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A SOBOLEV SPACE THEORY OF SPDEs WITH CONSTANT
COEFFICIENTS ON A HALF LINE*

N. V. KRYLOV' AND S. V. LOTOTSKY*

Abstract. Equations of the form du = (auge + fz) dt + Zk(akux + g*) dw} are considered for
t > 0 and x > 0. The unique solvability of these equations is proved in weighted Sobolev spaces with
fractional positive or negative derivatives, summable to the power p € [2, 00).
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Introduction. We are considering the equation

du = (augy + fr) dt + Z(okum + ¢*) dwk
k=1

in one space dimension for x > 0 and ¢ > 0 with some initial condition at ¢ = 0
and zero boundary condition at z = 0. Here w} are independent one-dimensional
Wiener processes and f and g* are some given functions of (w,¢,z). The functions
a and oF are assumed to depend only on w and t. Such equations with a finite
number of the processes wf appear, for instance, in nonlinear filtering problems for
partially observable diffusions (see [11]). Considering infinitely many w turns out
to be instrumental in treating equations for measure valued processes, for instance,
driven by space-time white noise (see [8] or [6]).

Our main goal is to prove solvability of such equations in spaces similar to Sobolev
spaces, in which derivatives are understood as generalized functions, the number of
derivatives may be fractional or negative, and underlying power of summability is
p € [2,00).

The motivation for this goal is explained in detail in [5] or [8], where an L,-theory
is developed for the equations in the whole space. We only mention that if p = 2, the
theory was developed long ago and an account of it can be found, for instance, in [11].
The case of equations in domains is also treated in [11]. However, the solvability is
only proved in spaces W3 of functions having one generalized derivative in x square
summable in (w, ¢, x). It turns out that going to better smoothness of solutions is not
possible in spaces W3 and one needs to consider Sobolev spaces with weights, allowing
derivatives to blow up near the boundary. The theory of solvability in Hilbert spaces
like WJ' with weights is developed in [1] and [10], where n is an integer. Here we show
what happens if one takes a fractional or negative number of derivatives and replaces
2 with any p > 2. By the way, according to [2], it is not possible to take p < 2 when
stochastic terms are present in the equation.
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Unlike the above mentioned works, we only concentrate on the one-dimensional
case. There are several reasons for that, the main being that even in the case of
Hilbert spaces in [1] the central estimates are first proved in the one-dimensional case
and after this there is still a rather long way to go to get to multidimensional domains.
Our treatment of the one-dimensional case is long itself.

One of main difficulties in developing the theory presented below was finding
right spaces. The idea was to find a scale of spaces like in [11], [5], or [8] generated
by fractional powers of a certain operator, which is 1 — A in [11], [5], and [8]. From
the results of [1] and [10] one can guess that D = x0/0z should be such an operator
in our case. Elliptic second-order operators are more appropriate if one wants to
define fractional powers and expects them to have nice properties. Therefore, our
first attempt was to try the operator L = zD(xD) + D — ¢, which is formally self-
adjoint for any constant c¢. However, after having constructed the theory we noticed
that the same spaces can be defined as images of spaces from [5] or [8] under certain
linear mapping. This made using the results from [5] and [8] easier and allowed us
to avoid developing solvability theory for L and investigating the semigroup and the
resolvent associated with this operator.

In [11], [5], and [8] the solution is sought for in the same scale of spaces (at
least as far as the space variables are concerned) as the one to which the free terms
f and g belong. Surprisingly enough this is not the case in our situation, and this
causes many difficulties practically at each step. The origin of all unusual features
of our theory lies in the fact that there are no operators commuting with 9/9x and
generating our scale of spaces. To give one more example of what is unusual we
state the following theorem, which can be obtained from Theorem 3.2 after changing
variables v(t, ) = e®(@~Duy(t, e*), where a = 6 /p.

