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Abstract. A second-order stochastic parabolic equation with zero Dirichlet boundary con-
ditions is considered in a sufficiently smooth bounded domain. Existence, uniqueness, and
regularity of the solution are established without assuming any compatibility relations. To
control the solution near the boundary of the region, special Sobolev-type spaces with weights
are introduced. To illustrate the results, two examples are considered: general linear equation
with finite-dimensional noise and equation on a line segment, driven by space-time white noise.
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1. Introduction

The objective of the paper is to study solvability and regularity of the solution of the Dirichlet
boundary value problem for a stochastic parabolic equation in a domain G ⊂ Rd with a
sufficiently smooth boundary ∂G. Suppose that u = u(t, x) a a solution of

du =
(
aij(t, x)uxixj + f(t, x, u, ux)

)
dt+

(
σik(t, x)uxi + gk(t, x, u)

)
dwk(t), t > 0, x ∈ G,

u|t=0 = u0, u|∂G = 0.
(1.1)

Summation over the repeated indices will be assumed throughout the paper. The number of
the Wiener processes wk can be infinite to include the Hilbert space-valued noise. Note that the
usual linear equation is obtained from (1.1) by choosing appropriate f and g (f(t, x, u, ux) =
bi(t, x)uxi + c(t, x)u+ f(t, x), gk(t, x, u) = hk(t, x)u+ gk(t, x)).

Simple example of a one-dimensional equation shows that, unless certain compatibility con-
ditions are fulfilled, the second-order derivatives of the solution blow up near the boundary
(see [6] for details). The general analysis of the equations with compatibility conditions was
done in [2]. It was demonstrated in [6] that compatibility conditions can be avoided and the
derivatives of the solution near the boundary can be controlled by considering the solution as
an element of a special weighted Sobolev space. The spaces introduced in [6] correspond to the
Sobolev spaces of positive integer order with power p = 2. When domain G is the half-space,
the weighted spaces of arbitrary real order with power p ≥ 1 were introduced in [9]. Solvability
of the Dirichlet problem for (1.1) in the half-space was studied in [10] under an additional
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assumption that the coefficients a and σ do not depend on x. The anonymous referee kindly
pointed out that, in [1], Z. Brzeźniak analyzed stochastic parabolic equations in M type 2
spaces and provided an alternative approach to working in Sobolev spaces with integrability
exponent p > 2.

In this paper the results from [10] are used to solve equation (1.1) in a bounded domain. The
procedure is similar to what was done in [7] to study boundary value problems for deterministic
equations. Away from the boundary, equation (1.1) is equivalent to the equation in the whole
space; solvability of such equations in the spaces Hγ

p of Bessel potentials was studied in [8],
and a more detailed account of the results is given in [4]. Near the boundary, equation (1.1)
is transformed to the equation in the half-space so that the results from [10] can be applied.
The global solution is then constructed using the partition of unity in the domain G in the
same way as it is done in [7]. The boundary of the domain G is not assumed to be infinitely
smooth, although the optimal regularity of G is not discussed.

Similar to [8], regularity of the solution, both in space and in time, is obtained from Sobolev-
type embedding theorems for the solution space. By shifting the analysis of regularity from
the particular equation to the general function space, it becomes possible to develop a unified
theory of solvability for stochastic boundary value problems and strengthen many existing
results.

The new function spaces are defined in Section 2. The necessary properties of the spaces,
including the embedding theorems, are also given in this section. The main result about
solvability of equation (1.1) is in Section 3, and the examples are presented in Section 4. Two
examples are discussed: a linear equation, generalizing the main result from [6], and the one-
dimensional equation driven by space-time white noise, generalizing the well known result from
[15] about Hölder continuity of the solution. The proof of the main result is in Section 5. Even
though the actual argument is rather long, it is just a suitable modification and combination
of the methods used in [6], [7], and [8].

The following notations are used in the paper. For integer n ≥ 0, Cn(G) is the space of
n times continuously differentiable functions on G, C0(G) = C(G); for δ ∈ (0, 1), Cn+δ(G)
is the space of n times continuously differentiable functions whose derivatives of order n are
Hölder continuous of order δ. The arbitrary constant is denoted by N or N(· · · ); in the second
case, the value of N can depend only on the variables in parentheses. The value of N can be
different in different places. Under the summation convention, summation over all repeated
indices except k is carried out from 1 to d; when index k is repeated, summation is assumed
over all natural numbers. A point in Rd is x = (x1, . . . , xd), Rd

+ = {x ∈ Rd : x1 > 0} is the
half-space, u(m)

x denotes the generic m th order partial derivative of u with respect to x. Other
notations are introduced as necessary.

2. The function spaces

Let G ⊂ Rd be a domain (open connected subset) with boundary ∂G and closure Ḡ. By Br(x)
we denote the open ball with radius r and center x.
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Definition 2.1. (cf. [7, Definition 6.1.6]). An open connected subset G of Rd is called a
domain of class Cν , ν ≥ 2, if there exist positive numbers r0 and M so that for every point x0

on ∂G there is a one-to-one mapping ψ of Br0(x0) onto a domain D in Rd so that the following
conditions are fulfilled:

(1) ψ(Br0(x0) ∩G) ⊂ Rd
+ and ψ(x0) = 0;

(2) ψ(Br0(x0) ∩ ∂G) = D ∩ {y ∈ Rd : y1 = 0};
(3) ‖ψ‖Cν(Br0 (x0);Rd) + ‖ψ−1‖Cν(D;Rd) ≤M .

Let ρG(x), x ∈ Ḡ, be the distance from x to the boundary of G:

ρG(x) = dist (x, ∂G),

and let ρ = ρ(x) be a Cν(G) function with the following property: there exist positive numbers
δ1 and δ2 so that

δ1 ρG(x) ≤ ρ(x) ≤ δ2 ρG(x)

for all x near the boundary of G. Such a function ρ exists if G is a bounded domain of class
Cν because in that case the distance function ρG is of class Cν near the boundary of G (see
[3, page 382]). This function ρ will be fixed from now on.

Next, for a bounded domain G of class Cν , ν ≥ 2, we construct a partition of unity in G,
corresponding to r0 (cf. [7, page 81]), that is, define a collection of non-negative functions χm,
m = 0, . . . ,K, with the following properties:

(1) each χm belongs to C∞
0 (Rd);

(2) the function χ0 is supported in the set {x ∈ G : ρG(x) ≥ r0/8};
(3) For m = 1, . . . ,K, the function χm is supported in Br0/2(xm), where xm ∈ ∂G;
(4)

∑K
m=0(χm(x))2 = 1 for all x ∈ G.

For m = 1, . . . ,K denote by ψm the corresponding diffeomorphism Br0(xm) → Rd from Defi-
nition 2.1. The operator u 7→ u ◦ ψm will be denoted by Ψm.

Recall that the space Hγ
p is defined for γ ∈ R and p ≥ 1 as the completion of the space C∞

0 (Rd)
with respect to the norm ‖ · ‖Hγ

p
= ‖Λγ · ‖Lp(Rd), where Λγf = ((1 + |ξ|2)γ/2f̂ )̌ , and ,̂ ˇ are

the Fourier transform and its inverse. Also, Hγ
p (l2) is the set of sequences g = {gk, k ≥ 1} for

which

‖g‖Hγ
p (l2) := ‖ ‖Λγg‖l2 ‖Lp(Rd) <∞,

where ‖g‖l2 =
(∑

k≥1 |gk|2
)1/2

. The space Hγ
p,θ = Hγ

p,θ(R
d
+) is then defined for p ≥ 1 and

θ, γ ∈ R as follows [9, Definition 2.1]: given a non-negative function ζ ∈ C∞
0 (R+) satisfying∑+∞

n=−∞ |ζ(ez−n)|p ≥ 1 for all z ∈ R,

Hγ
p,θ = {u ∈ D′(Rd

+) : ‖u‖p
Hγ

p,θ
:=

+∞∑
n=−∞

enθ‖u(en·)ζ‖p
Hγ

p
<∞},
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where ζ(x) = ζ(x1) and D′(Rd
+) is the set of distributions on C∞

0 (Rd
+). It is shown in [9],

Lemma 2.4, that the definition does not depend on the specific function ζ. The spaceHγ
p,θ(l2) =

Hγ
p,θ(R

d
+; l2) is defined similarly by replacing the norm ‖ · ‖Hγ

p
with ‖ · ‖Hγ

p (l2).

We now define the corresponding spaces of functions in a bounded domain G.

For a real number γ and a bounded domain G of the class C |γ|+2, the space Hγ
p,θ(G) is defined

as follows:

Hγ
p,θ(G) =

{
u ∈ D′(G) : ‖u‖Hγ

p,θ(G) := ‖uχ0‖Hγ
p

+
K∑

m=1

‖ηmΨ−1
m (uχm)‖Hγ

p,θ
<∞

}
, (2.1)

where ηm is a C∞
0 (Rd) function that is equal to 1 on ψm(Br0(xm)).

