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Abstract

A parameter estimation problem is considered for a stochastic evolution equation on
a compact smooth manifold. Unlike previous works on the subject, no commutativity
is assumed between the operators in the equation. The estimate is based on finite di-
mensional projections of the solution. Under certain non-degeneracy assumptions the
estimate is proved to be consistent and asymptotically normal as the dimension of the
projections increases.

1 Introduction

Parameter estimation is a particular case of the inverse problem when the solution of a certain
equation is observed and conclusions must be made about the coefficients of the equation. In
the deterministic setting, numerous examples of such problems in ecology, material sciences,
biology, etc. are given in the book by Banks and Kunisch [1]. The stochastic term is usually
introduced in the equation to take into account those components of the model that cannot
be described exactly.

In an abstract setting the parameter estimation problem is considered for an evolution
equation

du(t) + (A0 + θA1)u(t)dt = εdW (t), 0 < t ≤ T ; u(0) = 0, (1.1)

where θ is the unknown parameter belonging to an open subset of the real line and W = W (t)
is a random perturbation. If u is a random field, then a computable estimate of θ must be based
on finite dimensional projections of u even if the whole trajectory is observed. A question that
arises in this setting is to study the asymptotic properties of the estimate as the dimension of
those projections increases while the length T of the observation interval and the amplitude ε
of the noise remain fixed.

When u is the solution of the Dirichlet boundary value problem in some domain of IRd

this question was first studied by Huebner et al. [3] and further investigated by Huebner and
Rozovskii [5], Huebner [4], and Piterbarg and Rozovskii [9]. The main assumption used in all
those works was that the operatorsA0 andA1 in (1.1) have a common system of eigenfunctions.
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The objective of the current paper is to consider an estimate of θ for equation (1.1) without
assuming anything about the eigenfunctions of the operators in the equation. For technical
reasons the equation is considered on a compact smooth d - dimensional manifold so that
there are no boundary conditions involved. The main assumption is that the operators A0

and A1 are of different orders and the operator A0 + θA1 is elliptic for all admissible values of
θ. The model is described in Section 2 and the main results are presented in Section 3. If
A1 is the leading operator, then the estimate of θ is consistent and asymptotically normal as
the dimension K of the projections tends to infinity. On the other hand, if A0 is the leading
operator, then the estimate of θ is consistent and asymptotically normal if

order(A1) ≥
1

2
(order(A0 + θA1)− d) (1.2)

and the operator A1 satisfies a certain non-degeneracy property. In particular, condition (1.2)
is necessary for consistency.1 When (1.2) does not hold, the asymptotic shift of the estimate
is computed. The proof of the main theorem about the consistency and asymptotic normality
is outlined in Section 5.

In Section 4 an example is presented, illustrating how the obtained results can be applied
to the estimation of either thermodiffusivity or the cooling coefficient in the heat balance
equation with a variable velocity field.

2 The Setting

Let M be a d-dimensional compact orientable C∞ manifold with a smooth positive measure
dx. If L is an elliptic positive definite self-adjoint differential operator of order 2m on M , then
the operator Λ = (L)1/(2m) is elliptic of order 1 and generates the scale {Hs}s∈IR of Sobolev
spaces on M [6, 11]. All differential operators on M are assumed to be non-zero with real
C∞(M) coefficients, and only real elements of Hs will be considered. The variable x will
usually be omitted in the argument of functions defined on M .

In what follows, an alternative characterization of the spaces {Hs} will be used. By Theo-
rem I.8.3 in [11], the operator L has a complete orthonormal system of eigenfunctions {ek}k≥1

in the space L2(M,dx) of square integrable functions on M . With no loss of generality it can
be assumed that each ek(x) is real. Then for every f ∈ L2(M,dx) the representation

f =
∑
k≥1

ψk(f)ek

holds, where

ψk(f) =
∫

M
f(x)ek(x)dx.

