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Abstract

In this paper we consider the problem of estimating a coefficient of a strongly elliptic partial
differential operator in stochastic parabolic equations. The coefficient is a bounded function
of time. We compute the maximum likelihood estimate of the function on an approximating
space (sieve) using a finite number of the spatial Fourier coefficients of the solution and establish
conditions that guarantee consistency and asymptotic normality of the resulting estimate as the
number of the coefficients increases. The equation is assumed diagonalizable in the sense that
all the operators have a common system of eigenfunction.
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1 Introduction

The theory of statistical inference for the problem of estimating parameters in diffusion processes

is well-developed, see, for example, Ibragimov and Khasminskii (1982), Kutoyants (1984a), and

Barndorff-Nielsen and Sørensen (1994).

Nonparametric estimation for ordinary stochastic differential equations have been studied by several

authors. Kutoyants (1984b) derived asymptotic properties of kernel-type estimators of the drift

term in a stochastic differential equation. In a nonstationary linear diffusion model Nguyen and

Pham (1982) applied Grenander’s method of sieves to the problem of estimating the drift coefficient

that is a function of time. They approximated the unknown function by a finite linear combination

of a given system of functions and proved consistency and asymptotic normality of the estimate. In

this approach, when the unknown function is approximated by a finite linear combination of known

functions, it is also necessary to determine the “optimal” number of terms in the approximation

under certain accuracy and cost criteria. A large literature exists about such model selection criteria

in various contexts. For example, Polyak and Tsybakov (1990) and Verulava and Polyak (1988)

studied this question for regressions via Mallow’s Cp criterion, while Birgé and Massart (1997)

consider penalized projection estimators for various families of sieves and penalties.

However, little has been done concerning nonparametric estimation for infinite dimensional systems.

One general problem is estimation of a function that is a coefficient of a partial differential opera-

tor in a parabolic stochastic partial differential equation. Stochastic partial differential equations

(SPDEs) often represent physical models in areas such as oceanography, physical chemistry, eco-

nomics, and geostatistics. Because of these potential applications and the interesting mathematical

questions arising from them there has been growing interest in the estimation of model parame-

ters for SPDEs. Ibragimov and Khasminskii (1997) studied asymptotic properties of estimators of

general functions in the small noise asymptotics when the probability measures generated by the

processes corresponding to different functions are equivalent. Other inverse problems for SPDEs

in the small noise asymptotics such as recovery of initial and boundary conditions are studied in

Golubev and Khasminskii (1997).

If the unknown function is the coefficient of the “leading” differential operator, which is the case in
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many applications, then the probability measures (on the appropriate infinite-dimensional Hilbert

space) generated by the processes corresponding to different functions are singular and different

approaches to constructing the estimate can be used. In particular, it is possible to estimate the

function even when the time interval and the noise intensity are fixed. To construct a computable

estimate, one has to work with finite dimensional projections of the observation process, for example,

the first N (spatial) Fourier coefficients. The dimension of the projection is then used to describe

the asymptotic properties of the estimate. In parametric models, when the coefficient is just a real

number, this approach was used by Huebner and Rozovskii (1995), who constructed the maximum

likelihood estimate on the basis of the first N Fourier coefficients of the process, and established

the conditions for consistency and asymptotic normality of the estimate in the limit N →∞.

The objective of this paper is to combine the methods used in Huebner and Rozovskii (1995) and

Nguyen and Pham (1982) and construct an estimate of a coefficient that is a function of time in a

model described by a stochastic parabolic equation. Suppose the process u(t, x) for t ∈ [0, T ] and

x ∈ G ⊂ IRd is governed by the following equation:

du(t, x) = (A0 + θ0(t)A1)u(t, x) dt+ dW (t, x), t ∈ (0, T ], x ∈ G
u(0, x) = u0(x)

with zero boundary conditions, where W (t, x) a cylindrical Brownian motion in L2([0, T ]×G) and

A0 + θ0(t)A1 is a strongly elliptic differential operator with the unknown coefficient θ0(t). Suppose

we observe finitely many Fourier coefficients u1(t), . . . , uN (t) for all t ∈ [0, T ]. Let Θ be the set

of admissible functions θ0. We are interested in the asymptotic properties of the sieve maximum

likelihood estimate θ̂N obtained by maximizing the likelihood function based on the N Fourier

coefficient. The maximization is carried out over a sieve ΘN , that is, a finite dimensional subspace

of Θ. The family of spaces {ΘN , N ≥ 1} is chosen so that the approximation error decreases to

zero as the the number N of observations increases. This method of constructing an estimate is

called the method of sieves (see Grenander (1981)).

In this paper we use linear nested sieves (cf. Birgé and Massart (1997)). We assume that every

function θ ∈ Θ can be represented as an infinite linear combination of known functions {hj , j ≥ 1}:

θ(t) =
∞∑

j=1

θjhj(t)

and the functions {hj} are orthonormal on [0, T ]. If we choose the sieve ΘN to be the span of
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h1(t), . . . , hdN
(t), then the sieve maximum likelihood estimate will be of the form

θ̂N =
dN∑
j=1

θ̂jhj(t).