The space Hγ
p,θ(G; l2) is defined similarly by replacing the norms ‖ · ‖Hγ

p
and ‖ · ‖Hγ

p,θ
with,

respectively, ‖ · ‖Hγ
p (l2) and ‖ · ‖Hγ

p,θ(l2). Direct computations show that these definitions are
independent of the specific choice of functions ψm, χm, and ηm, that is, the corresponding
norms defined by (2.1) are equivalent.

Note that C∞
0 (G) ⊂ Hγ

p,θ(G). Indeed, if u ∈ C∞
0 (G), then the function ηmΨ−1

m (uχm) is
compactly supported in Rd

+ and, by Propositions 4.2.1 and 4.3.1 in [13], belongs to Hγ
p . By

Remark 2.11 in [9] we conclude that ηmΨ−1
m (uχm) ∈ Hγ

p,θ. The argument also shows that, for
given ν > 0 and domain G of class Cν+2, the above definition of Hγ

p,θ(G) is correct only for
γ ∈ [−ν, ν].

Proposition 2.2. (Properties of the spaces Hγ
p,θ(G).) Assume that G is a bounded domain of

class Cν+2 and ν > 0.

1. For every γ ∈ [−ν, ν], the space Hγ
p,θ(G) is a Banach space and, for −ν ≤ α < β ≤ ν,

Hβ
p,θ(G) ⊂ Hα

p,θ(G).

2. If γ = n ≤ ν is a non-negative integer, then

Hγ
p,θ(G) = {u : u, ρux, . . . , ρ

n u(n)
x ∈ Lp,θ(G)},

where Lp,θ(G) = Lp(G; (ρ(x))θ−ddx).

3. For every α, β, γ satisfying −ν ≤ α < β < γ ≤ ν and for every ε > 0,

‖u‖
Hβ

p,θ(G)
≤ εN(α, β, γ)‖u‖Hγ

p,θ(G) +N(α, β, γ, ε)‖u‖Hα
p,θ(G). (2.2)

4. For every α, γ ∈ R with |γ| ≤ ν,

ραHγ
p,θ(G) = Hγ

p,θ−pα(G) and ‖ · ‖Hγ
p,θ−pα(G) is equivalent to ‖ρ−α · ‖Hγ

p,θ(G). (2.3)
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5. Assume that 0 < γ ≤ ν and γ − d/p = k + α for some k = 0, 1, . . . and α ∈ (0, 1). If
u ∈ Hγ

p,θ(G), then

ρm+θ/pu(m)
x ∈ C(G), 0 ≤ m ≤ k; ‖ρm+θ/pu(m)

x ‖C(G) ≤ N(d, γ, p, θ)‖u‖Hγ
p,θ(G);

ργ+θ/p−d/pu(k) ∈ Cα(G), ‖ργ+θ/p−d/pu(k)‖Cα(G) ≤ N(d, γ, p, θ)‖u‖Hγ
p,θ(G).

Proof. By assumption, ∂G∩Br0(xm) is the zero-level set of the function ψ1
m and the gradient

of ψ1
m does not vanish. Therefore, for x ∈ Br0(xm) ∩ G, the function ρ can be replaced with

ψ1
m. After that, Property 1 is obvious; Property 2 follows from Corollary 3.3 in [9]; Property

3, from Theorem 2.10 in [9]; Property 4, from Corollary 2.6 in [9]; Property 5, from Theorem
4.1 in [9].

Next, we describe the multipliers in the space Hγ
p,θ(G). For γ ∈ R define γ′ ∈ [0, 1) as follows.

If γ is an integer, then γ′ = 0; if γ is not an integer, then γ′ is any number from the interval
(0, 1) so that |γ| + γ′ is not an integer. It is known (see [4]) that the space of multipliers for
Hγ

p is given by

B|γ|+γ′ =


L∞(Rd), γ = 0
Cn−1,1(Rd), |γ| = n = 1, 2, . . .
C |γ|+γ′(Rd), otherwise,

where Cn−1,1(Rd) is the set of functions from Cn−1(Rd) whose derivatives of order n − 1 are
uniformly Lipschitz continuous. In other words, if u ∈ Hγ

p and a ∈ B|γ|+γ′ , then

‖au‖Hγ
p
≤ N(γ, d, p)‖a‖B|γ|+γ′ ‖u‖Hγ

p
.

For non-negative integer γ this follows by direct computation, for positive non-integer γ, from
Corollary 4.2.2(ii) in [13], and for negative γ, by duality.

Similarly, if

B|γ|+γ′(l2) =


L∞(Rd; l2), γ = 0,
Cn−1,1(Rd, l2), |γ| = n = 1, 2, . . . ,
C |γ|+γ′(Rd; l2), otherwise,

then, for every σ ∈ B|γ|+γ′(l2) and u ∈ Hγ
p ,

‖σu‖Hγ
p (l2) ≤ N(γ, d, p)‖σ‖B|γ|+γ′ (l2) ‖u‖Hγ

p
.

Let J = (j1, . . . , jd) be a multi-index, |J | = j1+· · ·+jd, Di = ∂/∂xi, andDJu(x) = Dj1
1 · · ·Djd

d .
Assume that G is a domain of class C2. For ν ≥ 0, define the space Aν(G) as follows:

(1) if ν = 0, then Aν(G) = L∞(G);
(2) if ν = n = 1, 2, . . . , then

Aν(G) = {a : a, ρax, . . . , ρ
n−1a(n−1)

x ∈ L∞(G), ρna(n−1)
x ∈ C0,1(G)},

‖a‖Aν(G) =
n−1∑
k=0

max
|J |=k

‖ρk DJa‖L∞(G) + max
|J |=n−1

‖ρnDJa‖C0,1(G);

5



(3) if ν = n+ δ, where n = 0, 1, 2, . . . , δ ∈ (0, 1), then

Aν(G) = {a : a, ρax, . . . , ρ
na(n)

x ∈ L∞(G), ρνa(n)
x ∈ Cδ(G)},

‖a‖Aν(G) =
n∑

k=0

max
|J |=k

‖ρk DJa‖L∞(G) + max
|J |=n

‖ρνDJa‖Cδ(G).

The space Aν(G; l2) is defined similarly by considering l2-valued functions. Note that if G is a
bounded domain of class Cν and ν ≥ 2, then, for all δ > 0, ρδ ∈ Aν(G).

The corresponding spaces Aν and Aν(l2) of functions on Rd
+ are defined in the same way, with

x1 used instead of ρ(x).
Lemma 2.3. Suppose that G is a bounded domain of class Cν . A functions a = a(x) belongs
to Aν(G) if and only if aχ0 ∈ Bν and ηmΨ−1

m (aχm) ∈ Aν , m = 1, . . . ,K (cf. (2.1)). The norm
‖a‖Aν(G) is equivalent to

‖aχ0‖Bν +
K∑

m=1

‖ηmΨ−1
m (aχm)‖Aν .

Proof. Since, for x ∈ Br0(xm) ∩G, the function ρ can be replaced with ψ1
m, the result follows

from Lemma 6.1.8 in [7].
Theorem 2.4. (Multipliers in Hγ

p,θ(G).) Assume that G is a bounded domain of class Cν+2,
γ ∈ R, and |γ| + γ′ ≤ ν. Then the space A|γ|+γ′(G) is the space of multipliers for Hγ

p,θ(G):
there is a constant N depending only on d, γ, p, and the domain G so that

‖au‖Hγ
p,θ(G) ≤ N‖a‖A|γ|+γ′ (G)‖u‖Hγ

p,θ(G)

for all a ∈ A|γ|+γ′(G) and u ∈ Hγ
p,θ(G). Similarly, if σ ∈ A|γ|+γ′(G; l2), then

‖σu‖Hγ
p,θ(G;l2) ≤ N‖σ‖A|γ|+γ′ (G;l2)‖u‖Hγ

p,θ(G).

The same results hold for the spaces of functions on Rd
+.

Proof. By Lemma 2.3 it is sufficient to consider functions on Rd
+. With no loss of generality,

we can replace the function ζ in the definition of the norm ‖ · ‖Hγ
p,θ

with ζ2. Then

‖au‖p
Hγ

p,θ
=
∑

n

enθ‖ζ2a(en·)u(en·)‖p
Hγ

p
≤ N

∑
n

enθ‖ζa(en·)‖p

B|γ|+γ′‖ζu(e
n·)‖p

Hγ
p
,

and it remains to show that if a ∈ A|γ|+γ′ , then ‖ζa(en·)‖p

B|γ|+γ′ is bounded by ‖a‖A|γ|+γ′

uniformly in n.

1. If γ = 0, then the result is obvious.

2. if 0 < |γ| ≤ 1, then, with δ = |γ|+ γ′,

|ζ(x)a(enx)− ζ(y)a(eny)|
|x− y|δ

≤ |ζ(x)(x1)−δ| · |(x1en)δa(enx)− (y1en)δa(eny)|
|enx− eny|δ

+
|(y1)δa(eny)| · |(x1)−δζ(x)− (y1)−δζ(y)|

|x− y|δ
,
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where both terms on the right are bounded by N‖a‖A|γ|+γ′ because of the assumption on a
and the properties of ζ (to estimate the second term on the right note that |a(eny)| is bounded
by assumption, and |(x1)−δζ(x)− (y1)−δζ(y)| = 0 if both x1 and y1 are large).