THEOREM 0.1. Let a € (0,1), p € (1,00), T € (0,00], and f € Ly([0,00) x R).
Then in the class of functions v(t,z), t € [0,T], x € R such that

T
| [l + o) ot < .
0 R

(0.1) ¥ vy = vy + (1 — 20) v, — (1 — a)aw + f,

the equation

on (0,T) x R with zero initial condition has a unique solution. In addition, this
solution satisfies

/OT/R[valM [v|P] dwdt < N(a,p) /OT/RIJ”’ dadt.

Surprising in this theorem is that if we replace ¢?* with 1 in (0.1), then the result
becomes well known and is true for any finite T’ (now with N depending on T too). The
presence of e?* makes (0.1) degenerate, and usually results for degenerate equations
differ very much from those for nondegenerate cases. Actually, we do not know much
about (0.1). In particular, it would be interesting to know whether Theorem 0.1
remains true if we replace the term (1—2«)v, in (0.1) with bv, where b is an arbitrary
constant.

The article is organized as follows. In section 1 we introduce and investigate basic
spaces with weights of functions of z € (0,00). Section 2 is devoted to stochastic
Banach spaces of functions of (w,t,z) satisfying zero boundary condition at z = 0.
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This condition is expressed by means of requirement (2.1). In section 3 we prove our
main Theorem 3.2 about unique solvability of our equations. The reader will see the
very core of our technique in the proof of Lemma 3.6. Rather long section 4 contains
the proof of the main particular case of Theorem 3.2, which is stated as Lemma 3.5.

1. Sobolev spaces with weights. For v € R and p € (1,00) let H) = H)(R)
be the spaces of Bessel potentials (see, for instance, [13]) which are formally given
by H) = A™7L,(R), where A := (1 — D?)Y/2 and D = d/dx. One knows that the
elements of H) are distributions and C§° = Cg°(R) is dense in H). Let D(R) and
D(R;) be the sets of all distributions on C§°(R) and C5°(R,), respectively, where
R, = (0,00). If f € D(R;) and § € R, then the expression h(z) := f(e*)e*?/? is
well defined and is a distribution on R. Indeed, the action of h on a test function
¢ € C°(R) is defined as (h,¢) = (f,v), where ¢¥(z) := d(logz)x?/P~1. We denote
h = Qpef in this way defining a one-to-one operator

Qpo: flz) — f(e®)e/P.

DEFINITION 1.1. We write f € H) , (= H) 5(Ry)) if and only if Qpof = h € H.
We write Ly, g = Hg,e- For f € H;,G we define

£ 1le7, = 11Quofll -

Remark 1.2. Since H) is a Banach space, so is H”’e with the norm introduced
above. Also since C§°(R) is dense in H}, the set C5°(R) is dense in H),.
Remark 1.3. Define A;e = QflA Qp,0- Then for any v,p,0 € R the operator

AJ 4 is an isometric operator from H“e onto H/';7.
Indeed, by definition,

||Ag,eu||H;;);” = ||Qp’9Ag,eu||H;j—” = ||A7Qp,9u||H;j—W

= 1@poullzz = llul 1z,

Remark 1.4. The norm in H; ¢ contains norms of, so to speak, v derivatives of
u. However, it scales in the same way for any . We mean that, due to translation
invariance of norms in HJ, for any constant a > 0 and u € H;e,

[lu(a ) | = a”"lfullf

Remark 1.5. Define M as the operator of multiplying by x, M : u(x) — zu(z).
It turns out that for any v € R the operator M D is a bounded operator from H, i
into H79 and if, in addition, 6 # 0, then M D maps H’Ye onto H, 0.0 ! and its inverse
is also bounded

Indeed, an easy computation shows that

QpoMDu = LQpou, MDu= Q. 5LQ, g,

where Lv = Dv — vf/p. One knows (see, for instance, p. 263 in [12]) that for any
constant v the operator v — Dv + vv is a bounded operator from H) into Hgil and
if v is real and v # 0, then it maps H) onto H“Y*1 and its inverse is bounded. This
and the definition of H 79 obviously 1mply our assertlon
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Remark 1.6. Functions in H;@ are different from those in H, only in what
concerns their behavior near zero and infinity. More precisely, if [a,b] C Ry and f =0
outside [a, b], then by the results on changing variables and pointwise multipliers (see
Theorem 4.3.2 and Corollary 4.2.2 of [13]) ||f||H;9 < N{|fllmy < N|\f||H;e, where
N is independent of f. ) ’

