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Abstract. Equations of the form du = (aijuxixj +Dif
i) dt+

∑
k
(σikuxi + gk) dwkt are consid-

ered for t > 0 and x ∈ Rd+. The unique solvability of these equations is proved in weighted Sobolev
spaces with fractional positive or negative derivatives, summable to the power p ∈ [2,∞).
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Introduction. The main goal of this article is to extend the results of [6] to
multidimensional cases. We are dealing with the equation

du = (aijuxixj + f ixi) dt+ (σikuxi + gk) dwkt

given for t ≥ 0 and x ∈ Rd+ := {x = (x1, x′) : x1 > 0, x′ ∈ Rd−1}. Here wkt
are independent one-dimensional Wiener processes, i and j run from 1 to d, k runs
through {1, 2, . . .} with the summation convention being enforced, and f i and gk are
some given functions of (ω, t, x) defined for i = 1, . . . , d and k ≥ 1. The functions
aij and σik are assumed to depend only on ω and t, and in this sense we consider
equations with “constant” coefficients. Without loss of generality we also assume that
aij = aji.

As in [6], let us mention that such equations with a finite number of the pro-
cesses wkt appear, for instance, in nonlinear filtering problems for partially observable
diffusions (see [8]). Considering infinitely many wkt turns out to be instrumental in
treating equations for measure valued processes, for instance, driven by space-time
white noise (see [3] or [4]).

Our main goal is to prove the solvability of such equations in spaces similar to
Sobolev spaces, in which derivatives are understood as generalized functions, the num-
ber of derivatives may be fractional or negative, and underlying power of summability
is p ∈ [2,∞).

The motivation for this goal is explained in detail in [3] or [4], where an Lp-theory
is developed for the equations in the whole space. We mention only that if p = 2, the
theory was developed long ago and an account of it can be found, for instance, in [8].
The case of equations in domains is also treated in [8]. However, the solvability is
proved only in spaces W 1

2 of functions having one generalized derivative in x square
summable in (ω, t, x). It turns out that going to better smoothness of solutions is not
possible in spaces Wn

2 and one needs to consider Sobolev spaces with weights, allowing
derivatives to blow up near the boundary. The theory of solvability in Hilbert spaces
like Wn

2 with weights is developed in [1] and [7], where n is an integer. Here we show
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what happens if one takes a fractional or negative number of derivatives and replaces
2 with any p ≥ 2. By the way, according to [2], it is not possible to take p < 2 when
a stochastic term is present in the equation.

One of the main difficulties in developing the theory presented below was finding
the right spaces where to look for solutions. In the one-dimensional case Rd+ = R+ they
have been found in [6]. It turns out that there are many multidimensional counterparts
of spaces from [6]. The one which looks the most natural is to apply weights only
to derivatives with respect to x1. Indeed, why should we allow the derivatives with
respect to tangential variables blow up near x1 = 0? The equation is translation
invariant with respect to x′, isn’t it? However, in such spaces it is impossible to solve
equations with variable coefficients in smooth domains unless the coefficients not only
are smooth with respect to x but also behave in a very restrictive way as x approaches
the boundary. And, of course, considering equations with constant coefficients in half
spaces aims at equations with variable coefficients in smooth domains.

This shows that one cannot just imitate the original definition of Sobolev spaces
with weights Hγ

p,θ from [6]. However, it turns out that one can very naturally general-
ize to the multidimensional case an equivalent definition, looking much more complex,
which is discovered in [6] and stated there as Theorem 1.11 (see Definition 1.1 below).

This article is organized as follows. In section 1 we present some definitions and
facts from [5] on the basis of which, in section 2, we introduce the stochastic Banach
spaces in which we are going to solve our equations. Our main result is given and
proved in section 3. One auxiliary result used in section 3 is proved in section 4.

We finish the introduction with some notation. Everywhere, apart from section 1,
we assume that p ∈ [2,∞). By Cn0 (D) we denote the set of all n times continuously
differentiable (real-valued) functions with compact support belonging to D. We de-
note

Di = ∂/∂xi, Du = ux = (D1u, . . . ,Ddu).

For a multi-index α = (α1, . . . , αd), where αi’s are nonnegative integers, denote

Dα = Dα1
1 · · ·Dαd

d , |α| = α1 + · · ·+ αd.

By Hγ
p = Hγ

p (Rd) we denote the space of Bessel potentials (= (1 −∆)−γ/2Lp) with
norm || · ||γ,p (see [9]). For γ = 0, we have H0

p = Lp and we denote || · ||p = || · ||0,p.
Any function given on R+ := R1

+ is also considered as a function on Rd+ indepen-
dent of x′. Define Mα as the operator of multiplying by (x1)α, M = M1.

Finally, by D(Rd+) we denote the space of all distributions on Rd+ that is of
continuous linear functionals on C∞0 (Rd+).

1. Sobolev spaces with weights. Here we collect some definitions and facts
from [5].

Definition 1.1. Take and fix a nonnegative function ζ ∈ C∞0 (R+) such that

∞∑
n=−∞

ζp(ex−n) ≥ 1 for all x ∈ R.(1.1)

For γ, θ ∈ R, and p ∈ (1,∞) let Hγ
p,θ be the set of all distributions u on Rd+ such that

||u||pγ,p,θ :=
∞∑

n=−∞
enθ||u(en ·)ζ||pγ,p =

∞∑
n=−∞

enθ||(1−∆)γ/2(u(en ·)ζ)||pp <∞.(1.2)



A SOBOLEV SPACE THEORY OF SPDEs 21

Denote Lp,θ = H0
p,θ.

