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Abstract. A family of Banach spaces is introduced to control the interior
smoothness and boundary behavior of functions in a general domain. In-
terpolation, embedding, and other properties of the spaces are studied. As
an application, a certain degenerate second-order elliptic partial differential
equation is considered.

1. Introduction

Let G be a domain in Rd with a non-empty boundary ∂G and ρG(x) =

dist(x, ∂G). For 1 ≤ p <∞ and θ ∈ R define the space Lp,θ(G) as follows:

Lp,θ(G) = {u :

∫
G

|u(x)|pρθ−d
G (x)dx <∞}.

Then we can define the spaces Hm
p,θ(G), m = 1, 2, . . ., so that

Hm
p,θ(G) = {u : u, ρGDu, . . . , ρ

m
GD

mu ∈ Lp,θ},
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where Dk denotes generalized derivative of order k. The objective of the

current paper is to define spaces Hγ
p,θ(G), γ ∈ R, so that, for positive integer

γ, the spaces Hγ
p,θ(G) coincide with the ones introduced above. It will be

shown that these spaces can be easily defined using the spaces Hγ
p (Rd) of

Bessel potentials. Note that u ∈ H1
p,d−p(G) if and only if u/ρG, Du ∈ Lp(G),

which means that, for bounded G, the space H1
p,d−p(G) coincides with the

space
◦
H1

p (G). As a result, the spaces Hγ
p,θ(G) can be considered as a certain

generalization of the usual Sobolev spaces on G with zero boundary conditions.

A major application of the spaces Hγ
p,θ(G) is in the analysis of the Dirichlet

problem for stochastic parabolic equations [5, 7].

Some of the spaces Hγ
p,θ(G) have been studied before. Lions and Magenes

[6] introduced what corresponds to Hγ
2,d(G). They constructed the scale by

interpolating between the positive integer γ for γ > 0 and used duality for

γ < 0. Krylov [3] defined the spaces Hγ
p,θ(Rd

+), where Rd
+ is the half-space.

After that, ifG is sufficiently regular and bounded, thenHγ
p,θ(G) can be defined

using the partition of unity, and this was done in [7]. Other related examples

and references can be found in Chapter 3 of [10].

In this paper, an intrinsic definition (not involving Rd
+) of the spaces Hγ

p,θ(G) is

given for a general domainG, and the basic properties of the spaces are studied.

Once a suitable definition of the spaces is found, most of the properties follow

easily from the known results. Definition and properties of the spaces Hγ
p,θ(G)

are presented in Sections 2, 3, and 4. Roughly speaking, the index γ controls

the smoothness inside the domain, and the index θ controls the boundary

behavior. In particular, the space Hγ
p,θ(G) with sufficiently large γ and θ < 0

contains functions that are continuous in the closure of G and vanish on the

boundary. In Section 5 some results are presented about solvability of certain

degenerate elliptic equations in a general domain G.

Throughout the paper, Dm denotes a partial derivative of order m, that is,

Dm = ∂m/∂xm1
1 · · · ∂xmd

d for some m1 + · · ·+md = m. For two Banach spaces,

X, Y , notation X ⊂ Y means that X is continuously embedded into Y .
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2. Definition and main properties of the weighted spaces in

domains

Let G ⊂ Rd be a domain (open connected set) with non-empty boundary ∂G,

and c > 1, a real number. Denote by ρG(x), x ∈ G, the distance from x to

∂G. For n ∈ Z and a fixed integer k0 > 0 define the subsets Gn of G by

Gn = {x ∈ G : c−n−k0 < ρG(x) < c−n+k0}.

Let {ζn, n ∈ Z} be a collection of non-negative functions with the following

properties:

ζn ∈ C∞
0 (Gn), |Dmζn(x)| ≤ N(m)cmn,

∑
n∈Z

ζn(x) = 1.

The function ζn(x) can be constructed by mollifying the characteristic (indi-

cator) function of Gn. If Gn is an empty set, then the corresponding ζn is

identical zero.