If lk > 0 is the eigenvalue of L corresponding to ek and λk := l
1/(2m)
k , then, for s ≥ 0,

Hs = {f ∈ L2(M,dx) :
∑

k≥1 λ
2s
k |ψk(f)|2 < ∞} and for s < 0, Hs is the closure of L2(M,dx)

in the norm ‖f‖s =
√∑

k≥1 λ
2s
k |ψk(f)|2. As a result, every element f of the space Hs, s ∈ IR,

1It was shown in [5] that in the case of the Dirichlet problem in a domain of IRd, if the operators A0 and A1

are selfadjoint elliptic with a common system of eigenfunctions, then condition (1.2) is necessary and sufficient
for consistency, asymptotic normality and asymptotic efficiency of the estimate.
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can be identified with a sequence {ψk(f)}k≥1 such that
∑

k≥1 λ
2s
k |ψk(f)|2 <∞. The space Hs,

equipped with the inner product

(f, g)s =
∑
k≥1

λ2s
k ψk(f)ψk(g), f, g ∈ Hs, (2.1)

is a Hilbert space.
A cylindrical Brownian motion W = (W (t))0≤t≤T on M is defined as follows: for

every t ∈ [0, T ], W (t) is the element of ∪sH
s such that ψk(W (t)) = wk(t), where {wk}k≥1 is

a collection of independent one dimensional Wiener processes on the given probability space
(Ω,F , IF,P) with a right continuous filtration IF = {Ft}0≤t≤T . Since by Theorem II.15.2 in [11]
λk � k1/d, k →∞,2 it follows that W (t) ∈ Hs for every s < −d/2. Direct computations show
that W is an Hs - valued Wiener process with the covariance operator Λ2s. This definition of
W agrees with the alternative definitions of the cylindrical Brownian motion [8, 12].

LetA, B, andN be differential operators onM of orders order(A), order(B), and order(N )
respectively. It is assumed that max(order(A), order(B), order(N )) < 2m.

Consider the random field u defined on M by the evolution equation

du(t) + [θ1(L+A) + θ2B +N ]u(t)dt = dW (t), 0 < t ≤ T, u(0) = 0. (2.2)

Here θ1 > 0, θ2 ∈ IR, and the dependence of u and W on x and ω is suppressed.
If the trajectory u(t), 0 ≤ t ≤ T, is observed, then the following scalar parameter estimation

problems can be stated:

1). estimate θ1 assuming that θ2 is known;

2). estimate θ2 assuming that θ1 is known.

Remark 1 The general model

du(t) + [θ1A0 + θ2A1 +N ]u(t)dt = dW (t), 0 < t ≤ T, u(0) = 0

is reduced to (2.2) if the operator θ1A0 + θ2A1 is elliptic of order 2m for all admissible values
of parameters θ1, θ2 and order(A0) 6= order(A1). For example, if order(A1) = 2m, then
L = (A1 +A∗1)/2 + (c+ 1)I, A = (A1−A∗1)/2− (c+ 1)I, B = A0, where c is the lower bound
on eigenvalues of (A1 +A∗1)/2 and I is the identity operator. Indeed, by Corollary 2.1.1 in [6],
if an operator P is of even order with real coefficients, then the operator P − P∗ is of lower
order than P.

Before discussing possible solutions to the above parameter estimation problems, it seems
appropriate to mention the analytical properties of the field u.

2Notation ak � bk, k →∞ means

0 < c1 ≤ lim inf
k

(ak/bk) ≤ lim sup
k

(ak/bk) ≤ c2 < ∞.
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Theorem 2.1 For every s < −d/2, equation (2.2) has a unique solution u = u(t) so that

u ∈ L2(Ω× [0, T ];Hs+m) ∩ L2(Ω;C([0, T ];Hs)) (2.3)

with

E sup
t∈[0,T ]

‖u(t)‖2
s + E

∫ T

0
‖u(t)‖2

s+mdt ≤ CT
∑
k≥1

λ2s
k <∞. (2.4)

Proof. By assumption, max(order(A), order(B), order(N )) < 2m and θ1 > 0. Then elliptic-
ity of the operator L implies that for every s ∈ IR there exist positive constants C1 and C2 so
that for every f ∈ C∞

−((θ1(L+A) + θ2B +N )f, f)s ≤ −C1‖f‖2
s+m + C2‖f‖2

s,

which means that the operator −(θ1(L + A) + θ2B + N ) is coercive in every normal triple
{Hs+m,Hs,Hs−m}. The statement of the theorem now follows from Theorem 3.1.4 in [10].

