0, T ) with

the following properties:

(P1) For all θ ∈ Θβ
L, |θ(K)(t)− θ(K)(s)| ≤ L|t− s|α, t, s ∈ (0, T );

(P2) There exist C1, C2, N0 > 0 so that, with µk(t) = −(κk + νkθ(t)), C1k
2m/d ≤ µk(t) ≤ C2k

2m/d

for all k > N0, all t ∈ (0, T ), and all θ ∈ Θβ
L.
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The second condition ensures that equation (2.2) is solvable uniformly for θ0 ∈ Θβ
L. Note that the

value of K in the representation β = K + α is the same as the order of the kernel. The main result

of this paper follows.

Theorem 3.1 In addition to (H1) and (H2), let the following conditions be fulfilled:

(A1) The initial condition u0 is deterministic and belongs to H−s(G) for some s > d/2;

(A2) The orders of the operators A0 and A1 are such that q := 2(m1 −m)/d > −1;

(A3) The eigenvalues νk of A1 are such that |Fν,N | ∼ N1+m1/d;

(A4) The function θ0 belongs to Θβ
L with β = K + α, and R is a bounded, compactly supported

kernel of order K;

(A5) hN ∼ N−(q+1)/(4β+1), vN ∼ h2β
N N−m/d.

Then, for every 0 < t1 < t2 < T ,

lim
N→∞

sup
θ0∈Θβ

L

sup
t∈[t1,t2]

N2(q+1)β/(4β+1)E|θ̂N (t)− θ0(t)|2 < ∞.

Remark 3.2 1. From Huebner and Rozovskii (1995) it is known that the condition q ≥ −1 (cf.

assumption (A2)) is necessary to have a consistent estimate of θ0 in our model even if θ0 is a

constant. However, unlike in the constant parameter case, a consistent estimate of the type (3.2)

is not possible in the critical case q = −1 as can be seen by analyzing the proof below.

2. The rate of growth of Fν,N in (A3) is an assumption about the asymptotics of the eigenvalues of

A1. For example, if A1 is a self-adjoint elliptic operator of order m1, then νk ∼ −km1/d and (A3)

holds.

3. Note that the rate of convergence is determined both by the assumed smoothness of the function

θ and by the order of the kernel. An analysis of the proof shows that if a lower order kernel is used

with the order K1 < K, then the rate of convergence will be determined by β = K1 + 1 instead of

β = K + α. In particular, if the coefficient is known to be infinitely differentiable, then the rate of

convergence is determined by the order of the kernel used.
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Proof. In the following, C denotes a positive real number depending on d, t1, t2, T , the operators

A0 and A1, the kernel R, and the space Θβ
L. In particular, C does not depend on the time variable

t ∈ [t1, t2] nor on a function θ0 ∈ Θβ
L. The value of C can be different in different places.

With no loss of generality, assume that R is supported in [−1, 1] and N is so large that t1/hN > 2,

(T − t2)/hN > 1. By (H1), we can also assume that µk(t) > Ck2m/d for all k ≥ 1.

We split up the difference θ̂N (t) − θ0(t) into three parts θ̂N (t) − θ0(t) = J1 + J2 + J3, which are

then estimated seperately. Here

J1 =
1

hNFν,N

N∑
k−1

∫ T

0
νkR

(
s− t

hN

)
(θ0(s)− θ0(t))ds,

J2 =
1

hNFν,N

N∑
k=1

∫ T

0
R

(
s− t

hN

)
Uk,N (s)dwk(s),

J3 =
1

hNFν,N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
θ0(s)I(|uk(s)| ≤ vN )

(
uk(s)
vN

− 1
)

ds.

Since R has compact support and integrates to one, we have for every t ∈ (t1, t2) ⊂ (0, T ) and all

sufficiently large N

J1 =
∫ (T−t)/hN

−t/hN

R(s)(θ0(t + hNs)− θ0(t))ds.

By the Taylor formula,

θ0(t + τ) = θ0(t) +
K−1∑
m=1

τm

m!
θ
(m)
0 (t) +

τK

K!
θ
(K)
0 (t + γτ)

= θ0(t) +
K∑

m=1

τm

m!
θ
(m)
0 (t) +

τK

K!
(θ(K)

0 (t + γτ)− θ
(K)
0 (t)), γ = γ(τ) ∈ (0, 1).