If u ∈ D′(G), that is, u is a distribution on C∞
0 (G), then ζnu is extended by

zero to Rd so that ζnu ∈ D′(Rd). The space Hγ
p,θ(G) is defined as a collection of

those u ∈ D′(G), for which ζnu is in Hγ
p and the norms ‖ζnu‖Hγ

p
, n ∈ Z, behave

in a certain way. Recall [10, Section 2.3.3] that the space of Bessel potentials

Hγ
p is the closure of C∞

0 (Rd) in the norm ‖F−1(1+ |ξ|2)γ/2F · ‖Lp(Rd), where F
is the Fourier transform with inverse F−1.

Definition 2.1. Let G be a domain in Rd, θ and γ, real numbers, and p ∈
(1,+∞). Take a collection {ζk, n ∈ Z} as above. Then

Hγ
p,θ(G) :=

{
u ∈ D′(G) : ‖u‖p

Hγ
p,θ(G)

:=
∑
n∈Z

cnθ‖ζ−n(cn·)u(cn·)‖p
Hγ

p
<∞

}
.

(2.1)

Since Hγ1
p ⊂ Hγ2

p for γ1 > γ2, the definition implies that Hγ1

p,θ(G) ⊂ Hγ2

p,θ(G)

for γ1 > γ2 and all θ ∈ R, 1 ≤ p < ∞. Still, it is necessary to establish

correctness of Definition 2.1 by showing that the norms defined according to
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(2.1) are equivalent for every admissible choice of the numbers c, k0 and the

functions ζn. Proving this equivalence is the main goal of this section.

Proposition 2.2. 1. If u is compactly supported in G, then u ∈ Hγ
p,θ(G) if

and only if u ∈ Hγ
p .

2. The set C∞
0 (G) is dense in every Hγ

p,θ(G).

3. If γ = m is a non-negative integer, then

Hγ
p,θ(G) =

{
u : ρk

GD
ku ∈ Lp,θ(G), 0 ≤ k ≤ m

}
, (2.2)

where Lp,θ(G) = Lp(G, ρ
θ−d
G (x)dx).

4. If {ξn, n ∈ Z} is a system of function so that ξn ∈ C∞
0 (Gn), |Dmξn(x)| ≤

N(m)cmn, then ∑
n∈Z

cnθ‖ξ−n(cn·)u(cn·)‖p
Hγ

p
≤ N‖u‖p

Hγ
p,θ

with N independent of u, and if in addition
∑

n ξ(x) ≥ δ > 0 for all x ∈ G,

then the reverse inequality also holds.

Proof. 1. The result is obvious because, for compactly supported u, the sum

in (2.1) contains only finitely many non-zero terms.

2. Given u ∈ Hγ
p,θ(G), first approximate u by uK = u ·

∑
|k|≤K ζk, and then

mollify uK .

3. The result follows because, for all ν ∈ R and all x in the support of ζ−n,

N1 ≤ c−νnρν
G(x) ≤ N2 with N1 and N2 independent of n, ν, x.

4. Use that, by Theorem 4.2.2 in [9], C∞
0 (Rd) functions are pointwise multi-

pliers in every Hγ
p .

Remark 2.3. In the future we will also use a system of non-negative C∞
0 (Rd)

functions {ηn, n ∈ Z} with the following properties: ηn is supported in {x :

c−n−k0−1 < ρG(x) < c−n+k0+1}, η(x) = 1 on the support of ζn, |Dmηn(x)| ≤
N(m)cmn. By Proposition 2.2(4) the functions ηn can replace ζn in (2.1).

4



Proposition 2.4. 1. For every p ∈ (1,∞) and θ, γ ∈ R, the space Hγ
p,θ(G)

is a reflexive Banach space with the dual H−γ
p′,θ′(G), where 1/p + 1/p′ = 1 and

θ/p+ θ′/p′ = d.

2. If 0 < ν < 1, γ = (1 − ν)γ0 + νγ1, 1/p = (1 − ν)/p0 + ν/p1, and θ =

(1− ν)θ0 + νθ1, then

Hγ
p,θ(G) = [Hγ0

p0,θ0
(G), Hγ1

p1,θ1
(G)]ν , (2.3)

where [X, Y ]ν is the complex interpolation space of X and Y (see [10, Section

1.9] for the definition and properties of the complex interpolation spaces).