2

3 The Estimate and Its Properties

Both parameter estimation problems for (2.2) can be stated as follows: estimate θ ∈ Θ from
the observations of

duθ(t) + (A0 + θA1)u
θ(t)dt = dW (t). (3.1)

Indeed, if θ2 is known, then A0 = θ2B + N , θ = θ1, Θ = (0,+∞), A1 = L + A and if θ1 is
known, then A0 = θ1(L+A) +N , θ = θ2, Θ = IR, A1 = B. All main results will be stated in
terms of (2.2), and (3.1) will play an auxiliary role.

It is assumed that the observed field u satisfies (3.1) for some unknown but fixed value θ0 of
the parameter θ. Depending on the circumstances, θ0 can correspond to either θ1 or θ2 in (2.2),
the other parameter being fixed and known. Even though the whole random field uθ0

(t, x) is
observed, the estimate of θ0 will be computed using only finite dimensional processes ΠKuθ0

,
ΠKA0u

θ0
, and ΠKA1u

θ0
. The operator ΠK used to construct the estimate is defined as follows:

for every f = {ψk(f)}k≥1 ∈ ∪sH
s,

ΠKf =
K∑

k=1

ψk(f)ek.

By (3.1),
dΠKuθ(t) + ΠK(A0 + θA1)u

θ(t)dt = dWK(t), (3.2)

where WK(t) = ΠKW (t). The process ΠKuθ = (ΠKuθ(t),Ft)0≤t≤T is finite dimensional, con-
tinuous in the mean, and Gaussian, but not, in general, a diffusion process because the opera-
tors A0 and A1 need not commute with ΠK . Denote by Pθ,K the measure in C([0, T ]; ΠK(H0)),
generated by the solution of (3.2). The measure Pθ,K is absolutely continuous with respect

to the measure Pθ0,K for all θ ∈ Θ and K ≥ 1. Indeed, denote by FK,θ
t the σ-algebra gen-

erated by ΠKuθ(s), 0 ≤ s ≤ t, and let U θ,K
t (X) be the operator from C([0, T ]; ΠK(H0)) to

C([0, T ]; ΠK(H0)) such that for all t ∈ [0, T ] and θ ∈ Θ,

U θ,K
t (ΠKuθ) = E

(
ΠK(A0 + θA1)u

θ|FK,θ
t

)
(P- a.s.)
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Then by Theorem 7.12 in [7] the process ΠKuθ satisfies

dΠKuθ(t) = U θ,K
t (ΠKuθ)dt+ dW̃ θ,K(t), ΠKuθ(0) = 0,

where W̃ θ,K(t) =
∑K

k=1 w̃
θ
k(t)ek and w̃θ

k(t), k = 1, . . . , K, are independent one dimensional

standard Wiener processes in general different for different θ. Since
{
ΠK(A0 + θA1)u

θ,WK
}

is a Gaussian system for every θ ∈ Θ, it follows from Theorem 7.16 and Lemma 4.10 in [7]
that

dPθ,K

dPθ0,K
(ΠKuθ0

) = exp

{ ∫ T

0

(
U θ,K

t (ΠKuθ0

)− U θ0,K
t (ΠKuθ0

), dΠKuθ0

(t)
)

0
−

1

2

∫ T

0

(
‖U θ,K

t (ΠKuθ0

)‖2
0 − ‖U

θ0,K
t (ΠKuθ0

)‖2
0

)
dt

}
.

By definition, the maximum likelihood estimate (MLE) of θ0 is then equal to

arg max
θ

(
dPθ,K/dPθ0,K

)
(ΠKuθ0

), but since, in general, the functional U θ,K
t (X) is not known

explicitly, this estimate cannot be computed. The situation is much simpler if the operators
A0 and A1 commute with ΠK so that ΠKAi = ΠKAiΠ

K , i = 0, 1, and U θ,K
t (X) = ΠK(A0 +

θA1)X(t); in this case, the MLE θ̂K of θ0 is computable and, as shown in [5],

θ̂K =

∫ T
0 (ΠKA1u

θ0
(t), dΠKuθ0

(t)− ΠKA0u
θ0

(t)dt)0∫ T
0 ‖ΠKA1uθ0(t)‖2

0dt
(3.3)

with the convention 0/0 = 0.
Of course, expression (3.3) is well defined even when the operators A0 and A1 do not

commute with ΠK , and if the whole trajectory uθ0
is observed, then the values of ΠKA0u

θ0
(t)

and ΠKA1u
θ0

(t) can be evaluated, making (3.3) computable. Even though (3.3) is not, in
general, the maximum likelihood estimate of θ0, it looks like a natural estimate to consider.