In the same way, for any separable Banach space X, we introduce the spaces
Hγ
p,θ(X) of X-valued functions by replacing (1 − ∆)γ/2(u(en ·)ζ) in (1.2) with |(1 −

∆)γ/2(u(en ·)ζ)|X .
Lemma 1.2. (i) The spaces Hγ

p,θ are Banach spaces and the space C∞0 (Rd+) is

dense in Hγ
p,θ.

(ii) For different ζ satisfying (1.1), we get the same spaces Hγ
p,θ with equivalent

norms. Furthermore, if η ∈ C∞0 (Rd+), then for any u ∈ D(Rd+) and γ, θ, p we have

∞∑
n=−∞

enθ||u(en ·)η||pγ,p ≤ N
∞∑

n=−∞
enθ||u(en ·)ζ||pγ,p,

where N depends only on γ, θ, p, η, d (and ζ).
(iii) Let α ∈ R. We have u ∈ Hγ

p,θ if and only if u = Mαv with v ∈ Hγ
p,θ+αp.

Hence,

MαHγ
p,θ+αp = Hγ

p,θ.

In addition,

||u||γ,p,θ ≤ N ||M−αu||γ,p,θ+αp ≤ N ||u||γ,p,θ,

where N are independent of u.
(iv) The space Lp,θ coincides with the space of functions summable to the power

p over Rd+ with respect to the measure (x1)θ−d dx.
(v) If γ is a nonnegative integer, then the space Hγ

p,θ is

{u : u, x1ux, . . . , (x
1)|α|Dαu ∈ Lp,θ for all α : |α| ≤ γ}

with a natural norm.
The spaces Hγ

p,θ are introduced and studied in [5] for all θ ∈ R. However, below
in this article we always suppose that d− 1 < θ < p+ d− 1. For this range of θ, the
following results, again borrowed from [5], are true.

Lemma 1.3. Let d− 1 < θ < p+ d− 1.
(i) The following conditions are equivalent:
(a) u ∈ Hγ

p,θ,

(b) u ∈ Hγ−1
p,θ and Mux ∈ Hγ−1

p,θ ,

(c) u ∈ Hγ−1
p,θ and (Mu)x ∈ Hγ−1

p,θ .
In addition, under either of these three conditions for some constants N = N(γ, p, θ, d)

we have

||u||γ,p,θ ≤ N ||Mux||γ−1,p,θ ≤ N ||u||γ,p,θ,

||u||γ,p,θ ≤ N ||(Mu)x||γ−1,p,θ ≤ N ||u||γ,p,θ.

(ii) We have M−1u ∈ Hγ
p,θ if and only if

ux ∈ Hγ−1
p,θ and M−1u ∈

⋃
µ

Hµ
p,θ.
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Moreover, there exist constants N = N(d, γ, µ, θ, p) such that, for any µ ≤ γ and
M−1u ∈ Hγ

p,θ, we have

||M−1u||γ,p,θ ≤ N ||ux||γ−1,p,θ ≤ N ||M−1u||γ,p,θ.

(iii) The operator L := M2∆+2MD1 is a bounded operator from Hγ
p,θ onto Hγ−2

p,θ

and its inverse is also bounded.
(iv) There is a bounded operator

Q : u ∈ Hγ
p,θ → Qu = (Q1u, . . . , Qdu) ∈ (Hγ+1

p,θ )d

such that, for any u ∈ Hγ
p,θ, we have u = MDiQiu.

2. Stochastic Banach spaces on Rd+. Let (Ω,F , P ) be a complete probability
space, (Ft, t ≥ 0) be an increasing filtration of σ-fields Ft ⊂ F containing all P -null
subsets of Ω, and P be the predictable σ-field generated by (Ft, t ≥ 0). Let {wkt ; k =
1, 2, . . .} be a family of independent one-dimensional Ft-adapted Wiener processes
defined on (Ω,F , P ). We are going to use the Banach spaces Hγp(τ), Hγp(τ, l2), and
Hγp(τ) introduced in [3] or [4].

Throughout the remaining part of the paper we assume that

d− 1 < θ < p+ d− 1.

Definition 2.1. Let τ be a stopping time and f and gk, k = 1, 2, . . ., be D(Rd+)-
valued P-measurable functions defined on |(0, τ ]]. We write f ∈ Hγp,θ(τ) and g ∈
Hγp,θ(τ, l2) if and only if f ∈ Lp( |(0, τ ]];Hγ

p,θ) and g ∈ Lp( |(0, τ ]];Hγ
p,θ(l2)), respectively.

We also denote

Hγp,θ = Hγp,θ(∞), Hγp,θ(l2) = Hγp,θ(∞, l2), L... . . . = H0
... . . . .

In the case f ∈ Hγp,θ(τ) and g ∈ Hγ+1
p,θ (τ, l2) we write (f, g) ∈ Fγp,θ(τ) and define

||f ||Hγ
p,θ

(τ) = E

∫ τ

0

||f(t)||pγ,p,θ dt, ||g||Hγ
p,θ

(τ,l2) = E

∫ τ

0

||g(t)||p
Hγ
p,θ

(l2)
dt,

||(f, g)||Fγ
p,θ

(τ) = ||f ||Hγ
p,θ

(τ) + ||g||Hγ+1
p,θ

(τ,l2).