Proof. Let lθp(H
γ
p ) be the set of sequences with elements from Hγ

p and the norm

‖{fn}‖p
lθp(Hγ

p )
=

∑
n∈Z

cnθ‖fn‖p
Hγ

p
.

Define bounded linear operators Sp,θ : Hγ
p,θ(G) → lθp(H

γ
p ) and Rp,θ : lθp(H

γ
p ) →

Hγ
p,θ(G) as follows:

(Sp,θu)n(x) = ζ−n(cnx)u(cnx), Rp,θ({fn})(x) =
∑
n∈Z

η−n(x)fn(c−nx).

Note that Rp,θSp,θ = IdHγ
p,θ(G). Then, by Theorem 1.2.4 in [10], the space

Hγ
p,θ(G) is isomorphic to Sp,θ(H

γ
p,θ(G)), which is a closed subspace of a reflexive

Banach space lθp(H
γ
p ). This means thatHγ

p,θ(G) is also a reflexive Banach space.

The interpolation result (2.3) follows from Theorems 1.2.4 and 1.18.1 in [10].

Denote by (·, ·) the duality between Hγ
p and H−γ

p′ . If v ∈ H−γ
p′,θ′(G), then, by the

Hölder inequality, v defines a bounded linear functional on Hγ
p,θ(G) as follows:

u 7→ 〈v, u〉 =
∑

n

cnd(vn, un),

where un(x) = ζ−n(cnx)u(cnx) and vn(x) = η−n(cnx)v(cnx). Note that if

u, v ∈ C∞
0 (G), then 〈v, u〉 =

∫
G
u(x)v(x)dx.

Conversely, if V is a bounded linear functional on Hγ
p,θ(G), then we use the

Hahn-Banach theorem and the equality (lθp(H
γ
p ))′ = l

−θp′/p
p′ (H−γ

p′ ) to construct

v ∈ H−γ
p′,θ′(G) so that V (u) = 〈v, u〉.
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One consequence of (2.3) is the interpolation inequality

‖u‖Hγ
p,θ(G) = ε‖u‖H

γ0
p,θ0

(G) +N(ν, p, ε)‖u‖H
γ1
p,θ1

(G), ε > 0. (2.4)

Corollary 2.5. The space Hγ
p,θ does not depend, up to equivalent norms, on

the specific choice of the numbers c and k0 and the functions ζn. Moreover, the

distance function ρG can be replaced with any measurable function ρ satisfying

N1ρG(x) ≤ ρ(x) ≤ N2ρG(x) for all x ∈ G, with N1, N2 independent of x.

Proof. By Proposition 2.2(3), we have the result for non-negative integer γ.

For general γ > 0 the result then follows from (2.3), where we take p0 = p1 = p,

θ0 = θ1 = θ, and integer γ0, γ1. After that, the result for γ < 0 follows by

duality.

In view of Corollary 2.5, it will be assumed from now on that c = 2 and k0 = 1.

Remark 2.6. If X is a Banach space of generalized functions on Rd, then we

can define the space Xθ(G) according to (2.1) by replacing the norm ‖ · ‖Hγ
p

with ‖·‖X . In particular, we can define the spaces Bγ
p,q;θ(G) and F γ

p,q;θ(G) using

the spaces Bγ
p,q and F γ

p,q described in Section 2.3.1 of [10]. Results similar to

Propositions 2.2 and 2.4 can then be proved in the same way.

Example. (cf. [5, Definition 1.1].) Let G = Rd
+ = {x = (x1, . . . , xd) ∈ Rd :

x1 > 0} and ζ ∈ C∞
0 ((b1, b2)), 0 < b1, b2 > 3b1. Define ζ(x) = ζ(x1) and

Hγ
p,θ =

{
u ∈ D′(G) : ‖u‖p

Hγ
p,θ

:=
∑
n∈Z

enθ‖ζu(en·)‖p
Hγ

p
<∞

}
.

It follows that Hγ
p,θ = Hγ

p,θ(Rd
+) with Hγ

p,θ(Rd
+) defined according to (2.1),

where c = e, ρG(x) = x1, ζn(x) = ζ(enx)/
∑

k ζ(e
kx), and k0 is the smallest

positive integer for which b1 > e−k0 , b2 < ek0 .