This sieve maximum likelihood estimate is therefore a particular case of projection estimates first

considered by Chentsov (1982). We give an explicit formula for the sieve maximum likelihood

estimate using the first N Fourier coefficients of the process and establish conditions that guaran-

tee consistency and asymptotic normality of the resulting estimate in the limit N → ∞. These

conditions relate the dimension dN of the approximating spaces ΘN to the number N of observed

Fourier coefficients and the orders of the operators A0 and A1 in the equation. Only the asymp-

totical properties of the estimate are studied, and the finite-sample issues are not discussed.

The paper is organized as follows. In Section 2 we introduce the model and the basic notation.

The main results on the asymptotic properties of the sieve maximum likelihood estimate, including

the convergence rates, are stated in Section 3, and the results are illustrated on several examples

in Section 4. The proofs of the main results are in Section 5.

2 The Model

In this section we introduce the basic notations and assumptions about the model. It is important

to note that in estimation problems where the observations are generated by finite dimensional

processes it is assumed that either the noise intensity decreases (ε → 0) or the time interval gets

larger. For our model both the noise intensity and the time interval stay fixed. The Notation

xN ∼ yN used in the paper means that limN→∞ xN/yN = c where c 6= 0,∞.

Let (Ω,F , {Ft}0≤t≤T , P ) be a stochastic basis with the usual assumptions (see Jacod and Shiryayev,

1987) andG a smooth bounded domain in IRd or a smooth d-dimensional compact manifold (without

boundary). We denote by A0 and A1 partial differential operators on G with complex-valued

coefficients. If G is a domain, then the operators are supplemented with zero boundary conditions.

We assume that

Aiu(x) = −
∑

|α|≤mi

aα
i (x)u(α)(x), aα

i ∈ C∞b (G), i = 1, 2, (2.1)
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with known aα
i and where α = (α1, . . . , αd), αi = 0, 1, . . . , |α| =

∑d
i=1 αi,

u(α)(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαd

d

.

The observation process is governed by the following equation:

du(t, x) = (A0 + θ0(t)A1)u(t, x) dt+ dW (t, x), t ∈ (0, T ], x ∈ G,
u(0, x) = u0(x)

(2.2)

where θ = θ(t) is a bounded measurable function on [0, T ] and W = W (t, x) is a cylindrical Brow-

nian motion, that is, a distribution-valued process so that for every ϕ ∈ C∞0 (G) with ‖ϕ‖L2(G) = 1,

(W,ϕ)(t) is a standard Wiener process, and for all ϕ1, ϕ2 ∈ C∞0 (G), E(W,ϕ1)(t)(W,ϕ2)(s) =

min(t, s) · (ϕ1, ϕ2)L2(G) (see Walsh (1984) for more details).

A predictable process u with values in the set of distributions on C∞0 (G) is called a solution of (2.2)

if for every ϕ ∈ C∞0 (G) the equality

(u, ϕ)(t) = (u0, ϕ) +
∫ t

0
(A∗0ϕ, u)(s)ds+

∫ t

0
θ0(s)(A∗1ϕ, u)(s)ds+ (W,ϕ)(t)

holds with probability one for all t ∈ [0, T ] at once, where A∗i is the formal adjoint of Ai, that is,

an operator so that

(Aiφ1, φ2)L2(G) = (A∗iφ2, φ1)L2(G) for all φ1, φ2 ∈ C∞0 (G).

The following assumptions will be in force throughout the paper:

(H1) There is a complete orthonormal system {ϕk}k≥1 in L2(G) so that

A0ϕk = κkϕk, A1ϕk = νkϕk,

(H2) The eigenvalues νk and κk satisfy |νk| ∼ km1/d and |κk| ∼ km0/d and, uniformly in t ∈ [0, T ],

µk(t) := −(κk + θ(t)νk) ∼ k2m/d, 2m = max{m0,m1}, which means that

αk ≤ −(κk + θ(t)νk) ≤ βk

for all 0 ≤ t ≤ T and some αk ∼ βk ∼ k2m/d. Recall that m0 and m1 are the orders of the

operators A0 and A1 (see (2.1)).
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Assumptions (H1) and (H2) hold in many physical models (see, for example, Piterbarg and Ro-

zovskii, 1997). A typical situation is when the operators A0 and A1 commute and either A0 or

A1 is uniformly elliptic and formally self-adjoint. For the sake of completeness we included a more

precise statement in the Appendix. More details can be found in Safarov and Vassiliev (1997).

To state the result about existence and uniqueness of the solution of (2.2) we need some additional

constructions. For f ∈ C∞0 (G) and s ∈ IR define

‖f‖2
s =

∑
k≥1

k2s/d|(f, ϕk)L2(G)|2,

and then define the space Hs(G) as the completion of C∞0 (G) with respect to the norm ‖·‖s. There

is a one-to-one correspondence between the elements v ∈ Hs(G) and sequences {vk}k≥1 so that

‖v‖2
s =

∑
k≥1

k2s/d|vk|2 <∞;

we call {vk} the (spatial) Fourier coefficients of v. The Fourier coefficients of the cylindrical

Brownian motion W are {wk}k≥1, independent standard Brownian motions, and therefore W ∈

L2(Ω× (0, T );H−s(G)) for every s > d/2.

Proposition 2.1 Under assumptions (H1) and (H2), if u0 ∈ L2(Ω;H−s(G)) for some s > d/2,

then there is a unique solution of (2.2) that belongs to the space L2(Ω × (0, T );Hm−s(G)) ∩

L2(Ω;C((0, T ),H−s(G))); the solution satisfies

E sup
0≤t≤T

‖u‖2
−s(t) + E

∫ T

0
‖u‖2

m−s(t)dt ≤ K(d,m, s, T, θ0)
(
E‖u0‖2

−s + T
)
.