It is convenient here also to notice that for the same f we have

Ay < NIDSll gy < NI flmys

with IV independent of f.
Indeed, the inequality on the right is known to be true even for any f € H). As
far as the left inequality is concerned, by Remark 1.5 we have

1flly < NlIflly, < NIMDSlly-s < NIaDfll g1,

where 7 € C§°(R) and n(x) = = on [a, b]. It only remains to remember (see [13]) that
such 7 is a pointwise multiplier in any space H,/ -1

Remark 1.7. Upon noticing that DMu = M Du+u, as in Remark 1.5 we conclude
that for any v € R the operator DM is a bounded operator from H ;’0 into H ;/7;1 and
if, in addition, € # p, then DM maps Hg,e onto H;gl and its inverse is also bounded.

Remark 1.8. Let 0 # 0, u € {J, Hz’:ﬂ’ and MDu € H;,e- Then u € Hgyﬂgl and
el < NIM Dl
Indeed, by Remark 1.5 there is v € H;gl such that M Dv = M Du and ||v|| ;r+1 <
: i
N|[MDul|g~ . Thenv' = v’ and v—u = ¢, where cis a constant. Since v,u € H}', for
D, )
some u, we have ¢ € Hga, which is only possible if ¢ = 0. Therefore, u =v € H;gl.
Remark 1.9. Let 0 # p, uw € J, H)y, and DMu € H,. Then u € H;;l and
lllg754 < NIIDMulg
Indeed, one can repeat the argument in Remark 1.8 relying on Remark 1.7 instead
of Remark 1.5 and noticing that from the equality DMv = DMu it follows that
v —u = ¢/x, where ¢ is a constant.
Remark 1.5 and the observation that H 2’9 = L, is just an Ly-space of functions
on R, with measure mg(dr) = 2%~! dx yield inequalities (1.1) in the following useful
result, which can also be restated in a natural way on the basis of Remark 1.7.

THEOREM 1.10. If v is an integer satisfying v > 1 and 6 # 0, then for any
u € H) , we have

(1.1) (MDY ullL,®y me) < Nllullgy, < NII(MD) ul|L, @, mo)»
0l Y
(1.2) D M D ullL, @, my) < Nllullgy, <N D IM "D ullr, &, mo):
n=1 n=1

where N is independent of u. Thus, the space H;ﬁ can also be defined as a closure of
the set C§°(Ry) with respect to either of the norms

Y
(MDY |1, @ meys D M D™ -l @y ma)-

n=1
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To prove (1.2) observe that for any integer k& > 1,

k
(1.3) (MD)* =" c*mmmDn,
n=1
where ¢®™ are some constants and ¢** = 1. This and the inequality on the right in

(1.1) give us the inequality on the right in (1.2). On the other hand, one can solve
the triangular system (1.3) with respect to M™D"™. Then from the inequality on the
left in (1.1) we get

’y ’Y
DM D ]|, @ gy < N Y IMD) ullz, &y )

n=1 n=1

~
< NS llullay, < Nllullis,-
n=1

which proves the inequality on the left in (1.2).

The following theorem will play the most important role in obtaining results for
equations on R from those on R.

THEOREM 1.11. Let ¢ € C§°(Ry), v,0 € R, and p € (1,00). Then there exists a
constant N depending only on (, v, p, and 6 such that, for any u € H;G,

oo
Y eliCule™ I, < Nlfullg -
In addition, if there is a 6 > 0 such that
oo
(1.4) D e >

for all x € [0,1], then

o0
0
lull:, <N > emlicule™ i,

n=—oo

where N depends on 6 as well.
Proof. Since the functions ((z)u(e™z) vanish outside the support of ¢, by the
change of variables (see Theorem 4.3.2 in [13])