Finally, we introduce spaces of initial data. We write u0 ∈ Uγp,θ if and only if

M2/p−1u(0, ·) ∈ Lp(Ω,F0, H
γ−2/p
p,θ ) (or by Lemma 1.2, part (iii), if and only if u(0, ·) ∈

Lp(Ω,F0, H
γ−2/p
p,θ+2−p)) and denote

||u(0, ·)||p
Uγ
p,θ

= E||M2/p−1u(0, ·)||pγ−2/p,p,θ.

Definition 2.2. For a D(Rd+)-valued function u defined on Ω× ([0, τ ] ∩ [0,∞))
with u(0, ·) ∈ Uγp,θ, we write u ∈ Hγp,θ(τ) if and only if M−1u ∈ Hγp,θ(τ) and there

exists (f, g) ∈ Fγ−2
p,θ (τ) such that, for any φ ∈ C∞0 (Rd+), with probability one, we have

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

(M−1f(s, ·), φ) ds+
∞∑
k=1

∫ t

0

(gk(s, ·), φ) dwks(2.1)
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for all t ∈ [0, τ ] ∩ [0,∞). In this situation we also write M−1f = D̃u, g = S̃u,

du = M−1f dt+ gk dwkt

and we define Hγp,θ,0(τ) = Hγp,θ(τ) ∩ {u : u(0, ·) = 0},
||u||p

Hγ
p,θ

(τ)
= ||ux||pHγ−1

p,θ
(τ)

+ ||(f, g)||pFγ−2
p,θ

(τ)
+ ||u(0, ·)||p

Uγ
p,θ

.(2.2)

As always, we drop τ in Hγp,θ(τ) and Fγp,θ(τ) if τ =∞.

Remark 2.3. If u ∈ Hγp,θ(τ) and φ(x) = φ(x1) with φ ∈ C∞0 (R+), then φu lies

in Hγp(τ). By Theorem 2.7 of [4] this implies that if u ∈ Hγp,θ(τ) and ||u||Hγ
p,θ

(τ) = 0,

then u is indistinguishable from zero.
Of course, we identify elements of Hγp,θ(τ) which are indistinguishable.

Remark 2.4 (cf. Remark 2.3 in [4]). Given u ∈ Hγp,θ(τ), there exists only one

couple of functions f and g in Definition 2.2. Therefore, the notations M−1f = D̃u,
g = S̃u, and (2.2) make sense.

It is also worth noting that the last series in (2.1) converges uniformly in t on
each interval [0, τ ∧ T ], T ∈ (0,∞), in probability.

Remark 2.5. It follows from Lemma 1.3 part (ii) that the condition M−1u ∈
Hγp,θ(τ) can be replaced with

M−1u ∈
⋃
µ

⋂
T>0

Hµp,θ(τ ∧ T ) and ux ∈ Hγ−1
p,θ (τ).

Also in (2.2), replacing the norm ||ux||Hγ−1
p,θ

(τ) with ||M−1u||Hγ
p,θ

(τ) leads to an equiv-

alent norm.
Remark 2.6. In the same way as in Remark 2.6 of [6] one proves that the spaces

Hγp,θ(τ) and Hγp,θ,0(τ) are Banach spaces.

Remark 2.7. The term M−1f in (2.1) can be replaced with Dif
i for f i := Qif ∈

Hγ−1
p,θ (τ), i = 1, . . . , d (see Lemma 1.3), and the norm ||f ||Hγ−2

p,θ
(τ) (participating in

(2.2)) with
∑
i ||f i||Hγ−1

p,θ
(τ), the latter leading to an equivalent norm.

Remark 2.8. If u ∈ Hγp,θ(τ), then MDiu ∈ Hγ−1
p,θ (τ) for i = 1, . . . d, and

||MDu||Hγ−1
p,θ

(τ) ≤ N(γ, θ, p, d)||u||Hγ
p,θ

(τ).

Indeed, by Lemma 1.3, M−1(MDiu) = Diu ∈ Hγ−1
p,θ (τ) and by Remark 2.7,

du = Djf
j dt+ gk dwkt with f j ∈ Hγ−1

p,θ (τ) and g ∈ Hγ−1
p,θ (τ, l2), so that

d(MDiu) = M−1M2DiDjf
j dt+MDig

k dwkt ,

where M2DiDjf
j = MDiMDjf

j − δ1iMDjf
j . By Lemma 1.3

||M2DiDjf
j ||Hγ−3

p,θ
(τ) ≤ N

∑
j

||f j ||Hγ−1
p,θ

(τ) ≤ N ||f ||Hγ−2
p,θ

(τ),

||MDig||Hγ−2
p,θ

(τ,l2) ≤ N ||g||Hγ−1
p,θ

(τ,l2),

||M2/p−1MDiu(0, ·)||γ−1−2/p,p,θ

= ||MDi(M
2/p−1u(0, ·))− δ1i(2/p− 1)M2/p−1u(0, ·)||γ−1−2/p,p,θ

≤ N ||M2/p−1u(0, ·)||γ−2/p,p,θ.
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Theorem 2.9. For any nonnegative integer n ≥ γ, the set