3. Pointwise multipliers, change of variables, and localization

A function a = a(x) is a pointwise multiplier in a liner normed function space

X if the operation of multiplication by a is defined and continuous in X.
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To describe the pointwise multipliers in the space Hγ
p,θ(G), we need some

preliminary constructions. For γ ∈ R define γ′ ∈ [0, 1) as follows. If γ is

an integer, then γ′ = 0; if γ is not an integer, then γ′ is any number from

the interval (0, 1) so that |γ| + γ′ is not an integer. The space of pointwise

multipliers in Hγ
p is given by

B|γ|+γ′ =


L∞(Rd), γ = 0

Cn−1,1(Rd), |γ| = n = 1, 2, . . .

C |γ|+γ′(Rd), otherwise,

where Cn−1,1(Rd) is the set of functions from Cn−1(Rd) whose derivatives of

order n−1 are uniformly Lipschitz continuous. In other words, if u ∈ Hγ
p and

a ∈ B|γ|+γ′ , then

‖au‖Hγ
p
≤ N(γ, d, p)‖a‖B|γ|+γ′ ‖u‖Hγ

p
.

For non-negative integer γ this follows by direct computation, for positive

non-integer γ, from Corollary 4.2.2(ii) in [9], and for negative γ, by duality.

For ν ≥ 0, define the space Aν(G) as follows:

(1) if ν = 0, then Aν(G) = L∞(G);

(2) if ν = m = 1, 2, . . . , then

Aν(G) = {a : a, ρGDa, . . . , ρ
m−1
G Dm−1a ∈ L∞(G), ρm

GD
m−1a ∈ C0,1(G)},

‖a‖Aν(G) =
m−1∑
k=0

‖ρk
GD

ka‖L∞(G) + ‖ρm
GD

ma‖C0,1(G);

(3) if ν = m+ δ, where m = 0, 1, 2, . . . , δ ∈ (0, 1), then

Aν(G) = {a : a, ρGDa, . . . , ρ
m
GD

ma ∈ L∞(G), ρν
GD

ma ∈ Cδ(G)},

‖a‖Aν(G) =
m∑

k=0

‖ρk
GD

ma‖L∞(G) + ‖ρν
GD

ma‖Cδ(G).

Note that, for every a ∈ Aν(G) and n ∈ Z,

‖ζ−n(2n·)a(2n·)‖Bν ≤ N‖a‖Aν(G) (3.1)
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with N independent of n.

Theorem 3.1. If a ∈ A|γ|+γ′(G), then

‖au‖Hγ
p,θ(G) ≤ N(d, γ, p)‖a‖A|γ|+γ′ (G) · ‖u‖Hγ

p,θ(G).

Proof. We have to show that ‖η−n(2n·)a(2n·)‖B|γ|+γ′ ≤ N‖a‖A|γ|+γ′ (G) with

constant N independent of n. The result is obvious for γ = 0; for |γ| ∈ (0, 1]

it follows from the inequality (with δ = |γ|+ γ′)

|η−n(x)a(x)− η−n(y)a(y)| ≤ η−n(x)ρ−δ
G (x)|a(x)ρδ

G(x)− a(y)ρδ
G(y)|

+ |a(y)| |η−n(x)− η−n(y)|+ η−n(x)ρ−δ
G (x)|a(y)| |ρδ

G(x)− ρδ
G(y)|

and the observation that both 2nη−n and ρG are uniformly Lipschitz continu-

ous. If |γ| > 1, we apply the same arguments to the corresponding derivatives.

Next, we study the following question: for what mappings ψ : G1 → G2 is the

operator u(·) 7→ u(ψ(·)) continuous from Hγ
p,θ(G2) to Hγ

p,θ(G1)?

Theorem 3.2. Suppose that G1 and G2 are domains with non-empty bound-

aries and ψ : G1 → G2 is a C1-diffeomorphism so that ψ(∂G1) = ∂G2. For a

positive integer m define ν = max(m− 1, 0). If Dψ ∈ Aν(G1), then, for every

γ ∈ [−ν,m] and u ∈ Hγ
p,θ(G2),

‖u(ψ(·))‖Hγ
p,θ(G1) ≤ N‖u‖Hγ

p,θ(G2)

with N independent of u.