Proof. This follows from Theorem 3.1.4 in Huebner and Rozovskii (1995).

2

Remark 2.2 1. In equation (2.2) we can have some correlation operator B for W as long as the

eigenfunctions of B are also ϕk. In that case we replace u0 by B−1u0.

2. In principle, we can consider more general models, for example, equations with other boundary

conditions or other types of operators. All we need is that the operators have the properties (H1)

and (H2).
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3 Main Result

In this section we construct the sieve maximum likelihood estimate of θ0 and establish conditions

under which the estimate is consistent and asymptotically normal. The set of admissible functions

θ0 is a subspace of L2(0, T ) and will be denoted by Θ. The set Θ is the collection of functions for

which assumption (H2) holds. If A1 is not the leading operator, then Θ is just the set of bounded

measurable function on (0, T ). If A1 is the leading operator, then the functions in Θ must also be

positive and bounded away from zero.

We will estimate θ0(t) on a subspace ΘN (sieve) of Θ. The estimate is denoted by θ̂N (t).

The observations are of the form u1(t), . . . , uN (t), where the uk(t) are the Fourier coefficients of

the process u(t, x):
duk(t) = −µk(t)uk(t) dt+ dwk(t)
uk(0) = u0k;

(3.1)

recall that µk(t) = −(κk + θ0(t)νk).

Let h1, h2, . . . be an orthonormal system in Θ. Let {ΘN , N ≥ 1} be an increasing sequence of

subspaces of Θ so that ΘN is spanned by h1, . . . , hdN
. Notice that the dimension dN of the subspace

ΘN depends on the number N of the Fourier coefficients observed.

Since {uk(t), k = 1, . . . ,K} is a finite dimensional diffusion process with independent compo-

nents, the corresponding likelihood ratio can be computed explicitly (Liptser and Shiryayev [1977,

Theorem 7.14]) and is given by

ZN = exp

{∫ T

0
(θ(t)− θ0(t))

(
A1u

N (t), duN (t)−A0u
N (t)dt

)
L2(G)

− 1
2

∫ T

0

(
θ2(t)− θ2

0(t)
) ∥∥∥A1u

N (t)
∥∥∥2

L2(G)
dt

}
.

We obtain the sieve maximum likelihood estimate by maximizing likelihood ratio on the subspace

ΘN . Then the estimate is θ̂N =
∑dN

j=1 θ̂jhj(t), and the vector θ̂N = (θ̂N
1 , . . . , θ̂

N
dN

) is the solution of

a system of linear equations

J(N)θ̂N = aN , (3.2)

where

aN =

(∫ T

0
hj(t)

(
A1u

N (t), duN (t)−A0u
N (t) dt

)
L2(G)

)
j=1,...,dN
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and

J(N) =

(∫ T

0
hi(t)hj(t)‖A1u

N (t)‖2
L2(G) dt

)
i,j=1,...,dN

.

The matrix J(N) is invertible almost surely (proof in Appendix), and therefore θ̂N can be written

as

θ̂N = (J(N))−1aN ; (3.3)

however, for large dN it seems more reasonable to use other methods of solving the system (3.2),

for example, Gaussian elimination. Note that, due to assumption (H2), the matrix J(N) and the

vector aN can be written explicitly in terms of Fourier coefficients {uk(t), k = 1, . . . , N}.

To describe the asymptotic properties of the estimate we introduce the following notations.

(N1). Define q = 2(m1 −m)/d. It is known from Huebner and Rozovskii (1995) that, even in the

cases of a scalar parameter (θ0 = const), a consistent estimate is possible if and only if q ≥ −1.

(N2). Define Fq,N by

Fq,N =


Nq+1

q+1 , q > −1

logN, q = −1.

Note that limN→∞ Fq,N/
∑N

k=1 k
q = 1 as long as q ≥ −1. In the parametric case, the quantity Fq,N

determines the rate of convergence of the maximum likelihood estimate (Huebner and Rozovskii

(1995)).

(N3). Assumptions about the model imply that there a limit limk→∞ kqµk(t)|νk|−2; the limit will

be denoted by θ̃(t). There are constants c0, c1 so that

θ̃(t) =



c1θ0(t), m0 < m1 = 2m;

c0, m1 < m0 = 2m;

c0 + c1θ0(t), m0 = m1 = 2m.

The exact values of c0 and c1 can be computed using Proposition A.1 in Appendix. Assumption

(H2) implies that θ̃(t) is strictly positive on [0, T ].

(N4) Let {Q1,N , N ≥ 1} and {Q2,N , N ≥ 1} be any sequences of real numbers so that

Q1,N ∼
∑N

k=1 k
4(m1−m)/d

(ψN )2
, Q2,N ∼

∑N
k=1 k

(2m1−4m)/d

ψN
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where ψN =
∫ T
0 E‖A1u

N (t)‖2
L2(G) dt. The asymptotics of the above expressions depends on q; we

summarize the results in Tables 1 and 2.