e?|ICu(e™ Iy < Ne|IC(e yule ™)1

with N independent of n,u. By translation invariance of the norm in H} the last
expression equals

eI ule) By = lIne ™) Qpoullly.
where 7(e*™") = ((e* ")e*=2)9/P Next it is easy to find a finite m such that for
x € 10,1],

oo oo

[(x) — Z ‘n(eac—n”p: Z |<(6x—n)|pe(ac—n)9

n=—oo n=—oo

= 3 (e e,

In|<m
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It follows that I(x) is bounded on [0, 1]. On the other hand I(x) is obviously periodic
with period 1. Thus I(z) is bounded on R. The same is true for

[e e} o

Do dmeEmmy P Y 1) P,

n=—oo n=-—o0

and so on. By Theorem 2.2 and Remark 2.1 of [2]

oo

Y lInte ™™ Qpoulllyy < NIIQpoullyy,

n=—oo

which yields our first assertion.
To prove the second one we use the same resources as above and get

1Qpoullly; <N 7 llne ™ @poulllyy =N 3" ellc(e ™ ule) |l

n=-—oo n=—oo

=N Y elig@ule I, <N Y e licute )l

n—=—oo n—=—oo

The theorem is proved.

Remark 1.12. Similar to properties of I(z) in the above proof, we find that
if ¢ € C5°(Ry) and B € R, then Y, e *#)5¢(e"**) is bounded on R, which after
substituting log x in place of z implies that >, e™?((e"z) < Nz=# on R.

The following theorem is used in establishing some properties of our stochastic
Banach spaces.

THEOREM 1.13. Recall that the operator M is defined by Mu(x) = xu(z) and let
0,v€eR,0#p. Then

(1.5) M_luEH;'gl <= Du € H), and M_luEUHZ’;L’O.
I

In addition, under either one of the above conditions

(16) M ully < NlDulliry, < NIIM ]
P P, P,
Proof. If M~1u € Hgigl, then by Remark 1.7 we have
Du=DM(M~'u) € H],

and the right inequality in (1.6) holds. On the other hand, under the condition on
the right in (1.5) we have

DM(M~'u) e H), and M~ 'uel JH!,

m

which by Remark 1.9 yields M~ 'u € H;;l and the inequality on the left in (1.6).
The theorem is proved.
The following result will also be used in the future.
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LEMMA 1.14. For any constants p, 0, a we have

Q;éDQp,O =bl+ MD, Q;éDQQp,H — (bI + MD)?, DM = MD +1,
MaAIQJ,eM_a = Af,,g +c I +ceaMD, MAQ’Q — Af,ﬁM = MP,,
(1.7) A2,D— DA%, = P\D,
A2,DM — DA2 M = P,DM, A2,D*M — D*A2,M = 4DP,,

where b= 0/p, I is the identity operator, ¢; are certain constants, and
P :=2b+1)[+2MD, P,:=bDM+ (MD)(DM).

Furthermore, for any 0, € R there exists a constant N = N(v,0,p) such that

7+2
for anyu e Hyjy",

(1.8) [Pruf] g + [ Poul g ) < NJul| goee.
p,0 D, p,0

Indeed, equalities (1.7) are checked out by straightforward computations and (1.8)
follows immediately from Remarks 1.5 and 1.7.

2. Stochastic Banach spaces on R. Let (Q2, F, P) be a complete probability
space, (Fi,t > 0) be an increasing filtration of o-fields F; C F containing all P-null
subsets of 2, and P be the predictable o-field generated by (F;,t > 0). Let {wF; k =
1,2,...} be a family of independent one-dimensional F;-adapted Wiener processes
defined on (2, F, P). We are going to use the Banach spaces H)(7), H)(7,[2), and
H () introduced in [5] or [8], where we take d = 1. Also throughout the remaining
part of the paper 0 # 0, 6 # p, and p > 2 unless another range of p is specified
explicitly.