Proof. Denote by φ the inverse of ψ. If γ = 0, then

‖u(ψ(·))‖p
Hγ

p,θ(G1)
=

∫
G2

|u(y)|pρθ−d
G1

(φ(y))|Dφ(y)|dy

and the result follows because uniform Lipschitz continuity of ρGi
, ψ, and φ

implies that the ratio ρG1(φ(x))/ρG2(x) is uniformly bounded from above and

below. If γ = m, the computation is similar. After that, for γ ∈ (0,m), the

result follows by interpolation, and for γ ∈ [−ν, 0), by duality.
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The last result in this section is about localization. It answers the following

question: for what collections of C∞(G) functions {ξk, k = 1, 2, . . .} are the

values of ‖u‖p
Hγ

p,θ(G)
and

∑
n ‖uζn‖

p
Hγ

p,θ(G)
comparable? To begin with, let us

recall the corresponding theorem for Hγ
p .

Theorem 3.3. ([4, Lemma 6.7].) If {ξk, k = 0, 1, . . . , } is a collec-

tion of C∞(Rd) functions so that supx

∑
k |Dmξk(x)| ≤ M(m),m ≥ 0,

then
∑

k≥0 ‖ξkv‖
p
Hγ

p
≤ N‖v‖p

Hγ
p

with N independent of v. If in addi-

tion infx

∑
k |ξk(x)|p ≥ δ then the reverse inequality also holds: ‖v‖p

Hγ
p
≤

N
∑

k≥0 ‖ξkv‖
p
Hγ

p
with N independent of v.

The following is the analogous result for Hγ
p,θ(G).

Theorem 3.4. Suppose that {χk, k ≥ 1} is a collection of C∞(G) functions

so that supx∈G

∑
k ρ

m
G (x)|Dmχk(x)| ≤ N(m),m ≥ 0. Then

∑
k ‖uχk‖p

Hγ
p,θ(G)

≤
N‖u‖p

Hγ
p,θ(G)

. If, in addition, infx∈G

∑
k |χk(x)|p ≥ δ for some δ > 0, then

‖u‖p
Hγ

p,θ(G)
≤ N

∑
k ‖uχk‖p

Hγ
p,θ(G)

.

Proof. With χ̂0,n = 1− ηn, χ̂k,n(x) = χk(x)η−n(x), k ≥ 1, we find

∑
k≥1

‖uχk‖p
Hγ

p,θ(G)
=

∑
n∈Z

∑
k≥0

2nθ‖χ̂k,n(2n·)ζ−n(2n·)u(2n·)‖p
Hγ

p
.

Both statements of the theorem now follow from Theorem 3.3.

Example. (cf. [7, Section 2].) Let G be a bounded domain of class C |γ|+2 with

a partition of unity χ0 ∈ C∞
0 (G), χ1, . . . χK ∈ C∞

0 (Rd) and the corresponding

diffeomorphism ψ1, . . . , ψK that stretch the boundary inside the support of

χ1, . . . , χK (see, for example, Chapter 6 of [2] for details). Then an equivalent

norm in Hγ
p,θ(G) is given by

‖u‖Hγ
p,θ(G) = ‖uχ0‖Hγ

p
+

K∑
m=1

‖u(ψ−1
m (·))χm(ψ−1

m (·))‖Hγ
p,θ(Rd

+).
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Indeed, writing ∼ to denote the equivalent norms, we deduce from Proposition

2.2(1) and Theorems 3.2 and 3.4 that

‖u‖Hγ
p,θ(G) ∼

K∑
m=0

‖uχm‖Hγ
p,θ(G) ∼ ‖uχ0‖Hγ

p
+

K∑
m=1

‖u(ψ−1
m (·))χm(ψ−1

m (·))‖Hγ
p,θ(Rd

+).