Table 1: Sequence Q1,N

q = 2(m1 −m)/d Q1,N 1/Fq,N

q = −1 1/(logN)2 1/ logN
−1 < q < −1/2 1/N2(q+1) (q + 1)/N q+1

q = −1/2 logN/N 1/2N1/2

q > −1/2 1/N (q + 1)/N q+1

Table 2: Sequence Q2,N

q = 2(m1 −m)/d Q2,N 1/Fq,N

q = −1 1/ logN 1/ logN
−1 < q < −1 + 2m/d 1/N q+1 (q + 1)/N q+1

q = −1 + 2m/d logN/N2m/d d/2mN2m/d

q > −1 + 2m/d 1/N2m/d (q + 1)/N q+1

The main results of this paper, consistency and asymptotic normality of the sieve maximum likeli-

hood estimate, are stated in the following two theorems.

Theorem 3.1 (Consistency). In addition to (H1) and (H2) assume that

(A1) q ≥ −1 and limN→∞ dN = ∞,

(A2) limN→∞ dNQ1,N = 0,

(A3) sup0≤t≤T

∑dN
j=1 |hj(t)|2 ≤ DN and limN→∞DNQ2,N = 0,

(A4) u0 is deterministic and belongs to Hm−d/2(G).

Then the estimate θ̂N (t) is consistent in probability:

P − lim
N→∞

∫ T

0
|θ̂N (t)− θ0(t)|2dt = 0.
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Given the nature of the problem, the conditions of Theorem 3.1 are a natural combination of

conditions from Birgé and Massart (1997), Huebner and Rozovskii (1995), and Nguyen and Pham

(1982). In particular, assumption (A1) is necessary to get a consistent estimate; assumptions (A2)

and (A3) are technical and are similar to what is often assumed in the literature, see for example

Birgé and Massart (1997) and Nguyen and Pham (1982); assumption (A4) is also technical and is

used to reduce the general case to the case u0 = 0.

Several widely used bases satisfy the first part of assumption (A3):

1. Cosine Basis. If

h1(t) =
1√
T
, hj(t) =

√
2
T

cos
(
π(j − 1)

T
t

)
, j > 1,

then sup0≤t≤T

∑dN
j=1 |hj(t)|2 ≤ CdN , DN ∼ dN , and the second part of assumption (A3)

becomes dNQ2,N → 0.

2. Legendre Polynomial Basis. For simplicity let (0, T ) be (0, 1). If hj(t) is the normalized

Legendre polynomial

hj+1(t) =
√

2j + 1 pj(t), where pj(t) =
1

2jj!
dj(t2 − 1)j

dtj
, j = 0, 1, . . . ,

then, since |pj(t)| ≤ 1 (see, for example, Devore and Lorentz (1993)), we have

sup
0≤t≤T

dN∑
j=1

|hj(t)|2 ≤
dN∑
j=1

(2j + 1) ≤ Cd2
N , DN ∼ d2

N ,

and in this case the second part of assumption (A3) becomes d2
NQ2,N → 0.

3. Wavelet Basis. It is shown in Birgé and Massart [1997, Section 2.2.2] that for the basis

obtained by translation and dilation of a compactly supported function we have DN ∼ dN so

that the second part of assumption (A3) becomes dNQ2,N → 0.

Theorem 3.2 (Asymptotic Normality). If, in addition to assumptions of Theorem 3.1,

(A5) limN→∞ d2
NQ1,N = 0 and

(A6) limN→∞ Fq,N
∑∞

i=dN+1 |θ0i|2 = 0,
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then the estimate θ̂N (t) is asymptotically normal, that is, for every deterministic g ∈ L2(0, T ),

lim
N→∞

√
Fq,N

∫ T

0
g(t)(θ̂N (t)− θ0(t))dt = N

(
0, 2

∫ T

0
|g(t)|2θ̃(t)dt

)
(3.4)

in distribution, where N (0, σ2) is a normal random variable with mean zero and variance σ2.

4 Examples

In this section we consider the following function space:

Θγ(0, T ) =
{
θ = θ(t) : |θj |2 ≤

L

jγ+1

}
,

where θj =
∫ T
0 θ(t)hj(t)dt, γ > 0, and L = L(θ) is a constant. By definition, if θ ∈ Θγ(0, T ), then

∞∑
j=dN+1

|θ0j |2 ≤ Cd−γ
N .

The space Θγ(0, T ) in general depends on the basis {hj}. To give some examples, assume that

p = p0 + p′ ≥ 1 with p0 = 1, 2, . . . and p′ ∈ [0, 1]. If the cosine basis is used and the even

periodic extension of θ(t) belongs to Cp0,p′
(IR), that is, the extension of θ is p0 times continuously

differentiable and the p0-th derivative is Hölder continuous of order p′, then θ ∈ Θ2p−1(0, T ). Note

that if θ is continuously differentiable on [0, T ], then θ ∈ Θγ(0, T ) with γ ≥ 1.

Similarly, if the Legendre polynomials are used and θ ∈ Cp0,p′
(0, T ), then θ ∈ Θp(0, T ). These and

other related results can be found in Devore and Lorentz (1993).

Example 1. Let G = (0, 1) and ∆ = ∂2/∂x2. Consider the following equation:

du(t, x) = θ0(t)∆u(t, x) dt+ (I −∆)−1/2dW (t, x)

u(0, x) = 0

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ].