3. If |γ| > 1, then use the above argument and observe that

(ζ(x)a(enx))(k)
x ≤ N

k∑
l=0

|(x1)−lζ
(k−l)
X (x)| · |enx1|l · |a(l)

x (enx)| ≤ N
k∑

l=0

sup
x∈Rd

+

|(x1)la(l)
x (x)|.

The proof for A|γ|+γ′(l2) is similar.

Theorem 2.4 is proved.

According to the last theorem, the function ρδ, δ > 0, is a multiplier in everyHγ
p,θ(G). Together

with Proposition 2.2(4), this implies the following result.

Corollary 2.5. If θ1 < θ2 and G is a bounded domain, then Hγ
p,θ1

(G) ⊂ Hγ
p,θ1

(G).

We now define the spaces of stochastic processes. Fix (Ω,F , {Ft}, P ), a stochastic basis with
F and F0 containing all P -null subsets of Ω; τ , a stopping time, |(0, τ ]] = {(ω, t) ∈ Ω×R+ : 0 <
t ≤ τ(ω)}; P, the σ-algebra of predictable sets; {wk, k ≥ 1}, independent standard Wiener
processes.

The following spaces were introduced in [8] to study parabolic equations on Rd:

(1) Hγ
p(τ) = Lp( |(0, τ ]];P;Hγ

p ), Hγ
p(τ ; l2) = Lp( |(0, τ ]];P;Hγ

p (l2)), Lp(cdots) = H0
p(· · · );

(2) Fγ
p (τ) = Hγ−1

p (τ)×Hγ
p(τ ; l2);

(3) Hγ
p(τ): the collection of processes from Hγ+1

p (τ) that can be written, in the sense of
distributions, as

u(t) = u0 +
∫ t

0
f(s)ds+

∫ t

0
gk(s)dwk(s)

for some u0 ∈ Lp(Ω;F0;H
γ+1−2/p
p ) and (f, g) ∈ Fγ

p (τ);

‖u‖p
Hγ

p(τ)
= ‖uxx‖p

Hγ−1
p (τ)

+ ‖(f, g)‖p
Fγ

p (τ)
+ E‖u0‖p

H
γ+1−2/p
p

.

The above definitions suggest that, to study parabolic equations in a bounded domain G, the
domain must be sufficiently regular to allows, for fixed γ ∈ R, the definition of the spaces
Hν

p,θ(G) when ν ∈ [γ − 1, γ + 1]. We therefore assume from now on that γ ∈ R is fixed and G
is a bounded domain of class C |γ|+3.

We now define the corresponding spaces on G:

(1) Hγ
p,θ(τ,G) = Lp( |(0, τ ]];P;Hγ

p,θ(G)), Hγ
p(τ,G; l2) = Lp( |(0, τ ]];P;Hγ

p,θ(G; l2));

(2) Fγ
p,θ(τ,G) = Hγ−1

p,θ+p(τ,G)×Hγ
p,θ(τ,G; l2), U

γ
p,θ(G) = Lp(Ω;F0;H

γ+1−2/p
p,θ+2−p (G));
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(3) H
γ
p,θ(τ,G): the collection of process from Hγ+1

p,θ−p(τ,G) that can be written, in the sense
of distributions, as

u(t) = u0 +
∫ t

0
f(s)ds+

∫ t

0
gk(s)dwk(s) (2.4)

for some u0 ∈ Uγ
p,θ(G), (f, g) ∈ Fγ

p (τ,G), which means that, for every φ ∈ C∞
0 (G), the

equality

(u(t ∧ τ), φ) = (u0, φ) +
∫ t∧τ

0
(f(s), φ)ds+

∫ t∧τ

0
(gk(s), φ)dwk(s)

holds for all t ≥ 0 and all ω from a set of probability 1. The norm in the space H
γ
p,θ(τ,G)

is defined by

‖u‖p
Hγ

p,θ(τ,G)
= ‖u‖p

Hγ+1
p,θ−p(τ,G)

+ ‖(f, g)‖p
Fγ

p (τ,G)
+ ‖u‖p

Uγ
p,θ(G)

. (2.5)

We also write u = [f, g, u0] if u ∈ H
γ
p,θ(τ,G) and u satisfies (2.4). The corresponding spaces of

processes on Rd
+ were introduced in [10]. As before, in the case of Rd

+ the domain G will be
omitted from the argument of the spaces.
Proposition 2.6. Assume that G is a bounded domain of class C |γ|+3.

1. Spaces Hγ
p,θ(τ,G), Hγ

p,θ(τ,G; l2), and H
γ
p,θ(τ,G) are Banach spaces.

2. The operator ρDi : Hν
p,θ(G) → Hν−1

p,θ (G) is a bounded linear mapping for γ ≤ ν ≤ γ+ 1 and
i = 1, . . . , d.

3. The operator ρ : Hν
p,θ(G) → Hν

p,θ(G) is a bounded linear mapping for γ − 1 ≤ ν ≤ γ + 1.

4. The operator Di : Hν
p,θ(G) → Hν

p,θ(G) is a bounded linear mapping for γ ≤ ν ≤ γ + 1, and
i = 1, . . . , d.

Proof. Property 1 is obvious; Property 2 follows from Theorem 2.4 and from Theorem 3.1 in
[9]; Property 3, from Theorem 2.4; Property 4, from Theorem 3.6 in [9].

By definition, the space H
γ
p,θ(τ,G) contains the processes that can be solutions of certain

second-order parabolic equations. Indeed, it follows from Propositions 2.2(4) and 2.6(2)
that Di and DiDj are bounded operators from Hγ+1

p,θ−p(τ,G) to, respectively, Hγ
p,θ(τ,G) and

Hγ−1
p,θ+p(τ,G). Assume that aij and σik are P ⊗ B(Rd

+) measurable functions and

‖aij(t, ·)‖A|γ−1|+γ′ (G) + ‖σi·(t, ·)‖A|γ|+γ′ (G;l2) ≤ N0

for all (ω, t) ∈ |(0, τ ]] and all i, j = 1, . . . , d. Then there is a linear bounded map

u = [f0, g0, u0] ∈ H
γ
p,θ(τ,G) 7→ (f, g, u0) ∈ Fγ

p,θ × Uγ
p,θ

defined by
f = f0 − aijuxixj , gk = gk

0 − σikuxi .

It will be shown later, using embedding theorems, that if γ and p are sufficiently large, then u is
a function that is twice continuously differentiable in G and is equal to zero on ∂G. Therefore,
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if f and g are defined as above and p and γ are sufficiently large, then u is a classical solution
of the equation

du =
(
aij(t, x)uxixj + f(t, x)

)
dt+

(
σik(t, x)uxi + gk(t, x)

)
dwk(t), t > 0, x ∈ G

u|t=0 = u0, u|x∈∂G = 0. (2.6)

The result about the unique solvability of (2.6) will then state that the equation defines a
linear homeomorphism between the spaces H

γ
p,θ(τ,G) and Fγ

p,θ × Uγ
p,θ. To prove such a result,

it will be necessary to impose additional conditions on the functions a and σ.

Next, we will study embedding of the space H
γ
p,θ(τ,G) into spaces of continuous functions. For

a positive real number T > 0, a stopping time τ ≤ T , a real number δ ∈ (0, 1], and a Banach
space X, we will use the following notations:

|[u]|p
Cδ([0,τ ],X)

= sup
0≤s<t≤T

‖u(t ∧ τ)− u(s ∧ τ)‖p
X

|t− s|pδ

and
‖u‖p

Cδ([0,τ ],X)
= sup

0≤t≤T
‖u(t ∧ τ)‖p

X + |[u]|p
Cδ([0,τ ],X)

.

It is proved in [8], Theorem 2.1, that if u ∈ Hγ
p(τ), p ≥ 2, and τ ≤ T , then

E sup
0≤t≤T

‖u(t ∧ τ, ·)‖p
Hγ

p
≤ N(d, γ, p, T )‖u‖p

Hγ
p(τ)

, (2.7)

and if in addition 1/p < α < β < 1/2, then

E‖u‖p

Cα−1/p([0,τ ],Hγ+1−2β
p )

≤ N(α, β, d, γ, p, T )‖u‖p
Hγ

p(τ)
. (2.8)

We also know from Theorem 2.11 in [10] that

E sup
0≤t≤T

‖u(t ∧ τ, ·)− u0‖p
Hγ

p,θ
≤ N(d, γ, p, T )‖u‖p

Hγ
p,θ(τ)

. (2.9)

The following is the corresponding embedding theorem for the space H
γ
p,θ(τ,G).

Theorem 2.7. Assume that G is a bounded domain of class C |γ|+3, u ∈ H
γ
p,θ(τ,G), p ≥ 2,

d− 1 < θ < p+ d− 1, and τ ≤ T .

1.
E sup

0≤t≤T
‖u(t ∧ τ, ·)‖p

Hγ
p,θ(G)

≤ N‖u‖p
Hγ

p,θ(τ,G)
; (2.10)

in particular,

‖u‖p
Hγ

p,θ(t,G)
≤ N

∫ t

0
‖u‖p

Hγ
p,θ(s,G)

ds (2.11)

for all t ≤ T . The value of N depends only on d, γ, p, T , and the domain G.