To simplify the notations, the superscript θ0 will be omitted wherever possible so that u(t)
is the solution of (2.2) or (3.1), corresponding to the true value of the unknown parameter. To
study the properties of (3.3), note first of all that for all sufficiently large K,

P{
∫ T

0
‖ΠKA1u(t)‖2

0dt > 0} = 1. (3.4)

Indeed, by assumption, the operator A1 is not identical zero and therefore
(
ΠKA1W

)
t≥0

is a

continuous nonzero square integrable martingale, while
(∫ t

0 ΠKA1[θ1(L+A) + θ2B]u(s)ds
)

t≥0

is a continuous process with bounded variation. It then follows from (3.3) and (3.4) that

θ̂K = θ0 +

∫ T
0 (ΠKA1u(t), dW

K(t))0∫ T
0 ‖ΠKA1u(t)‖2

0dt
(P- a.s.) (3.5)

Representation (3.5) will be used to study the asymptotic properties of θ̂K as K →∞. To get

a consistent estimate, it is intuitively clear that
∫ T

0
‖ΠKA1u(t)‖2

0dt should tend to infinity as

K →∞, and this requires certain non-degeneracy of the operator A1.
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Definition 1 A differential operator P of order p on M is called essentially non-degenerate
if

‖Pf‖2
s ≥ ε‖f‖2

s+p − L‖f‖2
s+p−δ (3.6)

for all f ∈ C∞(M), s ∈ IR, with some positive constants ε, L, δ.

If the operator P∗P is elliptic of order 2p, then the operator P is essentially non-degenerate
because in this case the operator P∗P is positive definite and self-adjoint so that the operator
(P∗P)1/(2p) generates an equivalent scale of Sobolev spaces on M . In particular, every elliptic
operator satisfies (3.6). Since, by Corollary 2.1.2 in [6], for every differential operator P the
operator P∗P − PP∗ is of order 2p − 1, the operator P is essentially non-degenerate if and
only if P∗ is.

Let us now formulate the main result concerning the properties of the estimate (3.5). Recall
that the observed field u satisfies

du(t) + [θ1(L+A) + θ2B +N ]u(t)dt = dW (t), 0 < t ≤ T ; u(0) = 0, (3.7)

with one of θ2 = θ0
2 or θ1 = θ0

1 known. According to (3.5), the estimate of the remaining
parameter is given by

θ̂K
1 =

∫ T
0 (ΠK(L+A)u(t), dΠKdu(t)− dΠK(θ0

2B +N )u(t))0∫ T
0 ‖ΠK(L+A)u(t)‖2

0dt
, (3.8)

θ̂K
2 =

∫ T
0 (ΠKBu(t), dΠKdu(t)− dΠK(θ0

1(L+A) +N )u(t))0∫ T
0 ‖ΠKBu(t)‖2

0dt
. (3.9)

Theorem 3.1 Assume that equation (3.7) is considered on a compact d-dimensional smooth
manifold M , θ0

1 > 0, L is a positive definite self-adjoint elliptic operator of order 2m, and

max(order(A), order(B), order(N )) < 2m.

In the case θ2 is known, the estimate (3.8) of θ0
1 is consistent and asymptotically normal:

P− lim
K→∞

|θ̂K
1 − θ0

1| = 0;

ΨK,1(θ
0
1 − θ̂K

1 )
d→ N (0, 1),

where ΨK,1 =
√

(T/(2θ0
1))

∑K
n=1 ln.

In the case θ1 is known, the estimate (3.9) of θ0
2 is consistent and asymptotically normal if

the operator B is essentially non-degenerate and order(B) = b ≥ m− d/2. In that case,

P− lim
K→∞

|θ̂K
2 − θ0

2| = 0;

ΨK,2(θ
0
2 − θ̂K

2 )
d→ N (0, 1),

where ΨK,2 �
√∑K

n=1 l
(b−m)/m
n .

A sketch of the proof is given in Section 5.
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Remark 2 1. Since lk � k2m/d, the rate of convergence for θ̂K
1 is ΨK,1 � Km/d+1/2, and for

θ̂K
2 , it is

ΨK,2 �
{
K(b−m)/d+1/2 if b > m− d/2,√

lnK if b = m− d/2.