In this example, d = 1, m = 1 and m1 = 2, so that q = 2, Fq,N = N3/3, and θ̃(t) = π2θ0(t). The

spatial Fourier basis is ek(x) =
√

2 sin(kπx) and the spatial Fourier coefficients of the solution are

uk(t) = exp{−k2π2
∫ t

0
θ(r) dr}u0k + (1 + k2π2)−1/2

∫ t

0
exp{−k2π2

∫ t

s
θ(r) dr} dwk(s)
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We assume that 0 < M1 ≤ θ(t) ≤ M2 and θ0 ∈ Θγ(0, T ). Then M1π
2k2 ≤ µk(t) ≤ M2π

2k2 and

assumptions (H1) and (H2) hold. Also, if the cosine basis is used, then, according to Theorem 3.2,

to have a consistent and asymptotically normal estimate we need

d2
N

N
→ 0,

N3

dγ
N

→ 0.

Therefore we can take dN ∼ N r, where

3
γ
< r < 1.

To have a consistent and asymptotically normal estimate using Legendre polynomials, we take

dN ∼ N r, where
3
γ
< r <

1
2
.

Example 2. Let (x, y) ∈ (−1, 1)2 and ∆ = ∂2/∂x2 + ∂2/∂y2. Consider the following equation

du(t, x, y) = (∆u(t, x, y) + θ0(t)u(t, x, y)) dt+ dW (t, x)

u(0, x, y) = u0(x, y) ∈ L2(G)

with periodic boundary conditions, so that G is a torus. In this case d = 2, m = 1, and m1 = 0, so

that q = −1, Fq,N = logN , and, using Safarov and Vassiliev [1997, Example 1.2.3], θ̃(t) = π.

We assume that |θ0(t)| ≤ M and θ0(t) ∈ Θγ(0, T ). Assumptions (H1) and (H2) are obviously

fulfilled. Also, if the cosine basis is used, then, according to Theorem 3.2, to have a consistent and

asymptotically normal estimate we need

dN

logN
→ 0,

logN
dγ

N

→ 0.

Therefore, we can take dN ∼ (logN)s, where

1
γ
< s < 1.

To have a consistent and asymptotically normal estimate using the Legendre polynomials we take

dN ∼ (logN)s, where
1
γ
< s <

1
2
.
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5 Proof of Theorems 3.1 and 3.2

First, we introduce more notations:

(N5).

XN (t) = ‖A1u
N (t)‖2

L2(G), ψN =
∫ T

0
EXN (t)dt

φN (t) = EXN (t)/ψN ; Y N (t) = (XN (t)− EXN (t))/ψN

It follows from Huebner and Rozovskii [1995, Lemma 2.1] and assumption (H1) that ψN ∼ Fq,N .

(N6). If ζ = (ζ1, . . . , ζdN
) and ξ = (ξ1, . . . , ξdN

) are vectors in IRdN (random or deterministic), then

ζ(t) =
dN∑
i=1

ζihi(t), ‖ζ‖2 =
dN∑
i=1

|ζi|2 =
∫ T

0
|ζ(t)|2dt

(ζ, ξ) =
dN∑
i=1

ζiξi =
∫ T

0
ζ(t)ξ(t)dt.

(N7). For matrices, ‖ · ‖ denotes the 2-norm. For symmetric positive definite matrices it is the

largest eigenvalue, and the upper bound on the square of the norm for every matrix is the sum of

squares of all the entries of the matrix.

(N8). The letter C denotes a constant whose value can depend only on d,m,m1, T, and θ0; the

value of C can be different in different places.

To simplify the presentation, we assume that the lower bound on µk(t) (cf. assumption (H2)) is

always positive. Since the objective is the asymptotical behavior of the estimate, this assumption

does not result in any loss of generality.

To investigate the asymptotic properties of the estimate (3.2), let θN
0 be the orthogonal projection

of θ0 onto ΘN :

θN
0 (t) =

dN∑
j=1

θ0jhj(t).

The j-th component of the vector aN is

aN
j =

∫ T

0
hj(t)

(
A1u

N (t), duN (t)−A0u
N (t) dt

)
L2(G)

=
∫ T

0
hj(t)

(
A1u

N (t), dWN (t)
)

L2(G)
+
∫ T

0
hj(t)θ0(t)XN (t)dt.

13



We rewrite the second term of the right-hand side above:

dN∑
i=1

θ0i

∫ T

0
hi(t)hj(t)XN (t)dt+

∞∑
i=dN+1

θ0i

∫ T

0
hi(t)hj(t)XN (t)dt.

Hence equation (3.2) can be written as

J(N)
(
θ̂N − θN

0

)
= bN + cN , (5.1)

where

bN =

(∫ T

0
hj(t)

(
A1u

N (t), dWN (t)
)

L2(G)

)
j=1,...,dN

and

cN =

(∫ T

0
hj(t)

(
θ0(t)− θN

0 (t)
)
XN (t)dt

)
j=1,...,dN

.

With the notation J̃(N) = J(N)/ψN we can write (5.1) as follows:

θ̂N − θN
0 = (J̃(N))−1

(
bN/ψN + cN/ψN

)
. (5.2)

Note that

‖θ̂N − θ0‖2 = ‖θ̂N − θN
0 ‖2 +

∞∑
i=dN+1

|θ0i|2, (5.3)

where the second term tends to zero as N →∞ as long as dN →∞.

Next, we look at the contribution of the initial condition.