2. If, in addition, 1/p < α < β < 1/2, then

E‖u‖p

Cα−1/p([0,τ ],Hγ+1−2β
p,θ−(1−2β)p

(G))
≤ N · ‖u‖p

Hγ
p,θ(τ,G)

. (2.12)

The value of N depends only on α, β, d, γ, p, T , and the domain G.
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Proof. The first part follows from (2.7), (2.9), and Corollary 2.5.

The proof of the second part requires some additional constructions. Denote by |D|γ the
operator f 7→ (|ξ|γ f̂) ,̌ whereˆandˇare the Fourier transform and its inverse. Theorem 2.2.4
in [14] implies that, for γ > 0, the norm in Hγ

p is equivalent to ‖ · ‖Lp + ‖|D|γ · ‖Lp .

Lemma 2.8. Assume that γ > 0 and f ∈ Hγ
p . If f is compactly supported in a bounded

domain G, then ‖f‖Lp ≤ N(d, γ,G)‖|D|γf‖Lp.

Proof. Using the estimates from [12, Section V.1.2], we get

‖f‖Lq ≤ N(α, d, p)‖|D|αf‖Lp , 1/q = 1/p− α/d,

for every f ∈ Hα
p and 0 < α < d/p. Let K ≥ 1 be the smallest positive integer so that

γ/K ≤ d/(2p), and define pm = p(dK/(dK − pγ))m, m = 1, . . . ,K. Then

‖|D|γf‖Lp ≥ N‖|D|γ(1−1/K)f‖Lp1
≥ · · · ≥ NK‖f‖LpK

.

It remains to notice that p < pK ≤ 2Kp, and, since f is compactly supported in G, ‖f‖Lp ≤
N(G, pK)‖f‖LpK

.

The lemma is proved.

Lemma 2.9. Assume that 1/p < α < β < 1/2. If u ∈ H1
p(τ) so that

u(t) = u0 +
∫ t

0
f(s)ds+

∫ t

0
gk(s)dwk(s),

then, for every c > 0,

c(1−2β)pE|[ |D|2−2βu]|p
Cα−1/p([0,τ ],Lp)

≤ N
(
c−p‖f‖p

Lp(τ)

+ cp‖u‖p
H2

p(τ)
+ ‖g‖p

H1
p(τ ;l2)

+ c−p‖g‖p
Lp(τ ;l2)

)
, (2.13)

where N depends only on α, β, γ, d, p, T .

Proof.

With no loss of generality assume that u0 = 0. Since ‖|D|ν · ‖Lp ≤ ‖ · ‖Hν
p

for ν > 0, we
conclude from inequality (2.8) (with γ = 1), that

E|[ |D|2−2βu]|p
Cα−1/p([0,τ ],Lp)

≤ N ·
(
‖f‖p

Lp(τ) + ‖uxx‖p
Lp(τ) + ‖gx‖p

Lp(τ ;l2) + ‖g‖p
Lp(τ ;l2)

)
.

It remains to re-scale the space variable x→ cx and use that (|D|νu(c·))(x) = cν(|D|νu)(cx).

The lemma is proved.
Proof of inequality (2.12).

According to the definition of Hγ
p,θ(G), it is sufficient to consider the case when G = Rd

+ ∩B,
where B is a ball of sufficiently large radius r > 0 centered at the origin, and u(t, x) = 0 if
|x| > r/2.
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We know that un(t, x) = ζ(x)u(t, enx) satisfies

un(t, x) = u0n +
∫ t

0
fn(s, x)ds+

∫ t

0
gk
n(s, x)dwk(s),

where

u0n(x) = ζ(x)u0(enx), fn(t, x) = ζ(x)f(t, enx), gn(t, x) = ζ(x)g(t, enx).

By assumption, un is compactly supported in G.

Next, we use Lemma 2.8, and also Lemma 2.9 with c = e−n, to write

enp(1−2β)E|[un]|p
Cα−1/p([0,τ ],H2−2β

p )
≤ N

(
enp‖fn‖p

Lp(τ)

+ e−np‖un‖p
H2

p(τ)
+ ‖gn‖p

H1
p(τ ;l2)

+ enp‖gn‖p
Lp(τ)

)
.

By replacing un with
(
(1 + |ξ|2)(γ−1)/2ûn

)̌
, we rewrite this inequality as

enp(1−2β)E|[un]|p
Cα−1/p([0,τ ],Hγ+1−2β

p )
≤ N

(
enp‖fn‖p

Hγ−1
p (τ)

+ e−np‖un‖p

Hγ+1
p (τ)

+ ‖gn‖p
Hγ

p(τ ;l2)
+ enp‖gn‖p

Hγ−1
p (τ ;l2)

)
.

After multiplying both sides by enθ and summing over all integer n, the last inequality results
in

E|[u]|p
Cα−1/p([0,τ ],Hγ+1−2β

p,θ−(1−2β)p
)
≤ N‖u‖p

Hγ
p,θ(τ,G)

+N‖g‖p

Hγ−1
p,θ+p(τ,G;l2)

;

since G is a bounded domain, the term ‖g‖p

Hγ−1
p,θ+p(τ,G;l2)

can be dropped by Corollary 2.5. By

the same corollary,

H
γ+1−2/p
p,θ+2−p (G) = ρ1−2/pH

γ+1−2/p
p,θ (G) ⊂ ρ1−2βHγ+1−2β

p,θ (G) = Hγ+1−2β
p,θ−(1−2β)p(G).

Consequently,

E‖u‖p

Cα−1/p([0,τ ],Hγ+1−2β
p,θ−(1−2β)p

)
≤ N

(
E‖u0‖p

Hγ+1−2β
p,θ−(1−2β)p

(G)

+ E|[u]|p
Cα−1/p([0,τ ],Hγ+1−2β

p,θ−(1−2β)p
)

)
≤ N‖u‖p

Hγ
p,θ(τ,G)

.

Theorem 2.7 is proved.
Corollary 2.10. Assume that G is a bounded domain of class C |γ|+3. If γ−d/p > 2, 0 < θ <
p− 2, and u ∈ H

γ
p,θ(τ,G), then, for all t ≥ 0 and all ω from a set of probability 1, the function

u(t ∧ τ, ·) is twice continuously differentiable inside G, continuous in the closure of G, and is
equal to zero on the boundary of G.

Proof. According to Theorem 2.7 and Proposition 2.2(4),

u ∈ Cα−1/p([0, τ ]; ρ1−2β ·Hγ+1−2β
p,θ (G))
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for every 1/p < α < β < 1/2. By Proposition 2.2(5),

ρ1+2β+θ/pu ∈ Cα−1/p([0, τ ];C2(G))

meaning that u is twice continuously differentiable in G. Also by Proposition 2.2(5),

ρθ/p+2β−1u ∈ Cα−1/p([0, τ ];C(G)),

so that, choosing β sufficiently close to 1/p to have θ/p + 2β − 1 < 0, we conclude that u is
continuous in the closure of G and is equal to zero on ∂G.

3. Main Result

Consider the following equation:

du =
(
aij(t, x)uxixj + f(t, x, u, ux)

)
dt+

(
σik(t, x)uxi + gk(t, x, u)

)
dwk(t), t > 0, x ∈ G

u = u(t, x), u|t=0 = u0, u|∂G = 0.
(3.1)

Fix γ ∈ R.
Assumption 3.1. (Regularity of the domain.) The domain G is a bounded domain in Rd of
class C |γ|+3, in the sense of Definition 2.1.
Assumption 3.2. (Coercivity.) There exist positive numbers κ1 and κ2 so that

κ1|ξ|2 ≤
(
aij − 1

2
σikσjk

)
ξiξj ≤ κ2|ξ|2 (3.2)

for all (ω, t) ∈ |(0, τ ]], x ∈ G, and ξ ∈ Rd.
Assumption 3.3. (Uniform continuity of a and σ.) For every ε > 0 there exists δε > 0 so
that

|aij(t, x)− aij(t, y)|+ ‖σi·(t, x)− σi·(t, y)‖l2 ≤ ε

for all (ω, t) ∈ |(0, τ ]], all x, y ∈ Ḡ with |x− y| < δε, and all i, j = 1, . . . , d.
Assumption 3.4. (Regularity of a and σ.) The functions aij and σik are P⊗B(Rd

+) measurable
and

‖aij(t, ·)‖A|γ−1|+γ′ (G) + ‖σi·(t, ·)‖A|γ|+γ′ (G;l2) ≤ κ2

for all (ω, t) ∈ |(0, τ ]] and all i, j = 1, . . . , d.
Assumption 3.5. (Regularity of the free terms.)

(f(·, ·, 0, 0), g(·, ·, 0)) ∈ Fγ
p,θ(τ,G),

and for every ε > 0 there exists µε > 0 so that

‖(f(·, ·, u, ux)− f(·, ·, v, vx), g(·, ·, u)− g(·, ·, v))‖Fγ
p,θ(τ,G)

≤ ε‖u− v‖Hγ
p,θ(G) + µε‖u− v‖Hγ

p,θ(G)

for all u, v ∈ H
γ
p,θ(τ,G).