Using a property of the kernel,

J1 =
∫ (T−t)/hN

−t/hN

R(s)hK
N

sK

K!
(θ(K)

0 (t + γhNs)− θ
(K)
0 (t))ds.

Property (P1) of the function class assures that |θ(K)
0 (t + γτ)− θ

(K)
0 (t)| ≤ Lα|τ |α. This implies

|J1| ≤ Chβ
N

∫ 1

−1
|s|β|R(s)|ds ≤ Chβ

N .

Therefore,

|J1|2 ≤ Ch2β
N .
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The Gaussian random variable uk(t) is given by

uk(t) = u0k exp
(
−
∫ t

0
µk(s)ds

)
+
∫ t

0
exp

(
−
∫ t

s
µk(τ)dτ

)
dwk(s),

with mean

Mk(t) = u0k exp
(
−
∫ t

0
µk(s)ds

)
and variance

D2
k(t) =

∫ t

0
exp

(
−2
∫ t

s
µk(τ)dτ

)
ds.

By property (P2)

Dk(t) ≥ Ck−m/d(1− e−Ct).

Note that

P (|uk(t)| ≤ vN ) ≤ vN

Dk(t)
and EU2

k,N (t) ≤ 2
vNDk(t)

.

Indeed,

P (|uk(t)| ≤ vN ) =
1√

2πDk(t)

∫ vN

−vN

exp

(
−(x−Mk(t))2

2Dk(t)2

)
dx ≤ 2vN√

2πDk(t)
≤ vN

Dk(t)
,

EU2
k,N (t) =

P (|uk(t)| ≤ vN )
v2
N

+
1√

2πDk(t)

∫
|x|>vN

exp

(
−(x−Mk(t))2

2D2
k

)
dx

x2
,

1√
2πDk(t)

∫
|x|>vN

exp

(
−(x−Mk(t))2

2D2
k

)
dx

x2
≤ 2√

2πDk(t)

∫ +∞

vN

dx

x2
≤ 1

vNDk(t)
.

Now we estimate J2.

E|J2|2 =
1

h2
NF 2

ν,N

N∑
k=1

∫ T

0
R2
(

s− t

hN

)
EU2

k,N (s)ds

≤ C

h2
NF 2

ν,NvN

N∑
k=1

∫ T

0
R2
(

s− t

hN

)
ds

Dk(s)

≤ CN (m−2m1)/d−1

hNvN

∫ (T−t)/hN

−t/hN

R2(s)
1− e−C(t+shN )

ds

≤ CN (m−2m1)/d−1

hNvN

∫ 1

−1

R2(s)
1− e−Ct1/2

ds

≤ CN (m−2m1)/d−1

hNvN
.
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To estimate J3, we use an inequality for independent square integrable random variables ξk:

E
(∑N

k=1 ξk

)2
≤ 2

∑N
k=1 var(ξk) +

(∑N
k=1 Eξk

)2
. Then

E|J3|2 ≤ E

(
C

hNFν,N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
I(|uk(s)| ≤ vN )ds

)2

≤
(

C

hNFν,N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
P (|uk(s)| ≤ vN )ds

)2

+
C

F 2
ν,N

N∑
k=1

E

(
1

hN

∫ T

0
νkR

(
s− t

hN

)
I(|uk(s)| ≤ vN )ds

)2

.

The first term on the right is bounded by(
CvN

hNFν,N

N∑
k=1

∫ T

0
νkR

(
s− t

hN

)
ds

Dk(s)

)2

≤ Cv2
NN2m/d.

The second term can be rewritten as

C

F 2
ν,N

N∑
k=1

1
h2

N

∫ T

0

∫ T

0
ν2

kR

(
s1 − t

hN

)
R

(
s2 − t

hN

)
E[I(|uk(s1)| ≤ vN )I(|uk(s2)| ≤ vN )]ds1ds2. (3.3)

Using E[I(|uk(s1)| ≤ vN )I(|uk(s2)| ≤ vN )] ≤ E[I(|uk(s1)| ≤ vN )] ≤ C/(vNDk(s1)) and repeating

the arguments used to estimate E|J2|2, the expression in (3.3) can be bounded by CvNNm/d−1.

As a result,

E|θ̂N (t)− θ0(t)|2 ≤ C ·
(

h2β
N +

N (m−2m1)/d−1

hNvN
+ vNNm/d(vNNm/d + 1/N)

)
.