Since duk = −µk(t)ukdt+ dwk, it follows that

uk(t) = u0k exp
(
−
∫ t

0
µk(s)ds

)
+
∫ t

0
exp

(
−
∫ t

s
µk(r)dr

)
dwk(s),

and then XN (t) = X1,N (t) +X2,N (t) +X3,N (t), where

X1,N (t) =
N∑

k=1

|u0k|2ν2
k exp

(
−2
∫ t

0
µk(s)ds

)
(non− random),

X2,N (t) =
N∑

k=1

ν2
k

(∫ t

0
exp

(
−
∫ t

s
µk(r)dr

)
dwk(s)

)2

,

X3,N (t) = 2
N∑

k=1

ν2
ku0k

∫ t

0
exp

(
−
∫ t

s
µk(r)dr

)
dwk(s).

As a result,

EXN (t) = X1,N (t) + EX2,N (t), var(XN (t)) = var(X2,N (t)) + E|X3,N (t)|2.

14



Since by assumption (H2) µk(t) ≥ Ck2m/d for all sufficiently large k, we have

X1,N (t) ≤ C
N∑

k=1

|u0k|2k2m/d−1kq+1,

and so

lim
N→∞

sup
0≤t≤T

X1,N (t)
ψN

= 0, (5.4)

either by the Kronecker lemma (if q > 1) or because X1,N (t) is bounded for all N uniformly in t

(if q = −1); note that
∑

k≥1 |u0k|2k2m/d−1 = ‖u0‖2
m−d/2.

Next,

sup
0≤t≤T

var(X2,N (t))
(ψN )2

≤ CQ1,N

(direct computations or from the proof of Lemma 2.2 in Huebner and Rozovskii, 1995), and, using

assumption (H2) once again,

E|X3,N (t)|2 ≤
N∑

k=1

ν4
k |u0k|2

αk
≤ C

N∑
k=1

|u0k|2k2m/d−1k2q+1,

so that E|X3,N (t)|2/(
∑N

k=1 k
2q) → 0, either by the Kronecker lemma (if q > −1/2) or because

E|X3,N (t)|2 is bounded for all N uniformly in t (if q ≤ −1/2). As a result,

sup
0≤t≤T

var(XN (t))
(ψN )2

≤ CQ1,N . (5.5)

5.1 Consistency

In view of (5.3), it remains to show that P − limN→∞ ‖θ̂N − θN
0 ‖ = 0. Due to (5.2), it is sufficient

to show that

(C1) ‖J̃−1(N)‖ ≤ LN , where LN converges to a constant in probability;

(C2) ‖bN/ψN‖ → 0 in probability as N →∞;

(C3) ‖cN/ψN‖ → 0 in probability as N →∞.

1. The matrix.

Write

J̃ij(N) = J̃r
ij(N) + J̃d

ij(N)
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where J̃r
ij(N) =

∫ T
0 hi(t)hj(t)Y N (t)dt (random part) and J̃d

ij(N) =
∫ T
0 hi(t)hj(t)φN (t)dt (determin-

istic part).

The norm of the random part tends to zero in probability. Indeed,

dN∑
i,j=1

E|J̃r
ij(N)|2 ≤ E

dN∑
i=1

∑
j≥1

|
∫ T

0
(hi(t)Y N (t))hj(t)dt|2 =

dN∑
i=1

∫ T

0
E|hi(t)Y N (t)|2dt.

We know from (5.5) that

sup
0≤t≤T

E|Y N (t)|2 ≤ CQ1,N . (5.6)

Therefore, E‖J̃r(N)‖2 ≤ CdNQ1,N → 0 by assumption (A2).

Next, we show that the eigenvalues of J̃d(N) are uniformly bounded from below. Indeed, for all

sufficiently large N ,

φN (t) ≥ C

(
1−

∑N
k=1 k

2(m1−m)/de−2αkt

ψN

)
.

Therefore, it is enough to show that∫ T

0
|ζ(t)|2

∑N
k=1 k

2(m1−m)/de−2αkt

ψN
dt ≤ εN‖ζ‖2 (5.7)

and εN → 0 as N → ∞. By the first part of assumption (A3), |ζ(t)|2 ≤ DN‖ζ‖2, and, after

integrating the rest and using the second part of assumption (A3), we get (5.7).

Now, once the eigenvalues of J̃d(N) are uniformly bounded from below, we conclude that

‖(J̃d(N))−1‖ ≤ C

(the norm is bounded by the inverse of the smallest eigenvalue of J̃d(N)), and then

‖J̃−1(N)‖ ≤ ‖(J̃d(N))−1‖ · ‖(I + (J̃d(N))−1J̃r(N))−1‖

≤ C/(1− C‖J̃r(N)‖), P − lim ‖J̃r(N)‖ = 0,

where the last inequality follows from the Neumann series for (I + (J̃d(N))−1J̃r(N))−1. This

completes the proof of (C1).

2. The vector b.

We have

E‖bN‖2 =
dN∑
i=1

∫ T

0
h2

i (t)EX
N (t)dt
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and therefore we need

lim
N→∞

dN/ψN = 0. (5.8)

Since sup0≤t≤T

∑dN
i=1 |hi(t)|2 ≥ dN/T , ψN ∼ Fq,N , and (cf. Table 2) Q2,N ≥ C/Fq,N , equality (5.8)

follows from assumption (A3). Convergence (C2) is proved.