Assumption 3.6. (Regularity of the initial condition.) u0 ∈ Uγ
p,θ(G).
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Assumption 3.7. (Technical assumptions.)

(i) p ≥ 2;

(ii) d− 1 < θ < d+ p− 1;

(iii) there exists a number κ̃ ∈ (0, 1) so that(
θ + 1− d

(p− 1)(p+ d− 1− θ)
aij − 1

2
σikσjk

)
ξiξj ≥ κ̃|ξ|2 (3.3)

for all (ω, t) ∈ |(0, τ ]], x ∈ G, and ξ ∈ Rd.
Definition 3.1. A process u ∈ H

γ
p,θ(τ,G) is called a solution of (3.1) if for every φ ∈ C∞

0 (G)
the following equality holds for all t ≥ 0 and all ω from a set of probability 1:

(u, φ)(t ∧ τ) = (u0, φ) +
∫ t∧τ

0

(
(aijuxixj , φ)(s) + (f, φ)(s)

)
ds

+
∫ t∧τ

0
(σikuxi + g, φ)(s)dwk(s).

It follows from Corollary 2.10 that if a solution of (3.1) exists and γ and p are sufficiently large,
then both the equation and the boundary condition are satisfied pointwise in x.

Note that Assumptions 3.1, 3.4, 3.5, and 3.6. are necessary to define the solution as an element
of the space H

γ
p,θ(τ,G). Assumption 3.3 is used to construct the solution by combining the

local solutions using the partition of unity in G. Note that this assumption does not in general
follow from Assumption 3.4; for example, the function a(x) = sin lnx, x ∈ (0, 1), belongs to
every An((0, 1)), but is not uniformly continuous.

It is well known that, in the case of stochastic equations, it is necessary to have p ≥ 2 because
of the Ito formula and the generalized Littlewood-Paley inequality (see [8] and [5] for details).
The restriction on θ is also natural: by considering the usual heat equation, we can see that if
θ ≥ d+p−1, then the free terms can blow up near the boundary too fast for the solution to exist,
while for θ ≤ d − 1 the solution, no matter how regular, cannot belong to the corresponding
space. Condition (3.3), on the other hand, is purely technical and comes from the method
used in [10] to prove solvability of the equation in the half-space. Note that (3.3) follows from
(3.2) if one of the following holds:

• σ ≡ 0 or
• p+ d− 2 ≤ θ < p+ d− 1.

The following is the main result of the paper. The proof is given in Section 5.
Theorem 3.2. (The Main Theorem.) Let T > 0 be fixed and assume that τ ≤ T . Then,
under Assumptions 3.1–3.7, equation (3.1) has a unique solution in the space H

γ+1
p,θ (τ,G) and

the solution satisfies

‖u‖Hγ
p,θ(τ,G) ≤ N ·

(
‖(f(·, ·, 0, 0), g(·, ·, 0))‖Fγ

p,θ(τ,G) + ‖u0‖Uγ
p,θ

)
. (3.4)

The value of N depends only on d, γ, κ1, κ2, κ̃, p, T, θ, the domain G, and the functions δ = δε
and µ = µε.
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The following is an interpretation of the result when the functions f and gk do not depend on
u. Let u ∈ Hγ+1

p,θ−p(τ,G) and functions aij , σik satisfy Assumption 3.4. Define the operators

Au(t, x) = aij(t, x)uxixj (t, x); Bku(t, x) = σik(t, x)uxi(t, x)

and write
|(A,B)|u = (f, g, u0)

for some (f, g) ∈ Fγ
p,θ(τ,G), u0 ∈ Uγ

p,θ(G) if u belongs to H
γ
p,θ(τ,G) and is a solution of

du =
(
aij(t, x)uxixj + f(t, x)

)
dt+

(
σik(t, x)uxi + gk(t, x)

)
dwk(t)

u|t=0 = u0, u|∂G = 0.

Note that if u = [f0, g0, u0] ∈ H
γ
p,θ(τ,G), then, by definition,

|(A,B)|u = (f0 −Au, g − Bu, u0) (3.5)

and
‖(f0 −Au, g − Bu)‖Fγ

p,θ(τ,G) ≤ N(d, γ, κ, p)‖u‖Hγ
p,θ(τ,G).

This means that |(A,B)| is a bounded linear operator from H
γ
p,θ(τ,G) to Fγ

p,θ(τ,G) × Uγ
p,θ(G).

The additional conditions on a, σ, p, and θ, namely, Assumptions 3.2, 3.3, and 3.7, ensure that
the operator |(A,B)| is a linear homeomorphism of the corresponding Banach spaces.

4. Examples

4.1. Linear equation with finite-dimensional noise. Consider a particular case of equa-
tion (3.1):

du =(aij(t, x)uxixj + bi(t, x)uxi + c(t, x)u+ f(t, x))dt

+
d1∑

k=1

(σik(t, x)uxi + hk(t, x)u(t, x) + gk(t, x))dwk(t), t > 0, x ∈ G,

u|t=0 = u0, u|∂G = 0.

(4.1)

We make the following assumptions about the functions b, c, f, h, g.
Assumption 4.1. The functions bi, c, and hk are P ⊗ B(G) measurable and

‖bi(t, ·)‖A|γ−1|+γ′ (G) + ‖ρ · c(t, ·)‖A|γ−1|+γ′ (G) + ‖h(t, ·)‖A|γ|+γ′ (G,l2) ≤ κ2.

Assumption 4.2. (f, g) ∈ Fγ
p,θ(τ,G).

The next result is a generalization of Theorem 2.1 in [6].
Theorem 4.1. Under Assumptions 3.1–3.7 with Assumptions 4.1 and 4.2 instead of Assump-
tion 3.5, for every τ ≤ T equation (4.1) has a unique solution from H

γ
p,θ and the solution

satisfies
‖u‖Hγ

p,θ(τ,G) ≤ N ·
(
‖(f, g)‖Fγ

p,θ(τ,G) + ‖u0‖Uγ
p,θ

)
.

The value of N depends only on d, γ, κ1, κ2, κ̃, p, T, θ, the domain G, and the functions δ = δε
and µ = µε.
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Proof. By Theorem 3.2, all we need is to show that, with the functions f(t, x, u, ux), and
g(t, x, u) defined by

f(t, x, u, ux) = bi(t, x)uxi + c(t, x)u+ f(t, x), g(t, x, u) = h(t, x)u(t, x) + g(t, x),

Assumptions 4.1 and 4.2 imply Assumption 3.5. If u ∈ H
γ
p,θ(τ,G), then Theorem 2.4 and

Proposition 2.6 imply that

(f(·, ·, u, ux), g(·, ·, u)) ∈ Fγ
p,θ(τ,G).

Also, using Proposition 2.2(4) and Assumption 4.1, for every u, v ∈ H
γ
p,θ(τ,G) we get

‖(f(·, ·, u, hx)− f(·, ·, v, vx), g(·, ·, u)− g(·, ·, v))‖Fγ
p,θ(τ,G)

= ‖(bi ·Di(u− v) + c · (u− v), h · (u− v))‖Fγ
p,θ(τ,G) ≤ N‖u− v‖Hγ

p,θ(τ,G).

Theorem 4.1 is proved.

4.2. Equation driven by space-time white noise. Assume that G is an interval I =
(x1, x2), ρ(x) = (x− x1)(x2 − x), {ϕk(x), k ≥ 1} is an orthonormal basis in L2(I).

Consider the following equation:

du = (a(t, x)uxx + b(t, x)ux + f(t, x, u))dt+ h(t, x, u)ϕk(x)dwk(t)

u(0, x) = u0(x), u(t, x1) = u(t, x2) = 0.
(4.2)

It is shown in [4, Section 7.2] that equation (4.2) is equivalent to

du = (a(t, x)uxx + b(t, x)ux + f(t, x, u))dt+ h(t, x, u)dB(t, x)

u(0, x) = u0(x), u(t, x1) = u(t, x2) = 0,

where B(t, x) is the space-time white noise.