Hnp,θ(τ)
⋂ ∞⋃

k=1

⋂
T∈(0,∞)

Lp(Ω, C([0, τ ∧ T ], Cn0 (Gk))),(2.3)

where Gk = (1/k, k)× {|x′| < k}, is everywhere dense in Hγp,θ(τ).
Proof. Corollary 1.20 of [5] states that there exists a sequence of functions ηk ∈

C∞0 (R+) vanishing near zero and infinity and such that, for any u ∈ Hγ
p,θ, we have

||ηku||γ,p,θ ≤ N ||u||γ,p,θ, ||ηku− u||γ,p,θ → 0

as k → ∞, where N is independent of k and u. Obviously, if u ∈ Hγp,θ(τ), then

ηku ∈ Hγp,θ(τ) and by Remark 2.5 and the above result of [5] we get that ηku→ u in

Hγp,θ(τ).

To prove the theorem it remains to show only that any u ∈ Hγp,θ(τ), vanishing
outside some Gk, can be approximated by elements of set (2.3). To do this, notice
that for such u its Hγp,θ(τ)-norm is equivalent to Hγp(τ)-norm. Next, take a function

ξ ∈ C∞0 (Rd+) with unit integral and for ε > 0 define ξε(x) = ε−dξ(x/ε), u(ε)(t, x) :=

ξε(x) ∗u(t, x). It is easy to check that for ε small enough (for instance, such that u(ε)

vanishes when x1 is close to zero or infinity), we have u(ε) ∈ Hnp,θ(τ) and u(ε) ∈ Hnp (τ)

for all n. In addition, by well-known properties of mollified functions, u(ε) converge to
u in Hγp(τ)- and Hγp,θ(τ)-norm as ε ↓ 0. Of course, u(ε)(t, x) is infinitely differentiable
with respect to x.

Finally, since u ∈ Hγp(τ), by Theorems 7.1 and 7.2 of [4] we have

u ∈ Lp(Ω, C([0, τ ∧ T ], Hγ−1
p )).(2.4)

In addition, by Sobolev’s embedding theorems and by properties of mollifiers, for any
v ∈ Hγ−1

p and multi-index α with |α| = n,

|Dαv(ε)| ≤ N ||v(ε)||d+n,p ≤ Nε−κ||v||γ−1,p,

where N and κ are independent of v (and ε). This and (2.4) show that

u(ε) ∈ Lp(Ω, C([0, τ ∧ T ], Cn0 (Rd+))).

The theorem is proved.
By repeating the proof of Theorem 2.9 with obvious changes we obtain one more

useful result.
Theorem 2.10. The statement of Theorem 2.9 remains true if we replace Hnp,θ(τ)

and Hγp,θ(τ) with Hnp,θ(τ) and Hγp,θ(τ), respectively, or with Hnp,θ(τ, l2) and Hγp,θ(τ, l2),
respectively.

As in the one-dimensional case (cf. [6]), the following embedding theorem presents
certain interest.

Theorem 2.11. Let T ∈ (0,∞) be a constant and let τ ≤ T . Then for any
function u ∈ Hγp,θ,0(τ), we have

E sup
t≤τ
||u(t, ·)||pγ−1,p,θ ≤ N(p, d, θ, γ)T (p−2)/2||u||p

Hγ
p,θ

(τ)
.(2.5)
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To prove this theorem we use the following fact which is similar to Remark 2.2
of [3] or Remark 4.11 of [4]. Its proof can be obtained just by repeating the proof of
Lemma 2.12 of [6] and is omitted.

Lemma 2.12. Let T ∈ (0,∞) be a constant and let τ ≤ T . Let u ∈ Hγp,0(τ) and

du = f dt+ gk dwkt . Then for any constant c > 0,

E sup
t≤τ
||ux(t, ·)||pγ−2,p ≤ N(p, d)T (p−2)/2(c||uxx||pHγ−2

p (τ)

+ c−1||f ||pHγ−2
p (τ)

+ ||gx||pHγ−2
p (τ,l2)

).

Proof of Theorem 2.11. We proceed as in the proof of Theorem 2.11 of [6]. We
have

E sup
t≤τ
||u(t, ·)||pγ−1,p,θ ≤

∞∑
n=−∞

enθE sup
t≤τ
||u(t, en ·)ζ||pγ−1,p.(2.6)

Define un(t, x) := ζ(x)u(t, enx) and notice that, since the support of ζ(x)u(t, enx)
is not larger than the one of ζ(x), we have (see, for instance, Remark 1.12 of [5])

||un(t, ·)||γ−1,p ≤ N ||unx(t, ·)||γ−2,p.(2.7)

To estimate the right-hand side of (2.7), assume that du = M−1f dt+ gk dwkt . Then

dun(t, x) = fn(t, x) dt+ gn(t, x) dwkt ,

where fn(t, x) = (M−1ζ)(x)e−nf(t, enx), gn(t, x) = ζ(x)g(t, enx). By Lemma 2.12
with c = e−np,

E sup
t≤τ
||unx(t, ·)||pγ−2,p ≤ NT (p−2)/2(e−np||unxx||pHγ−2

p (τ)

+enp||fn||pHγ−2
p (τ)

+ ||gnx||pHγ−2
p (τ,l2)

).(2.8)

Furthermore, ||gnx||Hγ−2
p (l2) ≤ ||gn||Hγ−1

p (l2) and

∞∑
n=−∞

enθ||gn||pHγ−1
p (τ,l2)

= ||g||pHγ−1
p,θ

(τ,l2)
≤ N ||u||p

Hγ
p,θ

(τ)
.