If hN ∼ N−(q+1)/(4β+1) and vNNm/d ∼ h2β
N , then E|θ̂N (t)− θ0(t)|2 ≤ CN−2β(q+1)/(4β+1),

which completes the proof.

4 Example

In this section we give an example to illustrate the assumptions of the main theorem. Suppose that

u = u(t, x), 0 < t < 1, 0 < x < 1, is a solution of

du(t, x) = [θ0(t)∆u(t, x)− u(t, x)]dt + dw(t, x),

u(0, x) = 0,

u(t, 0) = u(t, 1) = 0,
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where θ0(t) is a smooth (infinitely differentiable) function so that assumptions (H1) and (H2) hold.

For example, θ0(t) = 2 + sin t or θ0(t) = 3 − 2 cos(2t). Using the notations of Section 2, we have

G = (0, 1), d = 1, A0 = −I (I is the identity operator), A1 = ∆ (the Laplace operator). Note that

m0 = 0,m1 = 2m = 2 and so q = 2(m1 − m)/d = 2. The eigenfunctions ϕk(x) =
√

2 sin(πkx),

k ≥ 1, have corresponding eigenvalues κk = −1, νk = −π2k2. The solution can be written as

u(t, x) =
∑
k≥1

uk(t)ϕk(x)

where uk(t) satisfies

duk(t) = −[1 + θ0(t)π2k2]uk(t)dt + dwk(t), uk(0) = 0.

The series for the solution converges in L2

(
Ω× (0, 1);L2((0, 1))

)
.

Choose R(t) = 3(3−5t2)/8I(|t| ≤ 1), a compactly supported kernel of order K = 3. By assumption,

θ0 is smooth, and then, according to Remark 3 after Theorem 3.1, the rate of convergence is

determined by β = 4. Following Theorem 3.1, we take Fν,N = −π2∑N
k=1 k2, hN = N−3/17,

vN = N−41/17. The estimator is

θ̂N (t) =
1

hNFν,N

N∑
k=1

R

(
s− t

hN

)
Uk,N (s)

(
duk(s) + uk(s)ds

)
,

where

Uk,N (t) =

{
1/uk(t), |uk(t)| > vN ,
1/vN , |uk(t)| ≤ vN .

By Theorem 3.1, supt0≤t≤t1 E|θ̂N (t)− θ(t)|2 ≤ C(t0, t1)N−24/17.

The issues not addressed in this example are the selection of the best kernel or the optimal choice

of bandwidth. For example, the same asymptotical result would hold if we choose hN = 100N−3/17

and vN = 0.1N−41/17. Also, a better rate of convergence can be achieved by taking a higher order

kernel, but this will also increase the computational complexity. These important and interesting

finite sample issues have to be addressed in the future.
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Appendix

Asymptotics of the eigenvalues of partial differential operators.

As before, G is either a smooth domain in IRd or a smooth d-dimensional manifold. Let A be an

order 2n differential operator on G with complex coefficients. For technical reasons we write A in

the form (cf. (2.1))

A =
∑

|α|,|β|≤n

Dα(aαβDβ), aαβ ∈ C∞
b (G), (4.4)

where Dαu(x) = (−
√
−1)|α|u(α)(x). If G is a bounded domain, then the operator A is supplemented

with zero boundary conditions

u(α)|∂G = 0 for all |α| ≤ n− 1.

The operator A is called symmetric if aαβ(x) = aβα(x) for all x ∈ G.

The function

PA(x, ξ) =
∑

|α|,|β|=n

aαβ(x)ξαξβ,

where ξα = ξα1
1 . . . ξαd

d , is called the principal symbol of the operator A. The operator A is called

uniformly elliptic in G if there is a number δ > 0 so that

inf
x∈G

Re (PA(x, ξ)) ≥ δ
∑
|α|=n

ξ2α

for all ξ ∈ IRd.

Proposition A.1 (Safarov and Vassiliev (1997), Remark 1.2.2). Let A be a symmetric operator of

the form (4.4) and assume that A is uniformly elliptic in G. Then the asymptotics of the eigenvalues

corresponding to the problem Au(x) = λu(x) is given by

λk = −ζAk2n/d + o(k2n/d),

where

ζA =

(
1

(2π)d

∫
{(x,ξ):PA(x,ξ)<1}

dxdξ

)−2n/d

.
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