We make the following assumptions about equation (4.2).
Assumption 4.3. There exist positive numbers κ1 and κ2 so that κ1 ≤ a(t, x) ≤ κ2 for all
(ω, t) ∈ |(0, τ ]] and x ∈ I.
Assumption 4.4. For every ε > 0 there exists δ = δε so that |a(t, x) − a(t, y)| ≤ δε for all
x, y ∈ [x1, x2] satisfying and all (ω, t) ∈ |(0, τ ]].
Assumption 4.5. The functions a, b are P ⊗ B(R) measurable and

‖a‖A2(I) + ‖b‖A1(I) ≤ κ2

for all (ω, t) ∈ |(0, τ ]] and x ∈ I.
Assumption 4.6. p ≥ 2, p/2 < θ < p, and γ ∈ (−1,−1/2).
Assumption 4.7.

f(·, ·, 0) ∈ Hγ−1
p,θ+p(τ, I), h(·, ·, 0) ∈ Lp,θ−p/2(τ, I),

and 1

|ρ(x)f(t, x, y1)− ρ(x)f(t, x, y2)|+ |h(t, x, y1)− h(t, x, y2)| ≤ κ2|y1 − y2|
1Lp,θ(τ, I) = H0

p,θ(τ, I)
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for all (ω, t) ∈ |(0, τ ]], x ∈ I, y1, y2 ∈ R.
Assumption 4.8. u0 ∈ Uγ

p,θ(I).
Theorem 4.2. Under Assumption 4.3–4.8, if τ ≤ T , then there is a unique solution u ∈
H

γ
p,θ(τ, I) of equation (4.2) and

‖u‖Hγ
p,θ(τ,I) ≤ N ·

(
‖f(·, ·, 0)‖Hγ−1

p,θ+p(τ,I)
+ ‖h(·, ·, 0)‖Lp,θ−p/2(τ,I) + ‖u0‖Uγ

p,θ(I)

)
.

The number N depends only on γ, κ1, κ2, θ, p, T, and the interval I.

Together with Theorem 2.7(2), Theorem 4.2 implies continuity of the solution in time and
space. When a = 1 and b = 0, the corresponding result is obtained in [15, Chapter 3].
Corollary 4.3. Assume that the conditions of Theorem 4.2 are fulfilled for every
γ ∈ (−1,−1/2), θ ∈ (p/2, p), and p ≥ 2 (for example, if the functions f and h are bounded
and do not depend on u, and u0 is deterministic and belongs to C∞

0 (I)). Then the solution
u = u(t, x) of (4.2) has the following properties:

1. For every sufficiently small δ > 0, u(t, ·) ∈ C1/2−δ(I) with probability 1, uniformly in t, and
u(t, x1) = u(t, x2) = 0 so that u(t, x) ∼ (ρ(x))1/2−δ near the end points;

2. For every δ > 0, u(· ∧ τ, x) ∈ C1/4−δ(0, T ) with probability 1, uniformly in x.

Proof. Assume the p > 2 and choose α, β so that 1/p < α < β < 1/2. By Proposition 2.2(4)
and Theorem 2.7(2),

u ∈ Cα−1/p([0, τ ], ρ1−2βHν−2β
p,θ ) (P− a.s.)

for all ν ∈ (0, 1/2), θ ∈ (p/2, p), and p ≥ 2. Assume that p is sufficiently large and θ > p/2+1.
Then we can choose ν so that

θ/p− 1/p = (1− ν)
or

1− 2β = ν − 2β + θ/p− 1/p,

so that, according to Proposition 2.2(5), ρ1−2/pHν−2β
p,θ (I) ⊂ Cν−2β−1/p(I) and

u ∈ Cα−1/p
(
[0, τ ], Cν−2β−1/p(I)

)
.

The last inclusion implies both statements of the corollary. Indeed, to get continuity in x,
choose ν sufficiently close to 1/2, p sufficiently large, and α, β sufficiently close to 1/p; to see
that u(t, x) ∼ (ρ(x))1/2−δ, we also choose θ close to p/2 + 1. To get continuity in t, choose ν
sufficiently close to 1/2, α and β sufficiently close to 1/4, and p sufficiently large.

Corollary 4.3 is proved.

To deduce Theorem 4.2 from Theorem 3.2, one of the problems is to show that Assumption 4.7
implies Assumption 3.5 with gk(t, x, u) = h(t, x, u)ϕk(x). To do so, we will need the following
result.
Lemma 4.4. Assume that −1 < γ < −1/2 and h ∈ Lp,θ−p/2(I). Define g = {gk(x), k ≥ 1}
so that gk(x) = h(x)ϕk(x). Then g ∈ Hγ

p,θ(I; l2) and

‖g‖Hγ
p,θ(I;l2) ≤ N‖h‖Lp,θ−p/2(I).
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Proof. By the definition of the space Hγ
p (I; l2) it is sufficient to show that, for every function

χ ∈ C∞
0 (R) whose support contains x1 and does not contain x2, the function g̃ defined by

g̃k(x) = χ(x + x1)ϕk(x + x1)h(x + x1) belongs to Hγ
p,θ(l2); the analysis near the point x2 is

identical. To simplify the notations, set x1 = 0.

It is known from [11] that in the case d = 1 the spaces Hµ
p,θ are generated by the corresponding

powers of the operator
Λp,θ = Q−1

p,θΛQp,θ,

where Qp,θ : f(x) 7→ f(ex)exθ/p and Λ =
√

1− d2/dx2. This means that if Rγ(x, y) is the
kernel of the operator Λγ , then the kernel Rγ,θ(x, y) of the operator Λγ

p,θ satisfies

Rγ,θ(ex, ey) = Rγ(x, y)e−θ(x−y)/pe−y. (4.3)

By the definition of the norm in Hγ
p,θ(l2),

‖g̃‖p
Hγ

p,θ(l2)
=
∫ ∞

0

(∑
k

(∫ +∞

0
Rγ,θ(x, y)h(y)ϕk(y)χ(y)dy

)2
)p/2

xθ−1dx,

and by the Bessel inequality for orthonormal systems, the last expression is bounded by∫ ∞

0

(∫ +∞

0
R2

γ,θ(x, y)h
2(y)χ2(y)dy

)p/2

xθ−1dx.

After that, relation (4.3) implies that

‖g̃‖p
Hγ

p,θ(l2)
≤
∫ +∞

−∞

(∫ +∞

−∞
R2

γ(x, y)|h̃(y)|2dy
)p/2

dx, (4.4)

where h̃(y) = e(θ/p−1/2)yh(ey)χ(ey).

By Lemma 4.1(ii) in [8] the right-hand side of (4.4) is bounded by

N(γ, p)‖h̃‖p
Lp(R).

Finally, the definition of h̃ and the Hölder inequality imply that

‖h̃‖p
Lp(R) ≤ N(I)

∫ x2

x1

xθ−p/2−1|h(x)|pdx ≤ N(I)‖h‖p
Lp,θ−p/2(I).

Lemma 4.4 is proved.
Remark 4.5. Note that h ∈ Lp,θ−p/2(I) if, for example, θ > p/2 and h ∈ L∞(I) or if θ ≥ p/2+1
and h ∈ Lp(I).

Proof of Theorem 4.2.

We can now deduce Theorem 4.2 from Theorem 3.2 If f(t, x, u, ux) = b(t, x)ux + f(t, x, u),
then, by Assumptions 4.5 and 4.7,

‖f(·, ·, u, ux)− f(·, ·, v, vx)‖
Hγ−1

p,θ+p(τ,I)
≤ N‖u‖Hγ

p,θ(τ,I).
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Also, by Assumption 4.7 and Lemma 4.4, if gk(t, x, u) = h(t, x, u)ϕk(x), then
g(·, ·, 0) ∈ Hγ

p,θ(τ, I; l2) We need to show that, for every ε > 0, there is µε so that

‖g(·, ·, u)− g(·, ·, v)‖Hγ(τ,I;l2) ≤ ε‖u− v‖Hγ
p,θ(τ,I) + µε‖u− v‖Hγ

p,θ(τ,I) (4.5)

for all u, v ∈ H
γ
p,θ(τ, I). By Assumption 4.7 and Lemma 4.4 we conclude that

‖g(·, ·, u)− g(·, ·, v)‖Hγ
p,θ(τ,I;l2) ≤ ‖u− v‖Lp,θ−p/2(τ,I).

For every ε > 0, inequality |ab| ≤ ε|a|2 + 1/ε |b|2 implies

‖u− v‖p
Lp,θ−p/2(τ,I) ≤ ε‖u− v‖p

Lp,θ−p(τ,I) + 1/ε‖u− v‖p
Lp,θ(τ,I).

Next, we use (2.2) with ε2 instead of ε to get

1/ε‖u− v‖p
Lp,θ(τ,I) ≤ N(γ)ε‖u− v‖p

Hγ+1
p,θ (τ,I)

+N(γ, ε)‖u− v‖p
Hγ

p,θ(τ,I)
.

Finally, we note that

‖u− v‖p
Lp,θ−p(τ,I) ≤ ‖u− v‖p

Hγ
p,θ(τ,I)

and ‖u− v‖p

Hγ+1
p,θ (τ,I)

≤ N(γ, p, I)‖u− v‖p
Hγ

p,θ(τ,I)
.

Combining the above inequalities results in (4.5).

Theorem 4.2 is proved.

5. Proof of Theorem 3.2

With no loss of generality, we assume that τ = T, because we can always continue the functions
f and g to Ω× (0, T ) by setting them equal to zero for τ ≤ t.

The solution operator for equation (3.1) will be constructed by using the partition of unity in
G to combine the local solution operators away from the boundary and near the boundary.
A detailed description of this approach for deterministic elliptic equations can be found in [7,
Sections 6.2–6.5].