Also,

∞∑
n=−∞

en(θ+p)||fn||pHγ−2
p (τ)

=
∞∑

n=−∞
enθ||f(·, en ·)M−1ζ||pHγ−2

p (τ)

≤ N ||f ||pHγ−2
p,θ

(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
,

∞∑
n=−∞

en(θ−p)||unxx||pHγ−2
p (τ)

≤
∞∑

n=−∞
en(θ−p)||un||pHγp(τ)
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=
∞∑

n=−∞
en(θ−p)||(M−1u)(·, en ·)Mζ||pHγp(τ)

≤ N ||M−1u||pHγ
p,θ

(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
.

By combining this with (2.8) and (2.6) we get (2.5). The theorem is proved.
As always the main role is played by the spaces Hγp,θ,0(τ) of functions with zero as

an initial condition. In connection with this it is worth noting that while constructing
our theory we could replace

||u(0, ·)||p
Uγ
p,θ

:= E||M2/p−1u(0, ·)||p
H
γ−2/p

p,θ

(2.9)

with

inf{||vx||Hγ−1
p,θ

+ ||D̃v||Hγ−2
p,θ

+ ||S̃v||Hγ−1
p,θ

: u− v ∈ Hγp,θ,0}.

Such an axiomatic approach to defining a norm of u(0, ·) yields, of course, the solv-
ability results for the widest possible class of initial data, namely, for those which are
extendible at least in some way for t > 0. However, in applications we often want
to know how to describe “admissible” initial data by knowing only their analytic
properties.

A partial answer to this question is given in the following theorem, which also
shows why we use the norm given by (2.9). For the only case, which we need, γ = 2,
the proof of this theorem can be obtained in the same way as Theorem 2.13 of [6]. For
arbitrary γ and parabolic operators with coefficients depending only on time instead
of ∆ this theorem is proved in [5].

Theorem 2.13. If γ ∈ R, d− 1 < θ < p+ d− 1, and 1 < p <∞, then, for every
u0 satisfying u0 ∈ Uγp,θ , in the space Hγp,θ there exists a unique solution of the heat
equation du = ∆u dt with initial data u(0, ·) = u0. Moreover,

||u||Hγ
p,θ
≤ N(d, γ, p, γ)||u0||Uγ

p,θ
.

3. SPDEs with constant coefficients in Rd+. Take a stopping time τ . On

[ |(0, τ ]] ∩ |(0,∞)| ]× Rd+ we will be dealing with the following equation:

du = (aijuxixj +M−1f) dt+ (σikuxi + gk) dwkt(3.1)

with initial condition u|t=0 = u0, where u0 is a D(Rd+)-valued, F0-measurable random
variable, f and gk are D(Rd+)-valued P-measurable functions, aij and σik are real-
valued P-measurable functions, u is an unknown D(Rd+)-valued function, and the
equation is understood in the sense of distributions as follows. We say that u is a
solution of (3.1) with initial data u0 if for any test function φ ∈ C∞0 (Rd+) we have

(u(t ∧ τ, ·), φ) = (u0, φ)

+

∫ t∧τ

0

[ d∑
i,j=1

aij(s)(u(s, ·), φxixj ) + (f(s, ·),M−1φ)
]
ds

+
∞∑
k=1

∫ t∧τ

0

[− d∑
i=1

σik(s)(u(s, ·), φxi) + (gk(s, ·), φ)
]
dwks(3.2)
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for all t > 0 with probability one, where all integrals are assumed to have sense and
the last series is assumed to converge uniformly on each interval of time [0, T ] in
probability, where T is any finite constant.

Remark 3.1. If a function u belongs to Hγp,θ(τ), then it satisfies (3.1) with

f = M
(
D̃u− aijDiDju

)
,

(3.3)
gk = S̃ku− σikDiu.

In addition (see Lemma 1.3), we have f ∈ Hγ−2
p,θ (τ) and g ∈ Hγ−1

p,θ (τ, l2). Below we
show that under additional assumptions on θ, a, and σ the mapping u → (f, g) is
onto.

Assumption 3.2. There exist constants δ0, δ1 ∈ (0, 1] such that, for every (ω, t)
and every ξ ∈ Rd,

δ0|ξ|2 ≤ δ1aij(t)ξiξj ≤ āijξiξj ≤ aij(t)ξiξj ≤ δ−1
0 |ξ|2,

where

āij := aij(t)− αij(t), αij(t) = 1
2σ

ik(t)σjk(t).

Here is our main result.
Theorem 3.3. Let d − 1 < θ < p + d − 1, 2 ≤ p < ∞, γ ∈ R, f ∈ Hγ−2

p,θ (τ),

g ∈ Hγ−1
p,θ (τ, l2), and u0 ∈ Uγp,θ. Assume that

d− 1 + p
[
1− 1

p(1− δ1) + δ1

]
< θ < d− 1 + p.(3.4)

Then (3.1) or equivalently (3.3) with initial data u0 has a unique solution in Hγp,θ(τ).
In addition, for this solution it holds that

||u||p
Hγ
p,θ

(τ)
≤ N(||f ||pHγ−2

p,θ
(τ)

+ ||g||pHγ−1
p,θ

(τ,l2)
+ ||u0||pUγ

p,θ

)
,(3.5)

where N = N(γ, θ, p, d, δ0, δ1).
Remark 3.4. By Remark 2.7, one gets a statement equivalent to Theorem 3.3

if one replaces M−1f in (3.1) with Dif
i for certain f i ∈ Hγ−1

p,θ (τ) and replaces

||f ||pHγ−2
p,θ

(τ)
in (3.5) with

∑
i ||f i||pHγ−1

p,θ
(τ)

.