2. All the statements of the theorem remain true if, instead of differential operators, pseudo-
differential operators of class S·ρ,δ are considered with ρ > δ [6, 11].

Theorem 3.2 If θ0
1 is known and order(B) = b < m − d/2, then the measures generated in

C([0, T ];Hs), s < −d/2, by the solutions of (3.7) are equivalent for all θ2 ∈ IR and

P− lim
K→∞

θ̂K
2 = θ0

2 +

∫ T
0 (Bu(t), dW (t))0∫ T

0 ‖Bu(t)‖2
0dt

. (3.10)

Proof. By (2.4),

E
∫ T

0
‖Bu(t)‖2

0dt <∞ (3.11)

for all θ2 ∈ IR, and therefore the stochastic integral
∫ T

0
(Bu(t), dW (t))0 is well defined [8, 12].

Then (3.10) follows from (3.9) and the properties of the stochastic integral.
Next, denote by P θ2 the measure generated in C([0, T ];Hs), s < −d/2, by the solution of

(3.7) corresponding to the given value of θ2. Inequality (3.11) implies that∫ T

0
‖Bu(t)‖2

0dt <∞ (P- a.s.) (3.12)

and therefore by Corollary 1 in [8] the measures P θ2 are equivalent for all θ2 ∈ IR with the
likelihood ratio

dP θ2

dP θ0
2

(u) =

exp
(
(θ2 − θ0

2)
∫ T

0
(Bu(t), dW (t))0 − (1/2)(θ2 − θ0

2)
2

∫ T

0
‖Bu(t)‖2

0dt
)
,

(3.13)

where u(t) is the solution of (3.7) corresponding to θ2 = θ0
2. Note that

θ̂2 = θ0
2 +

∫ T
0 (Bu(t), dW (t))0∫ T

0 ‖Bu(t)‖2
0dt

maximizes the likelihood ration (3.13).
2

If the operators A, B, N have the same eigenfunctions as L, then the coefficients ψk(u(t))
are independent (for different k) Ornstien-Uhlenbeck processes and ΠKAu(t) = ΠKAΠKu(t),
with similar relations for B and N . As a result, other properties of (3.8) and (3.9) can
be established, including strong consistency and asymptotic efficiency [4, 5, 9], and, in the
case of the continuous time observations, all estimates are computable explicitly in terms of
ψk(u(t)), k = 1, . . . , K.
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In general, the computation of θ̂K
1 and θ̂K

2 using (3.8) and (3.9) respectively requires the
knowledge of the whole field u rather than its projection. Still, the operators ΠK(L + A),
ΠKB, and ΠKN have finite dimensional range, which should make the computations feasible.
Another option is to replace u by ΠKu. This can simplify the computations, but the result is,
in some sense, even further from the maximum likelihood estimate, because some information
is lost, and the asymptotic properties of the resulting estimate are more difficult to study. In
general, the construction of the estimate depending only on the projection ΠKu(t) is equivalent
to the parameter estimation for a partially observed system with observations being given by
(3.2). Without special assumptions on the operators A0 and A1, this problem is extremely
difficult even in the finite dimensional setting.

4 An Example

Consider the following stochastic partial differential equation:

du(t, x) = (D∇2u(t, x)− (~v(x),∇)u(t, x)− λu(t, x))dt+ dW (t, x). (4.1)

It is called the heat balance equation and describes the dynamics of the sea surface temper-
ature anomalies [2]. In (4.1), x = (x1, x2) ∈ IR2, ~v(x) = (v1(x1, x2), v2(x1, x2)) is the velocity
field of the top layer of the ocean (it is assumed to be known), D is thermodiffusivity, λ is
the cooling coefficient. The equation is considered on a rectangle |x1| ≤ a; |x2| ≤ c with
periodic boundary conditions u(t,−a, x2) = u(t, a, x2), u(t, x1,−c) = u(t, x1, c) and zero ini-
tial condition. This reduces (4.1) to the general model (3.7) with M being a torus, d = 2,
L = −∇2 = −∂2/∂x2

1 − ∂2/∂x2
2, A = 0, B = I (the identity operator), N = (~v,∇) =

v1(x1, x2)∂/∂x1 + v2(x1, x2)∂/∂x2, θ1 = D, θ2 = λ. Then order(L) = 2 (so that m = 1),
order(A) = 0, order(B) = 0 (so that b = 0), and order(N ) = 1. The basis {ek}k≥1 is the
suitably ordered collection of real and imaginary parts of

gn1,n2(x1, x2) =
1√
4ac

exp
{√
−1π(x1n1/a+ x2n2/c)

}
, n1, n2 ≥ 0.