The proof will proceed as follows. The local solution operator away from the boundary is
constructed below in Lemma 5.1 using the results from [8]. To construct the local solution
operator near the boundary, the original equation is transformed into an equation in Rd

+. The
resulting equation with “almost constant” coefficients is solved by combining the results from
[10] with a perturbation result from Lemma 5.3 below. Note that after the transformation to
the half-space the coefficients of the equation depend on x even if the coefficients of the original
equation did not. The process of combining the local solution operators results in an integro-
differential equation whose unique solvability and equivalence with the original equation are
established in Propositions 5.5 and 5.6 below.

We begin by considering equation (3.1) away from the boundary. Take two functions χ0, η0 ∈
C∞

0 (G), where χ0 is the corresponding element of the partition of unity and the function η0

satisfies 0 ≤ η0(x) ≤ 1 and η0(x) = 1 on the support of χ0. Define operators

(Ã0, B̃0) : Hγ
p(T ) → Fγ

p (T )
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by

Ã0u(t, x) = η0(x)aij(t, x)uxixj (t, x) + (1− η0(x))∆u(t, x),

B̃k
0u(t, x) = η0(x)σik(t, x)uxi(t, x),

where ∆ is the Laplace operator. Next, define the operator

|(Ã0, B̃0)| : Hγ
p(T ) → Fγ

p (T )× Lp(Ω,Hγ+1−2/p
p )

by setting (cf. (3.5)) |(Ã0, B̃0)|u = (f0 − Ã0u, g0 − B̃0u, u0)

if u(t) = u0 +
∫ t
0 f0(s)ds+

∫ t
0 g

k
0 (s)dwk(s) as an element of Hγ

p(T ).

In other words, if |(Ã0, B̃0)|u = (f, g, u0), then u is a solution of

du =
(
Ã0u(t, x) + f(t, x)

)
dt+

(
B̃k

0u(t, x) + gk(t, x)
)
dwk(t), t > 0, x ∈ Rd,

u|t=0 = u0.

If |(A,B)| is the operator defined after the statement of Theorem 3.2, then

|(A,B)| (uχ0) = |(Ã0, B̃0)| (uχ0)

for every u ∈ Hγ
p(T ).

Lemma 5.1. Under Assumptions 3.2, 3.3, and 3.4 the operator |(Ã0, B̃0)| has a bounded inverse
R̃0 so that

‖R̃0(f, g, u0)‖p
Hγ

p(T )
≤ N ·

(
‖(f, g)‖p

Fγ
p (T )

+ E‖u0‖p

H
γ+1−2/p
p

)
(5.1)

and

R̃0( |(A,B)| (uχ0)) = uχ0 (5.2)

for every u ∈ Hγ
p(T ).

Proof. Both statements of the lemma follow from Theorem 3.2 in [8].

Next, we consider equation (3.1) in Br0(x0) ∩ G for x0 ∈ ∂G. Let ψ be the corresponding
diffeomorphism (cf. Definition 2.1) ψ : Br0(x0) ∩G→ Rd

+, y0 = ψ(x0) = 0.

Define the following operators (cf. Section 6.2 in [7]):

Ãv(t, y) = ãij(t, y)vyiyj (t, y) + b̃i(t, y)vyi(t, y), B̃kv(t, y) = σ̃ik(t, y)vyi(t, y),

where

ãij(t, y) = ai′j′(t, x)ψi
xi′ (x)ψ

j

xj′ (x); b̃
i(t, y) = ai′j′(t, x)ψi

xi′xj′ (x);

σ̃ik(t, y) = σi′k(t, x)ψi
xi′ (x); x = ψ−1(y).

It follows that if u(t, x) = v(t, y), then (Au(t, x),Bu(t, x)) = (Ãv(t, y), B̃v(t, y)).
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To solve equation (3.1) in Br0(x0) ∩ G, fix a function η ∈ C∞
0 (Rd) so that 0 ≤ η ≤ 1 and

η(x) = 1 for |x| ≤ r0, and define η̃(y) = η(x− x0),

Āv(t, y) = η̃(y)Ãv(t, y) + (1− η̃(y))ãij(t, y0)vyiyj (t, y),

B̄kv(t, y) = η̃(y)B̃kv(t, y) + (1− η̃(y))σ̃ik(t, y0)vyi(t, y),

Ā0v(t, y) = ãij(t, y0)vyiyj (t, y); B̄k
0v(t, y) = σ̃ik(t, y0)vyi(t, y).

Finally, define the operator

|(Ā0, B̄0)| : H
γ
p,θ(T ) → Fγ

p,θ(T )× Uγ
p,θ

by setting
|(Ā0, B̄0)| v = (f0 − Ā0v, g0 − B̄0v, v0)

if v = [f0, g0, v0] as an element of H
γ
p,θ(T ). In other words, if |(Ā0, B̄0)| v = (f, g, v0), then v is a

solution of
dv =

(
Ā0v(t, y) + f(t, y)

)
dt+

(
B̄k

0v(t, y) + gk(t, y)
)
dwk(t), t > 0, y ∈ Rd

+,
v|t=0 = v0, v|y1=0 = 0.

Lemma 5.2. Under Assumptions 3.2, 3.4, 3.7, and 3.1, for every x0 ∈ ∂G the operator
|(Ā0, B̄0)| has a bounded inverse R̄0 and the norm of R̄0 does not depend on T .

Proof. This follows from Theorem 3.2 in [10], because the coefficients of Ā0 and B̄0 do not
depend on y.

Next, we establish a perturbation result.
Lemma 5.3. (cf. Theorem 5.2 in [8].) There exists an ε0 depending only on d, γ, κ, p, θ so
that if ε ≤ ε0 and the operators Ā, B̄ satisfy

‖(Āv, B̄v)− (Ā0v, B̄0v)‖Fγ
p,θ(T ) ≤ ε‖v‖Hγ

p,θ(T ) +N0‖v‖Hγ
p,θ(T )

for some N0 depending only on d, γ, κ, p, θ, then the operator |(Ā, B̄)| has a bounded inverse. If
N0 = 0, then the norm of the inverse does not depend on T .

Proof. Define the operator R from H
γ
p,θ(T ) to itself by setting

Rv = R̄0(f + (Ā − Ā0)v, g + B̄ − B̄0)v, u0),

where R̄0 is the operator from Lemma 5.2. With this definition, v satisfies |(Ā, B̄)| v = (f, g, u0)
if and only if v is a fixed point of the operator R. Therefore, it remains to show that a
sufficiently high power (R)n of R is a contraction in H

γ
p,θ(T ). We have

‖Rv1 −Rv2‖p
Hγ

p,θ(T )
≤ N‖( (Ā − Ā0)(v1 − v2), (B̄ − B̄0)(v1 − v2) )‖p

Fγ
p,θ(T )

≤ Nεp‖v1 − v2‖p
Hγ

p,θ(T )
+N Np

0

∫ T

0
‖v1 − v2‖p

Hγ
p,θ(s)

ds,

where the first inequality follows from Lemma 5.2, and the second, from the assumptions and
(2.11). This completes the proof if N0 = 0; otherwise, we iterate the last inequality as in the
proof of Theorem 5.2 in [8].

Lemma 5.3 is proved.
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Lemma 5.4. For every a ∈ A|γ|+γ′ there is an equivalent norm in Hγ
p,θ (also denoted by

‖ · ‖Hγ
p,θ

) and a constant N = N(a, d, γ, p) so that

‖a u‖Hγ
p,θ
≤ N · sup

x∈Rd
+

|a(x)| · ‖u‖Hγ
p,θ
. (5.3)

Similarly, for every σ ∈ A|γ|+γ′(l2) there is an equivalent norm in Hγ
p,θ and a constant N =

N(d, γ, p, σ) so that
‖σ u‖Hγ

p,θ(l2) ≤ N · sup
x∈Rd

+

‖σ(x)‖l2 · ‖u‖Hγ
p,θ
. (5.4)

Proof. It is known from Remark 5.2 in [8] that for every a ∈ Bγ there is an equivalent norm
in Hγ (defined by ‖f‖Hγ

p
= ‖((m2 + |ξ|2)f̂ )̌ ‖Lp(Rd) for sufficiently large m) and a constant

N = N(a, d, γ, p) so that
‖a u‖Hγ

p
≤ N · sup

x∈Rd
+

|a(x)| · ‖u‖Hγ
p
.

It remains to use this norm ‖ · ‖Hγ
p

in the definition of the norm in Hγ
p,θ :

‖a u‖p
Hγ

p,θ
=
∑

n

enθ‖ζa(en·)u(en·)‖p
Hγ

p
.

The proof of the second statement is similar. Lemma 5.4 is proved.

We now use the last three lemmas to construct the local inverse of the operator |(A,B)| near
the boundary of G. In view of Assumption 3.4 and Lemma 5.4, we will assume with no loss
of generality that there exists a constant N so that inequality (5.3) holds for all ãij(t, x) and
inequality (5.4), for all σ̃i·(t, x). Note that

(Ā − Ā0)v(t, y) = η̃(y)(ãij(t, y)− ãij(t, y0))vyiyj (t, y) + η̃(y)b̃i(t, y)vyi(t, y).