Remark 3.5. If σ ≡ 0, then one can take δ1 = 1 and (3.4) becomes d − 1 < θ <
d− 1 + p. Furthermore, it is easy to see that, for any σ, condition (3.4) is satisfied if
d− 2 + p ≤ θ < d− 1 + p.

Remark 3.6. It is worth noting that if θ ≥ p + d − 1 or θ ≤ d − 1, then the
statement of Theorem 3.3 is false even in the case of the heat equation. This can be
shown by simple examples.

The proof of this theorem is based on two lemmas, the first of which we prove in
section 4.

Lemma 3.7. Theorem 3.3 holds if γ = 2.
Lemma 3.8. Let the assumptions of Theorem 3.3 be satisfied and let µ ≤ γ. Let

θ1 ∈ R and let u ∈ Hµp,θ1(τ) be a solution of (3.1) with initial condition u0. Assume

that M−1u ∈ Hµp,θ(τ). Then u ∈ Hγp,θ(τ) and

||u||p
Hγ
p,θ

(τ)
≤ N(||f ||pHγ−2

p,θ
(τ)

+ ||g||pHγ−1
p,θ

(τ,l2)
+ ||ux||pHµ−1

p,θ
(τ)

+ ||u0||pUγ
p,θ

)
,
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where N = N(d, γ, µ, θ, p).
One can prove this lemma by repeating almost word for word the proof of Lemma

3.5 of [6]. The only noticeable difference is that the equations in [6] are written in the
form

du = (auxx + fx) dt+ (σkux + gk) dwkt ,

where we have fx instead of M−1f . But by Remark 3.4 we also can rewrite (3.1) with
Dif

i in place of M−1f .
Proof of Theorem 3.3. As in the proof of Theorem 3.2 of [6] we may assume

that τ = ∞. In the case γ ≥ 2 the proof is achieved on the basis of Lemma 3.8 by
repeating the proof of Theorem 3.2 of [6]. In the case γ < 2 we need only some minor
adjustments which we present for completeness.

Denote by R the operator which maps (f, g, u0) with f ∈ Hγ−2
p,θ , g ∈ Hγ−1

p,θ (l2),

and u0 ∈ Uγp,θ into the solution u ∈ Hγp,θ of (3.1) with initial data u0. Thus far we

know that R is well defined in spaces Hγ−2
p,θ ×Hγ−1

p,θ (l2)× Uγp,θ for γ ≥ 2. We want to
show that one can also define R for γ < 0.

First, let 2 > γ ≥ 1. Observe that by Lemma 1.3, part (iii),

(L−1f,L−1g,M1−2/pL−1M2/p−1u0) ∈ Hγp,θ ×Hγ+1
p,θ (l2)× Uγ+2

p,θ .

Since γ > 0, by what we know in the case γ ≥ 2, the function

v = R(L−1f,L−1g,M1−2/pL−1M2/p−1u0)

is well defined and belongs to Hγ+2
p,θ .

Define

ũ = Lv.

By Remark 2.8, we have ũ ∈ Hγp,θ. Furthermore, by definition v satisfies

dv = (aijvxixj +M−1L−1f) dt+ (σikvxi + L−1gk) dwkt .

We apply L to both parts of this equality, or in other words, we substitute L∗φ in
place of φ in (3.2), where L∗ is the formal adjoint to L. Then we get

dũ = (aij ũxixj +M−1f +M−1f̄) dt+ (σikũxi + gk + ḡk) dwkt ,

ũ(0, ·) = u0 + ū0,

where

f̄ = MLaijvxixj −Maij(Lv)xixj +MLM−1L−1f − f,

ḡk = Lσikvxi − σik(Lv)xi , ū0 = LM1−2/pL−1M2/p−1u0 − u0.

Next, we use

LDiφ = DiLφ− 2δi1M−1(L −MD1)φ,
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LM−1φ = M−1Lφ− 2D1φ.

Then we find that

f̄ = −2ai1MDiM
−1(L −MD1)v − 2a1j(L −MD1)Djv − 2MD1L−1f,

ḡk = −2σ1kM−1(L −MD1)v,

M2/p−1ū0 = (2− 4/p)MD1L−1M2/p−1u0 + cL−1M2/p−1u0,

where c is a constant. As above

(L −MD1)v ∈ Hγp,θ, M−1(L −MD1)v ∈ Hγp,θ, Dv ∈ Hγ+1
p,θ ,

M2/p−1ū0 ∈ Lp(Ω,F0, H
γ+1−2/p
p,θ ).

It follows that

(f̄ , ḡ, ū0) ∈ Hγ−1
p,θ ×Hγp,θ(l2)× Uγ+1

p,θ .(3.6)

Since γ ≥ 1, it follows from (3.6) that the function ū := R(f̄ , ḡ, ū0) is well defined,
belongs to Hγ+1

p,θ , and the function u = ũ − ū is of class Hγp,θ and solves (3.1). For
thus constructed u, estimate (3.5) follows from the explicit representation and known
estimates for R, L, MD.