3. The vector c.

We have

E‖cN‖2 ≤ E
∑
i≥1

(∫ T

0
XN (t)(θ0(t)− θN

0 (t))hi(t)dt

)2

=

E

∫ T

0
|θ0(t)− θN

0 (t)|2(XN (t))2dt ≤ sup
t
E(XN (t))2

∫ T

0
|θ0(t)− θN

0 (t)|2dt,

and suptE(XN (t))2 ≤ Cψ2
N , because E(XN (t))2 ≤ 2ψ2

N (EY 2
N (t) + 1) and, according to inequality

(5.6), suptEY
2
N (t) → 0. Thus, convergence (C3) is proved.

This completes the proof of Theorem 3.1.

5.2 Asymptotic Normality

It follows from equation (5.3) and assumption (A6) that the limiting distributions of
√
Fq,N (θN −

θ0, g) and
√
Fq,N (θN − θN

0 , g) are the same.

We begin with the following result. Recall that φN (t) = EXN (t)/ψN , and (cf. notation (N3))

define

φ(t) =
1/θ̃(t)∫ T

0 (1/θ̃(t))dt
.

Proposition 5.1 Under assumption of Theorem 3.1 we have

lim
N→∞

φN (t) = φ(t) for almost all 0 < t ≤ T, and lim
N→∞

ψN/Fq,N =
∫ T

0
dt/(2θ̃(t)).

Proof. Due to (5.4) and since φN (t) = X1,N (t) + EX2,N (t) we can assume that u0 = 0.

Assume first that θ(t) is smooth. Integrate by parts in the expression

EXN (t) =
N∑

k=1

ν2
k

∫ t

0

1
2µk(s)

2µk(s) exp
(
−2
∫ t

s
µk(r)dr

)
ds

to get

EXN (t) =
N∑

k=1

ν2
k

2µk(t)
−

N∑
k=1

ν2
k

2µk(0)
exp

(
−2
∫ t

0
µk(r)dr

)
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+
N∑

k=1

ν2
k

2

∫ t

0

µ′k(s)
µ2

k(s)
exp

(
−2
∫ t

s
µk(r)dr

)
ds.

Now divide everything by Fq,N and pass to the limit as N →∞; the first term on the right will give

1/(2θ̃(t)), the second will give zero for t > 0, because the series converges, the third term will also

give zero, because µ′k(s)/µ
2
k(s) ≤ C/αk and we get another αk in the denominator after integration.

This completes the proof under the smoothness assumption. In general, we approximate θ(t) by

smooth functions in L2(0, T ) norm so that the convergence is also for almost all t ∈ (0, T ).

2

Corollary 5.2 Under assumptions of Theorem 3.1 we have

P − lim
N→∞

XN (t)
ψN

= φ(t) for almost all t ∈ (0, T ) (5.9)

and

lim
N→∞

ψN

Fq,N
=
∫ T

0

dt

2θ̃(t)
(5.10)

Indeed, to prove (5.9) note that XN (t)/ψN = φN (t) + Y N (t) and Y N (t) → 0 in probability for all

t. The proof of (5.10) is obvious.

It follows from (5.3), (5.10), and assumption (A6) that, to prove asymptotic normality in the form

(3.4), it is sufficient to show that

lim
N→∞

√
ψN (θ̂N − θN

0 , gφ) = N
(
0, ‖g

√
φ‖2

)
(5.11)

in distribution.

Proposition 5.3 Under the assumptions of Theorem 3.2 we have

lim
N→∞

(bN , g)√
ψN

= N
(
0, ‖g

√
φ‖2

)
in distribution.

Proof. We have

(bN , g)√
ψN

=
∑dN

i=1 b
N
i gi√

ψN
=

∫ T

0

(∑dN
i=1 gihi(t)

)
, dMN (t)

√
ψN

18



where MN (t) =
∫ t

0
(A1u

N (s), dWN (s))L2(G). Then

M̃N (t) :=

∫ t

0

(∑N
i=1 gihi(s)

)
dMN (s)

√
ψN

is a continuous square integrable martingale with the bracket

〈M̃N 〉t =

∫ t

0

(∑dN
i=1 gihi(s)

)2
XN (s)ds

ψN
.

According to (5.9), the bracket converges for each t > 0 in probability to

∫ t

0
g2(s)φ(s)ds,

the bracket of
∫ t
0 g(s)

√
φ(s)dws. Thus, by the martingale central limit theorem (Jacod and Shiryayev

[1987, Theorem VIII.4.17]),

lim
N→∞

∑dN
i=1 b

N
i gi√

ψN
= N

(
0,
∫ T

0
g2(s)φ(s)ds

)

in distribution (recall that gi =
∫ T
0 hi(t)g(t)dt).

2.

Corollary 5.4 Let gN ∈ L2(0, T ) be a sequence of deterministic functions with

gN
i =

∫ T

0
gN (t)hi(t)dt,

and suppose that

lim
N→∞

dN∑
i=1

|gN
i |2 = 0.

Then

P − lim
N→∞

∑dN
i=1 b

N
i g

N
i√

ψN
≡ P − lim

N→∞

(bN , gN )√
ψN

= 0.

The proof is obvious from the previous calculations (the bracket of the corresponding martingale

now tends to zero).