Consequently, by Assumptions 3.3 and 3.1, for every ε > 0, we can choose r0 in Definition 2.1
so that

‖(Ā − Ā0)v‖Hγ−1
p,θ+p(T )

≤ N ·
(
ε‖vy‖Hγ

p,θ(T ) + ‖v‖Hγ
p,θ(T )

)
and

‖(B̄ − B̄0)v)‖Hγ
p,θ(T ;l2) ≤ Nε‖vy‖Hγ

p,θ(T )

with N independent of T . As a result,

‖((Ā − Ā0)v, (B̄ − B̄0)v)‖Fγ
p,θ(T ) ≤ Nε‖v‖Hγ

p,θ(T ) +N‖v‖Hγ
p,θ(T ).

We now choose ε so that Nε ≤ ε0, where ε0 is as in Theorem 5.3; the corresponding value of
r0 will be denoted by r∗0. Then by Theorem 5.3 the operator |(Ā, B̄)| has a bounded inverse R̄.

Define the operator Sx0 (local solution operator near the boundary) by

Sx0(f, g, u0) = ΨR̄(f̃ , g̃, ũ0),

where

f̃(t, y) = η̃(y)f(t, x), g̃(t, y) = η̃(y)g(t, x), ũ0(y) = η̃(y)u0(x), x = ψ−1(y).

Properties of the operator Sx0 :
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‖Sx0(f, g, u0)‖Hγ
p,θ(T,G∩Br∗0/2(x0)) ≤ N ·

(
‖(f, g)‖Fγ

p,θ(T,G) + ‖u0‖Uγ
p,θ(G)

)
; (5.5)

Sx0( |(A,B)| (χu)) = χu (5.6)
for all u ∈ H

γ
p,θ(T,G) and χ ∈ C∞

0 (Br∗0/2(x0)).

These properties follow from the definition of Sx0 and from Lemma 5.3.

Now we can construct the global solution operator. Let χ0, χ1, . . . , χK be a partition of unity
in G, corresponding to r0 = r∗0; in particular, for m = 1, . . . ,K, the function χm is supported
in Br∗0/2(xm) for some xm ∈ ∂G. Define S0 = R̃0, the solution operator from Lemma 5.1, and
Sm = Sxm , m = 1, . . . ,K, the corresponding local solution operators near the boundary.
Proposition 5.5. (cf. Lemma 6.4.1 in [7].) If u ∈ H

γ
p,θ(T,G) and

|(A,B)|u = (f, g, u0), (5.7)

then

u =
K∑

m=0

χmSm(χmf − Âmu, χmg − B̂mu, χmu0), (5.8)

where

Âmu(t, x) = A(χmu)− χmAu = 2aij(t, x)(χm(x))xiuxj (t, x) + aij(t, x)(χm(x))xixju(t, x),

B̂k
mu(t, x) = Bk(χmu)− χmBku = σik(t, x)(χm(x))xiu(t, x).

Proof. It follows from (5.2) and (5.6) that χmu = Sm( |(A,B)| (χmu)), 0 ≤ m ≤ K, and also,
by the definition of the operator |(A,B)| ,

A(χmu) = χmf − Âmu, B(χmu) = χmg − B̂mu.

Proposition 5.5 is proved.
Proposition 5.6. (cf. Section 6.5 in [7].)

1. For every (f, g) ∈ Fγ
p,θ(T,G) and u0 ∈ Uγ

p,θ(G) there is a unique solution u ∈ H
γ
p,θ(T,G) of

equation (5.8). This solution satisfies

‖u‖Hγ
p,θ(T,G) ≤ N ·

(
‖(f, g)‖Fγ

p,θ(T,G) + ‖u0‖Uγ
p,θ(G)

)
. (5.9)

2. If u ∈ H
γ
p,θ(T,G) is a solution of (5.8), then u also satisfies (5.7).

Proof. 1. To prove existence and uniqueness, it is enough to show that a sufficiently high
power of the linear operator

Ŝ : u 7→
K∑

m=0

χmSm(Âmu, B̂mu, 0)

is a contraction in H
γ
p,θ(T,G). To this end note that

‖Ŝu‖p
Hγ

p,θ(T,G)
≤ N‖u‖p

Hγ
p,θ(T,G)

≤ N

∫ T

0
‖u‖p

Hγ
p,θ(t,G)

dt,
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where the first inequality follows from the definitions of the operators Âm and B̂m and the
properties of the spaces, while the second inequality is (2.11). The result then follows after
iteration.

The unique solution of (5.8) then satisfies

‖u‖p
Hγ

p,θ(T,G)
≤ N ·

(
‖(f, g)‖p

Fγ
p,θ(T,G)

+ ‖u0‖p
Uγ

p,θ(G)
+
∫ T

0
‖u‖p

Hγ
p,θ(t,G)

dt

)
so that (5.9) follows by the Gronwall inequality.

2. Assume that u ∈ H
γ
p,θ(T,G) is a solution of (5.8). Then, as an element of H

γ
p,θ(T,G), the

function u satisfies |(A,B)|u = (f0, g0, u0) with some (f0, g0) ∈ Fγ
p,θ(T,G) and the same u0 (by

construction), and we have to show that f = f0, g = g0. By Proposition 5.5 the function u
satisfies

u =
K∑

m=0

χmSm(χmf0 − Âmu, χmg0 − B̂mu, χmu0). (5.10)

Therefore, if f̂ = f − f0, ĝ = g − g0, then, by comparing (5.10) with (5.8) we get
K∑

m=0

χmSm(χmf̂ , χmĝ, 0) = 0,

and, after applying the operator |(A,B)| and using (5.2) and (5.6),

f̂ =
K∑

m=0

ÂmSm(χmf̂ , χmĝ, 0), ĝ =
K∑

m=0

B̂mSm(χmf̂ , χmĝ, 0).

To conclude that f̂ = 0, and ĝ = 0, it is enough to show that a sufficiently high power of the
linear operator

Ŝ : (f, g) 7→

(
K∑

m=0

ÂmSm(χmf, χmg, 0),
K∑

m=0

B̂mSm(χmf, χmg, 0)

)
is a contraction in Fγ

p,θ(T,G). Clearly,

‖Ŝ(f, g)‖p
Fγ

p,θ(T,G)
≤ N

K∑
m=1

‖Sm(χmf, χmg, 0)‖p
Hγ

p,θ(T,G)

≤ N
K∑

m=1

∫ T

0
‖Sm(χmf, χmg, 0)‖p

Hγ
p,θ(t,G)

dt ≤ N

∫ T

0
‖(f, g)‖p

Fγ
p,θ(t,G)

dt,

and the result follows after iteration.

Proposition 5.6 is proved.

We can now finish the proof of Theorem 3.2. It follows from Propositions 5.5 and 5.6 that the
operator |(A,B)| has a bounded inverse R. Therefore, every solution of (3.1) satisfies

u = R(f(u), g(u), u0),
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where for simplicity the dependence of f and g on t, x is omitted. To prove Theorem 3.2, that
is, to show that equation (3.1) has a unique solution in H

γ
p,θ(T,G) and the solution satisfies

(3.4), it is enough to show that a sufficiently high power of the operator

S : u 7→ R(f(u, ux), g(u), u0)

is a contraction in H
γ
p,θ(T,G). We have

‖Su− Sv‖p
Hγ

p,θ(T,G)
= ‖R(f(u, ux)− f(v, vx), g(u)− g(v), 0)‖p

Hγ
p,θ(T,G)

≤ N‖(f(u, ux)− f(v, vx), g(u)− g(v))‖p
Fγ

p,θ(T,G)

≤ Nε‖u− v‖p
Hγ

p,θ(T,G)
+Nµε‖u− v‖p

Hγ
p,θ(T,G)

,

where the first inequality follows from (5.9) and the second, from Assumption 3.5. Therefore,

‖Su1 − Su2‖p
Hγ

p,θ(T,G)
≤ Nε‖u1 − u2‖p

Hγ
p,θ(T,G)

+N

∫ T

0
‖u1 − u2‖p

Hγ
p,θ(t,G)

dt,

and it remains to iterate the last inequality with ε sufficiently small.

Theorem 3.2 is proved.
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[1] Z. Brzeźniak. Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal., 4(1):1–
45, 1995,

[2] F. Flandoli. Regularity theory and stochastic flows for parabolic SPDEs. Gordon and Breach Science Pub-
lishers, Stochastics Monographs, v. 9, 1995.

[3] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, Berlin,
1977.

[4] N. V. Krylov. An analytic approach to SPDEs. In: B. L. Rozovskii and R. Carmona, editors, Stochastic
Partial Differential Equations. Six Perspectives, Mathematical Surveys and Monographs, pages 185–242,
AMS, 1999.

[5] N. V. Krylov. A generalization of the Littlewood-Paley inequality and some other results re-
lated to stochastic partial differential equations. Ulam Quarterly, 2:16–26, 1994. On the Web at
ftp://ftp.math.ufl.edu/pub/ulam/volume2/issue4/.

[6] N. V. Krylov. A W n
2 -Theory of the Dirichlet Problem for SPDEs in General Smooth Domains. Probab.

Theory Relat. Fields, 98:389–421, 1994.
[7] N. V. Krylov. Lectures on Elliptic and Parabolic Equations in Hölder Spaces. American Mathematical
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