4. Further properties of the spaces Hγ
p,θ(G)

Let ρ = ρ(x) be a C∞(G) function so that N1ρG(x) ≤ ρ(x) ≤ N2ρG(x) and

|ρm
G (x)Dm+1ρ(x)| ≤ N(m) for all x ∈ G and for every m = 0, 1, . . .. In

particular, ρ(x) = 0 on ∂G and all the first-order partial derivatives of ρ are

pointwise multipliers in every Hγ
p,θ(G). An example of the function ρ is

ρ(x) =
∑
n∈Z

2−nζn(x),

where the functions ζn are as in Section 2 with c = 2.

Theorem 4.1. 1. The following conditions are equivalent:

• u ∈ Hγ
p,θ(G);

• u ∈ Hγ−1
p,θ (G) and ρDu ∈ Hγ−1

p,θ (G);

• u ∈ Hγ−1
p,θ (G) and D(ρu) ∈ Hγ−1

p,θ (G).

In addition, under either of these conditions, the norm ‖u‖Hγ
p,θ(G) can be re-

placed by ‖u‖Hγ−1
p,θ (G) + ‖ρDu‖Hγ−1

p,θ (G) or by ‖u‖Hγ−1
p,θ (G) + ‖D(ρu)‖Hγ−1

p,θ (G).

2. For every ν, γ ∈ R,

ρνHγ
p,θ(G) = Hγ

p,θ−pν(G) and ‖ · ‖Hγ
p,θ−pν(G) is equivalent to ‖ρ−ν · ‖Hγ

p,θ(G).

(4.1)

Proof. It is sufficient to repeat the arguments from the proofs of, respectively,

Theorem 3.1 and Corollary 2.6 in [3].

Corollary 4.2. 1. If u ∈ Hγ
p,θ(G), then

Du ∈ Hγ−1
p,θ+p(G) and ‖Du‖Hγ−1

p,θ+p(G) ≤ N(d, γ, p, θ)‖u‖Hγ
p,θ

(G).
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2. If ρG is a bounded function (for example, if G is a bounded domain), then

Hγ
p,θ1

(G) ⊂ Hγ
p,θ2

(G) for θ1 < θ2 and Hγ
p (G) ⊂ Hγ

p,θ(G) for θ ≥ d.

Recall the following notations for continuous functions u in G:

‖u‖C(G) = sup
x∈G

|u(x)|, [u]Cν(G) = sup
x,y∈G

|u(x)− u(y)|
|x− y|ν

, ν ∈ (0, 1).

Theorem 4.3. Assume that γ − d/p = k + ν for some k = 0, 1, . . . and

ν ∈ (0, 1). If u ∈ Hγ
p,θ(G), then

m∑
k=0

‖ρk+θ/pDku‖C(G) + [ρm+ν+θ/pDmu]Cν(G) ≤ N(d, γ, p, θ)‖u‖Hγ
p,θ(G).

Proof. It is sufficient to repeat the arguments from the proof of Theorem 4.1

in [3].

Note that if u ∈ Hγ
p,θ(G) with γ > 1+ d/p and θ < 0, then, by Theorem 4.3, u

is continuously differentiable in G and is equal to zero on the boundary of G.

This is one reason why the spacesHγ
p,θ(G) can be considered as a generalization

of the usual Sobolev spaces with zero boundary conditions.

5. Degenerate elliptic equations in general domains

Throughout this section, G ⊂ Rd is a domain with a non-empty boundary

but otherwise arbitrary, and ρ is the function introduced at the beginning of

Section 4. Consider a second-order elliptic differential operator

L = aij(x)DiDj +
bi(x)

ρ(x)
Di −

c(x)

ρ2(x)
,

where Di = ∂/∂xi and summation over the repeated indices is assumed. A

related but somewhat different operator is studied in Section 6 of [10]. The

objective of this section is to study solvability in Hγ
p,θ(G) of the equation

Lu = f . It follows from Theorem 4.3 that, for appropriate θ and γ, the

solution of the equation will also be a classical solution of the Dirichlet problem
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Lu = f, u|∂G = 0. The values of γ ∈ R, 1 < p < ∞, and θ ∈ R will be fixed

throughout the section.

The following assumptions are made.