By Theorem 3.1, the estimate of D is consistent and asymptotically normal, the rate of
convergence is ΨK,1 � K; the estimate of λ is also consistent and asymptotically normal with
the rate of convergence ΨK,2 �

√
lnK, since b = 0 = m− d/2 and (3.6) holds.

Unlike the case of the commuting operators, the proposed approach allows non-constant
velocity field. Still, a significant limitation is that the value of ~v(x) must be known.

5 Sketch of the proof of Theorem 3.1

Hereafter, u(t) is the solution of (3.7) corresponding to the true value of the parameters (θ0
1

and θ0
2) and C is a generic constant with possibly different values in different places.

To prove the asymptotic normality of the estimate, the following version of the central limit
theorem will be used. The proof can be found in [4].
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Lemma 5.1 If P is a differential operator on M and

P− lim
K→∞

∫ T
0 ‖ΠKPu(t)‖2

0dt

E
∫ T
0 ‖ΠKPu(t)‖2

0dt
= 1, (5.1)

then

lim
K→∞

∫ T
0 (ΠKPu(t), dWK(t))0dt√

E
∫ T
0 ‖ΠKPu‖2

0dt
= N (0, 1) (5.2)

in distribution.

Once (5.1) and (5.2) hold and

lim
K→∞

E
∫ T

0
‖ΠKPu‖2

0dt = +∞, (5.3)

the convergence

P− lim
K→∞

∫ T
0 (ΠKPu, dWK(t))0dt∫ T

0 ‖ΠKPu‖2
0dt

= 0

follows. Thus, it suffices to establish (5.1) and compute the asymptotics of E
∫ T

0
‖ΠKPu‖2

0dt

for a suitable operator P .
If ψk(t) := ψk(u(t)), then (3.7) implies

dψk(t) = −θ0
1lkψk(t)− ψk

(
(θ0

1A+ θ0
2B +N )u(t)

)
dt+ dwk(t), ψk(0) = 0.

According to the variation of parameters formula, the solution of this equation is given by
ψk(t) = ξk(t) + ηk(t), where

ξk(t) =
∫ t

0
e−θ0

1lk(t−s)dwk(s),

ηk(t) = −
∫ t

0
e−θ0

1lk(t−s)ψk

(
(θ0

1A+ θ2B +N )u(s)
)
ds.

If ξ(t) and η(t) are the elements of ∪sH
s defined by the sequences {ξk(t)}k≥1 and {ηk(t)}k≥1

respectively, then the solution of (3.7) can be written as u(t) = ξ(t) + η(t).

It can be shown by direct computation that if P is an essentially non-degenerate oper-

ator of order p ≥ m − d/2, then the asymptotics of E
∫ T

0
‖ΠKPu(t)‖2

0dt is determined by

the asymptotics of E
∫ T

0
‖ΠKPξ(t)‖2

0dt, and the last expression is relatively easy to analyze.

Specifically,

E
∫ T

0
‖ΠKPu(t)‖2

0dt � E
∫ T

0
‖ΠKPξ(t)‖2

0dt �
N∑

k=1

l
(p−m)/m
k , K →∞,

which implies (5.3), and also

lim
K→∞

E
∫ T
0 ‖ΠKPη(t)‖2

0dt

E
∫ T
0 ‖ΠKPξ(t)‖2

0dt
= 0,
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P− lim
K→∞

∫ T
0 ‖ΠKPξ(t)‖2

0dt

E
∫ T
0 ‖ΠKPξ(t)‖2

0dt
= 1,

which imply (5.1). After that, the first (resp., second) statement of the theorem follows from
Lemma 5.1 with P = L+A (resp., P = B).

References

[1] H. T. Banks and K. Kunisch. Estimation Techniques for Distributed Parameter Systems.
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[3] M. Hübner, R. Khasminskii, and B. L. Rozovskii. Two Examples of Parameter Estimation.
In Cambanis, Ghosh, Karandikar, and Sen, editors, Stochastic Processes, Springer, New
York, 1992.
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