In what follows,
√
ψN (θ̂N − θN

0 ) will be denoted by θ̃N .
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According to Proposition 5.3, the expression (J̃(N)θ̃N , g) ≡ (ψ−1/2
N bN , g) is asymptotically normal

with zero mean and variance ‖g
√
φ‖2. Therefore, to establish (5.11) it remains to show that under

assumption (A5) we have the convergence

P − lim
N→∞

(θ̃N , J̃(N)g − φg) = 0. (5.12)

We will use the following result.

Lemma 5.5 If gN ∈ L2(0, T ) is deterministic and ‖gN‖ ≤ C, then

P − lim
N→∞

(θ̃N , J̃r(N)gN ) = 0

and if ‖gN‖ → 0, then

P − lim
N→∞

(θ̃N , gN ) = 0.

Proof. We have

|(θ̃N , J̃r(N)hN )| ≤ C‖θ̃Nd
−1/2
N ‖ · ‖J̃r(N)d1/2

N ‖ ≤ ‖J̃−1(N)‖ · ‖(ψNdN )−1/2bN‖ · ‖J̃r(N)d1/2
N ‖ → 0

in probability, because ‖J̃−1(N)‖ ≤ C/(1− C‖J̃r(N)‖) with P − limN→∞ ‖J̃r(N)‖ = 0,

while E‖(ψNdN )−1/2bN‖2 ≤ C and E‖J̃r(N)d1/2
N ‖2 ≤ d2

NQ1,N → 0 by assumption (A5). Next, if

‖gN‖ → 0, then

(θ̃N , gN ) = (J̃d(N)θ̃N , (J̃d(N))−1gN ) = (bN/
√
ψN , (J̃d(N))−1gN )− (θ̃N , J̃r(N)(J̃d(N))−1gN ),

where the first term converges to zero by Proposition 5.3, and we just saw that the second term

converges to zero as well.

2

We now show that Lemma 5.5 implies (5.12). To this end, denote by ΠN the orthogonal projection

on the span of h1, . . . , hdN
. Since θ̃N ∈ ΘN , it is enough to show that

P − lim
N→∞

(θ̃N , J̃(N)g −ΠNφg) = 0.

Note that J̃(N) is the matrix representation of the operator ΠNXN/ψNΠN , where XN/ψN is the

multiplication operator by the functionXN (t)/ψN . With this convention, if J̃(N) = J̃d(N)+J̃r(N),

then J̃d(N) = ΠNφNΠN and J̃r(N) = ΠNY NΠN .
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As a result,

J̃(N)g −ΠNφg = J̃r(N)g + ΠN (φN − φ)ΠNg + ΠNφ(ΠNg − g),

and it remains to apply Lemma 5.5 three times.

This completes the proof of asymptotic normality.
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Appendix

Proof that the matrix J(N) is invertible with probability one. Assume that J(N) is singular on a

set A ∈ F of positive measure. Then there is a random vector ξ(ω) ∈ IRdN that is not zero on A

and, also on A,

(ξ, J(N)ξ) ≡
∫ T

0
|ξ(t)|2XN (t)dt = 0,

where ξ(t) =
∑dN

i=1 ξihi(t) (cf. notation (N6)).

Note that
∫ T
0 E(XN (t))−1/3dt < ∞ (direct computation when N = 1 and u0=0 so that XN (t) is

a square of a normal random variable with zero mean and variance of order t for t near 0; when

N > 1 and/or u0 6= 0, the value of the expectation decreases). As a result, by Hölder’s inequality

∫
A

∫ T

0
|ξ(t)|1/2dtdP ≤

(∫
A

∫ T

0
|ξ(t)|2XN (t)dtdP

)1/4(∫ T

0
E(XN (t))−1/3dt

)3/4

= 0,

and so

‖ξ‖2 ≡
∫ T

0
|ξ(t)|2dt = 0 (P -a.s. on A),

which is a contradiction.

Asymptotics of the eigenvalues of partial differential operators.

As before, G is either a smooth domain in IRd or a smooth d-dimensional manifold. Let A be an

order 2n differential operator on G with complex coefficients. For technical reasons we write A in

the form (cf. (2.1))

A =
∑

|α|,|β|≤n

Dα(aαβDβ), aαβ ∈ C∞b (G), (5.13)

where Dαu(x) = (−
√
−1)|α|u(α)(x). If G is a bounded domain, then the operator A is supplemented

with zero boundary conditions

u(α)|∂G = 0 for all |α| ≤ n− 1.

The operator A is called symmetric if aαβ(x) = aβα(x) for all x ∈ G.

The function

PA(x, ξ) =
∑

|α|,|β|=n

aαβξαξβ ,
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where ξα = ξα1
1 . . . ξαd

d , is called the principal symbol of the operator A. The operator A is called

uniformly elliptic in G if there is a number δ > 0 so that

inf
x∈G

Re (PA(x, ξ)) ≥ δ
∑
|α|=n

ξ2α

for all ξ ∈ IRd.

Proposition A.1 (Safarov and Vassiliev [1997, Remark 1.2.2]). Let A be a symmetric operator

of the form (5.13) and assume that A is uniformly elliptic in G. Then the asymptotics of the

eigenvalues corresponding to the problem Au(x) = λu(x) is given by

λk = −ζAk2n/d + o(k2n/d),

where

ζA =

(
1

(2π)d

∫
{(x,ξ):PA(x,ξ)<1}

dxdξ

)−2n/d

.
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