By repeating the above argument, we consider the case 1 > γ ≥ 0, this time using
the fact that γ + 1 ≥ 1 and relying upon the result for γ ≥ 1. One can continue in
the same way and it remains to prove only the uniqueness of solutions in Hγp,θ.

It suffices to consider the case f = 0, g = 0, u0 = 0 (and γ < 2). In this case any
solution u ∈ Hγp,θ,0 also belongs to H2

p,θ,0 by Lemma 3.8 and its uniqueness follows
from Lemma 3.7.

The theorem is thus proved.
Remark 3.9. From the above derivation of Theorem 3.3 from Lemma 3.7 it is seen

that for any fixed γ, p, θ, a, σ satisfying the conditions of Theorem 3.3, if the assertion
of Theorem 3.3 holds for these γ, p, θ, a, σ, then it holds for any γ ∈ R with the same
p, θ, a, σ.

4. Proof of Lemma 3.7. By Remarks 2.7, we may concentrate on the following
form of (3.1):

du(t, x) = (aij(t)uxixj (t, x) +Dif
i(t, x))dt

+ (σik(t)uxi(t, x) + gk(t, x))dwk(t).(4.1)

Next, notice that by Theorem 2.13 there is a function ū ∈ H2
p,θ such that, ū|t=0 =

u0, ∂ū/∂t = Dif̄
i with f̄ ∈ H1

p,θ, and appropriate estimates of ||ūx||H1
p,θ

and ||f̄ ||H1
p,θ

through ||u0||U2
p,θ

hold. This implies that in the equation

du = (aijuxixj + (aij ūxj + f i − f̄ i)xi) dt+ (σikuxi + (σikūxi + gk)) dwkt

we have aij ūxj + f i − f̄ i ∈ H1
p,θ(τ) and σi·ūxi + g ∈ H1

p,θ(τ, l2). Also, obviously if we

can solve the above equation in H2
p,θ,0(τ), then by adding to the solution the function
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ū we get a solution of (4.1) with initial data u0. Therefore, in the proof of Lemma 3.7
without loss of generality, we may and will confine ourselves only to the case u0 ≡ 0.

Finally, obviously we may assume that τ ≤ T , where the constant T < ∞, and
we start by proving the following a priori estimate.

Lemma 4.1. Assume that there exists a constant δ2 > 0 such that

(p− 1)(d+ p− 1− θ)ā11 − p(d+ p− 2− θ)a11 ≥ δ2(4.2)

for all ω and t. Then for any u ∈ H2
p,θ,0(τ),

||M−1u||Lp,θ(τ) ≤ N(||M(D̃− aijDiDj)u||Lp,θ(τ) + ||(S̃− σi·Di)u||Lp,θ(τ,l2)),(4.3)

where N depends only on δ0, δ2, d, and p.
Proof. For any γ the operators M D̃ and S̃ are obviously continuous on Hγp,θ(τ)

with values in Hγ−2
p,θ (τ) and Hγ−1

p,θ (τ, l2), respectively. By Remark 2.5 the same is true

for M−1 : Hγp,θ(τ)→ Hγp,θ(τ). By Definition 2.2 and Lemma 1.3 the operators

MDiDj : Hγp,θ(τ)→ Hγ−2
p,θ (τ), σikDi : Hγp,θ(τ)→ Hγ−1

p,θ (τ, l2)

are bounded. By Theorem 2.9, it follows that we need to prove only (4.3) for functions
u belonging to set (2.3) with sufficiently large n.

Take such a function u and define f and g according to (3.3). By Sobolev’s
embedding theorem, if n is large, then f and g are continuous in x, have compact
supports in x, and

E

∫ τ

0

sup
x
|f(t, x)|p dt <∞, E

∫ τ

0

sup
x
|g(t, x)|pl2 dt <∞.

It follows easily that u satisfies (3.1) pointwise, that is, for almost any ω for all x ∈ Rd+
and t ∈ [0, τ ].

Next we define c = 2 + θ − d − p, apply Itô’s formula to (x1)c|u(t, x)|p, and find
almost surely for all x ∈ Rd+

(x1)c|u(τ, x)|p =

∫ τ

0

[
p(x1)c|u|p−2uaijuxixj

+p(x1)c−1|u|p−2uf + 1
2p(p− 1)(x1)c|u|p−2

∑
k

(σikuxi + gk)2

]
ds

+

∫ τ

0

p(x1)c|u|p−2u(σikuxi + gk) dwks .(4.4)

We take expectations of both parts of this equality, noticing that

E

[∫ τ

0

|u|2p−2
∑
k

|σikuxi + gk|2 ds
]1/2

(4.5)

≤ NTE sup
s≤τ
|u|p−1|ux|+NE sup

s≤τ
|u|p−1

[∫ τ

0

|g|2l2
]1/2

.



A SOBOLEV SPACE THEORY OF SPDEs 31

Here, for instance, by Hölder’s inequality the last expectation is less than

(
E sup
s≤τ
|u|p)(p−1)/p

(
T (p−2)/2E

∫ τ

0

|g|pl2 ds
)1/p

<∞.