Assumption 5.1. Uniform ellipticity: there exist κ1, κ2 > 0 so that, for all

x ∈ G and ξ ∈ Rd, κ1|ξ|2 ≤ aij(x)ξiξj ≤ κ2|ξ|2.
Assumption 5.2. Regularity of the coefficients:

‖a‖Aν1 (G) + ‖b‖Aν2 (G) + ‖c‖A|γ+1|+γ′ (G) ≤ κ2,

where ν1 = max(2, |γ−1|+γ′), ν2 = max(1, |γ|+γ′). (See beginning of Section

3 for the definition of γ′.)

Note that under assumption 5.2 the operator L is bounded from Hγ+1
p,θ−p(G) to

Hγ−1
p,θ+p(G). Therefore, we say that u ∈ Hγ+1

p,θ−p(G) is a solution of Lu = f with

f ∈ Hγ−1
p,θ+p(G) if the equality Lu = f holds in Hγ−1

p,θ+p(G).

Theorem 5.1. Under Assumptions 5.1 and 5.2, there exists a c0 > 0 depend-

ing only on d, p, θ, the function ρ, and the coefficients a, b so that, for every

f ∈ Hγ−1
p,θ+p(G) and every c(x) satisfying c(x) ≥ c0, the equation Lu = f has

a unique solution u ∈ Hγ+1
p,θ−p(G) and ‖u‖Hγ+1

p,θ−p(G) ≤ N‖f‖Hγ−1
p,θ+p(G) with the

constant N depending only on d, γ, p, θ, the function ρ, and the coefficients

a, b, c.

To prove Theorem 5.1, we first establish the necessary a priori estimates, then

prove the theorem for some special operator L, and finally use the method of

continuity to extend the result to more general operators.

Lemma 5.2. If u ∈ Hγ+1
p,θ−p(G) and Assumptions 5.1 and 5.2 hold, then

‖u‖Hγ+1
p,θ−p(G) ≤ N

(
‖Lu‖Hγ−1

p,θ+p(G) + ‖u‖Hγ−1
p,θ−p(G)

)
with N independent of u.

Proof. Assume first that b = c = 0. Define un(x) = ζ−n(2nx)u(2nx) and the

operator

An = (aij(2nx)η−n(2nx) + (1− η−n(2nx)δij))Dij,
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where η is as in Remark 2.3. Clearly, ‖un‖Hγ+1
p

≤ N
(
‖Aun‖Hγ−1

p
+ ‖u‖Hγ−1

p

)
,

and, by (3.1), N is independent of n. On the other hand,

Anun(x) = 22n
(
ζ−nLu+ 2aijDiζ−nDju+ aijuDijζ−n

)
(2nx).

It remains to use the inequalities ‖Du‖Hγ−1
p

≤ N‖u‖Hγ
p
≤ ε‖u‖Hγ+1

p
+

Nε−1‖u‖Hγ−1
p

with sufficiently small ε, and then sum up the corresponding

terms according to (2.1).

If b, c are not zero, then

‖aijDiju‖Hγ−1
p,θ+p(G) ≤ ‖Lu‖Hγ−1

p,θ+p(G) +N‖u‖Hγ
p,θ−p(G) +N‖u‖Hγ−1

p,θ−p(G),

and the result follows from the interpolation inequality (2.4).

Lemma 5.3. If Assumptions 5.1 and 5.2 hold, then there exists a c0 > 0

depending on d, p, θ, the function ρ, and the coefficients a, b, so that, for every

c(x) satisfying c(x) ≥ c0 and every u ∈ Lp,θ(G),

‖u‖Lp,θ(G) ≤ N‖ρ2Lu‖Lp,θ(G)

with N independent of u.

Proof. It is enough to consider u ∈ C∞
0 (G). Writing f = −ρ2Lu, we mul-

tiply both sides by |u|p−2uρθ−d and integrate by parts similar to the proof of

Theorem 3.16 in [3]. The result is∫
G

f |u|p−2uρθ−ddx =

∫
G

(
c(x) + h(x)

)
|u|pρθ−ddx,

where |h(x)| ≤ Nh and Nh depends on d, p, θ, and ‖a‖A2(G) + ‖b‖A1(G) +

‖Dρ‖A1(G). It remains to take c0 = 2Nh and use the Hölder inequality.