Therefore, the left-hand side of (4.5) is finite and the stochastic integral will disappear
after taking expectations in (4.4). After this we integrate with respect to x over Rd+.
By the way, owing to the fact that x-supports of all functions u, f , and g belong to
some Gk and the fact that even the pth power of sup’s over x of these functions are
integrable over |(0, τ ]], we see that all integrals converge absolutely. Hence, by using
Fubini’s theorem and integrating by parts, we get from (4.4) that

0 ≤ E
∫ τ

0

∫
Rd

+

[− p(p− 1)(x1)c|u|p−2āijuxiuxj

−c(x1)c−1ai1(|u|p)xi + p(p− 1)(x1)c|u|p−2gkσikuxi

+p(x1)c−1|u|p−1|f |+ 1
2p(p− 1)(x1)c|u|p−2|g|2l2

]
dxdt.

Next, we use Young’s inequality to get relations like

(x1)c−1|u|p−1|f | ≤ ε(x1)θ−d|u/x1|p +N(x1)θ−d|f |p,

gkσikuxi ≤ N |g|l2 |ux| ≤ εāijuxiuxj +N |g|2l2 ,

where ε > 0 is arbitrary and N depends only on ε, δ0, and p. Then we get

0 ≤ E
∫ τ

0

∫
Rd

+

[
(ε− p(p− 1))(x1)c|u|p−2āijuxiuxj

+(ε+ c(c− 1))a11(x1)θ−d|u/x1|p +N(x1)θ−d|f |p +N(x1)θ−d|g|pl2
]
dxdt.

By Corollary 6.2 of [5] for any t∫
Rd

+

(x1)c|u|p−2āijuxiuxj ≥ ā11(1− c)2p−2

∫
Rd

+

(x1)θ−d|u/x1|p dx.

Hence,

E

∫ τ

0

{ā11[p(p− 1)− ε](1− c)2p−2 + a11[c(1− c)− ε]}||M−1u||p0,p,θ dt

≤ N(||f ||pLp,θ(τ) + ||g||pLp,θ(τ,l2)).

It remains only to observe that for ε small enough from (4.2) we get that

ā11[p(p− 1)− ε](1− c)2p−2 + a11[c(1− c)− ε]
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≥ −(1− c)p−1δ2/2 + ā11(p− 1)(1− c)2p−1 + a11c(1− c)

= −(1− c)p−1δ2/2 + (1− c)p−1[(p− 1)(d+ p− 1− θ)ā11 − p(d+ p− 2− θ)a11]

≥ (1− c)p−1δ2/2.

The lemma is proved.
We divide the remaining part of the proof of Lemma 3.7 into the following sub-

cases:
(1) σ ≡ 0;
(2) general case.

4.1. Case σ ≡ 0. Observe that in this case ā = a and (4.2) becomes

a11(θ − d+ 1) ≥ δ2,
which is satisfied for δ2 sufficiently small because we always assume that θ > d − 1
(and, for that matter, θ < p+ d− 1). Therefore, estimate (4.3) holds. Of course, this
estimate implies uniqueness.

To prove existence again use (4.3) and proceed as in the proof of Lemma 4.2 of
[6] or Lemma 5.7 of [5]. Since this can be done in quite a straightforward way, we
give only a sketch.

First, bearing in mind the a priori estimate and the method of continuity, we see
that it suffices to consider the case aij = δij . Furthermore, owing to Theorem 2.10
and Lemma 4.1 we may and will additionally assume that

f ∈ Lp(Ω, C((0, τ ], Cn0 (Gk))), g ∈ Lp(Ω, C((0, τ ], Cn0 (Gk))).

Continue f and g across x1 = 0 so that f becomes an even smooth function and g
an odd smooth function of x1. By Theorem 3.2 of [3] or Theorem 5.1 of [4] there
exists a unique solution u ∈ Hnp (τ) of (3.1) considered in the whole Rd with zero
initial condition. If n is large enough, u is smooth with respect to x and satisfies (3.1)
pointwise. From the uniqueness, it follows that u(t, x) = 0 for x1 = 0. Next use the
fact that the functions f and g have compact support and that outside this support
u satisfies the deterministic equation du = ∆u dt. Then as in the proof of Lemma
4.2 of [6] we derive that u ∈ H2

p,θ,0(τ). Using Lemma 3.8 with γ = 2 and µ = 0 and

Lemma 4.1 we conclude that u belongs to H2
p,θ,0(τ), satisfies (3.1), and estimate (3.5)

holds for γ = 2 and u0 = 0. This proves Lemma 3.7 in our first particular case.

4.2. General case. The left inequality in (3.4) means that

δ1(p− 1)(d+ p− 1− θ) > p(d+ p− 2− θ),
which by virtue of Assumption 3.2 implies (4.2) with

δ2 = δ0[δ1(p− 1)(d+ p− 1− θ)− p(d+ p− 2− θ)] > 0.

Therefore, a priori estimate (4.3) holds. Using Lemma 3.8 with γ = 2 and µ = 0,
we get that estimate (3.5) holds for γ = 2 and u0 = 0. In particular, we get the
uniqueness.

Furthermore, the same estimate with the same constant N holds if we take λσik

instead of σik if |λ| ≤ 1. Now to get the result in our present case from the case σ ≡ 0
it remains only to use the method of continuity (cf., for instance, the end of the proof
of Theorem 5.1 of [4]).
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