It follows from Lemmas 5.2 and 5.3 that if c(x) ≥ c0 and γ ≥ 1, then

‖u‖Hγ+1
p,θ−p(G) ≤ N‖Lu‖Hγ−1

p,θ+p(G). (5.1)

Lemma 5.4. There exists a c̄ > 0 depending on p, θ, γ, and the function ρ so

that the operator ρ2(x)∆− c̄ is a homeomorphism from Hγ+1
p,θ (G) to Hγ−1

p,θ (G).
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Proof. Keeping in mind that ρ ∈ C0,1(G) and ρ(x) = 0 on ∂G, let ρ̄ be

a C0,1(Rd) extension of ρ so that ρ̄ ∈ C∞(G − ∂G). Consider a family of

diffusion processes (Xx
t , x ∈ Rd, t ≥ 0) defined by

Xx
t = x+

√
2

∫ t

0

ρ̄(Xx
s )dWs,

where (Wt, t ≥ 0) is a standard d-dimensional Wiener process on some proba-

bility space (Ω,F , P ) (see, for example, Chapter V of [1] or Chapter I of [8]).

Note that, by uniqueness, Xx
t = x if x ∈ ∂G, and Xx

t ∈ G for all t > 0 as long

as x ∈ G. Theorems (3.3) and (3.9) from Chapter I of [8] imply that, with

probability one, both DXx
t and its inverse are in C(G) for all t ≥ 0. Further

analysis shows that, for every p > 1 and every positive integer m,

E‖DXx
t ‖

p
Am(G) + E‖D(Xx

t )−1‖p
Am(G) ≤ N1e

N2t (5.2)

with constants N1 and N2 depending on p,m.

Assume that f ∈ C∞
0 (G) and define

u(x) = −E
∫ ∞

0

f(Xx
t )e−c̄tdt.

By Theorem 5.8.5 in [1], there exists a c1 > 0 depending only on d and ρ̄ so

that, for c̄ > c1, the function u is twice continuously differentiable in G and

ρ̄2(x)∆u(x)− c̄u(x) = f(x) for all x ∈ G. On the other hand, after repeating

the proof of Theorem 3.2 and using (5.2), we conclude that there exists a c2

depending on d, γ, ρ̄ so that, for c̄ > c2 and for every γ ∈ R, the function u

belongs to Hν
p,θ(G) and

‖u‖Hγ
p,θ(G) ≤ N‖f‖Hγ

p,θ(G).

The statement of Lemma 5.4 now follows.

Proof of Theorem 5.1. Take c̄ as in Lemma 5.4 and define the operators

L0 = ∆−c̄/ρ2(x) and L̄0 = ρ2(x)∆−c̄. Lemmas 5.4 and Theorem 4.1(2) imply

that, for all γ, θ ∈ R and 1 < p < ∞, these operators are homeomorphisms

from Hγ+1
p,θ−p(G) to, respectively, Hγ−1

p,θ+p(G) and Hγ−1
p,θ−p(G).
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Assume first that γ ≥ 1. Then a priory estimate (5.1) and the method of

continuity (using the operators λL+(1−λ)L0, 0 ≤ λ ≤ 1) imply the conclusion

of the theorem.

If ν < 1, then assume first that 0 ≤ ν < 1. For f ∈ Hν−1
p,θ+p(G), define

u = L̄0L−1(L̄−1
0 f)− L−1(f̄), where f̄ = (LL̄0 − L̄0L)L−1(L̄−1

0 f). Direct com-

putations show that

• f̄ ∈ Hν
p,θ+p(G) and ‖f̄‖Hν

p,θ+p(G) ≤ N‖f‖Hν−1
p,θ+p(G);

• u is well defined, u ∈ Hν+1
p,θ−p(G), ‖u‖Hν+1

p,θ−p(G) ≤ N‖f‖Hν−1
p,θ+p(G), and

Lu = f .

This process can be repeated as many time as necessary. Theorem 5.1 is

proved.

Remark 5.5. It follows from Theorem 4.3 that, if the conditions of Theorem

5.1 hold with γ > d/p + 2 and θ < p, then the function u is the classical

solution of

aij(x)Diju+
bi(x)

ρ(x)
Diu−

c(x)

ρ2(x)
u = f, x ∈ G; u|∂G = 0.
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