DEFINITION 2.1. Let 7 be a stopping time, f and g, k = 1,2..., be D(R,)-valued
P-measurable functions defined on (0,7]. We write f € H) 4(1 ) andg € H) 4(1,12) if
and only if Qpef € H)(7) and Qpog € H)(7,12), respectwely We also denote

Al ) = 1@ o fllyrys gl ,ra0) = 1@p,09 ey (7,12)

HY g =H 4(00), M o(le) =H 4(00,l5), L_..=H ..
In the case f € H) 4(7), g € H;jél(T, l2) we write (f,g) € F) 4(1) and
ICF, 977 iy = F Ml o) + Hallarts o)

Finally, we introduce spaces of initial data. We write uy € U;e if and only if
M2/P=Yyy € L,(Q, Fo, H;gz/p) and denote

HUOHZ[)]; = E||M2/p 1Uo||p

w 2/17

DEFINITION 2.2. For a D(Ry)-valued function u defined on Q x [0,00) with
u(0,-) € U;Zl and

(2.1) M7 uelJ (| HE o (r AT),

w T>0
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we write u € 55;“( ) if and only if u, € H) o(7) and there evists (f,g) € f;gl(r)
such that for any ¢ € C§°(R4) we have

(22) (u(tv ')7 ¢) = (’LL(O, ')v d)) + / (Mﬁlf(sv ')7 ¢) ds + Z/ (gk(57 ')7 ¢) dwf
k=10

0

for allt < 7 at once with probability one. In this situation we also write M™1f= ]]j)u,
g = Su,

du= M~Yfdt + g* dw!
and define f_)v,'g’ (1) = 5’)7“( YN {u: u(0,-) =0},
23) el ) = esliy o+ 1G9y + 100

As always, we drop T in ) 4(1) and F) 4(1) if T =00

Remark 2.3 (cf. Remark 3.3 in [8]). Given u € $) ,(7), there exists only one pair
of functions f and g in Definition 2.2. Therefore, the notation M ~!f = Du, g = Su,
and (2.3) make sense.

It is also worth noting that the last series in (2.2) converges uniformly in ¢ on
each interval [0,7 AT], T € (0,00), in probability.

Remark 2.4. It follows from Theorem 1.13 that, in Definition 2. 2 the two re-
quirements (2.1) and u, € HJ ;(7) can be replaced with only one: M~"u € H7+1( ).
In addition,

HM71U||H;;1(T) =< NHUmHH;’g(T) < NHMAUHH;;%T)»
where N = N(v,0,p).

Remark 2.5. The space 9 ,(7) is not Q;éH;(T). However, obviously ¢u lies
in Q;},H;(T) for any ¢ € C§°(R4) if u € ) 4(7). By Theorem 3.7 of [8] this easily
implies that if u € $) ,(7) and Hu||;);’3(7) = 0, then w is indistinguishable from zero.

Of course, we identify elements of 5;,9 (1) which are indistinguishable.

Remark 2.6. The spaces 9 ,(7) and 9, , o(7) are Banach spaces.

Indeed, their completeness is obtained as follows. If u, is a Cauchy sequence
in 67 ,(7), then M~'u, is a Cauchy sequence in H ,(7) by Remark 2.4 and hence
it converges to some M~ lu € H;Q(T). Also, MDu,, — f and Su, — g¢ for some
(.9) € 7o (7).

Next, for any ¢ € Cg°(Ry) the sequence ¢u, is a Cauchy sequence in HJ(7),
which is a Banach space by Theorem 3.7 of [8]. This easily implies that « has a
modification @ such that ¢u belongs to H)(7) for any ¢ € C§°(Ry), and u satisfies
(2:2), so that @ € $) (7). One treats 9 , o(7) similarly.

Remark 2.7. By Remark 1.5 it follows that f € HZEl(T) if and only if there
exists a unique h € HJ 4(7) such that M~'f = Dh. In addition, the norms of f
and h are equivalent. Hence, one obtains the same space ﬁ;fél(r) if in Definition 2.2
one replaces M ~'f with f, and instead of the condition (f,g) € FY~1(7) requires
feH) (1), g€ H;’Q(T, I2). In this case one obtains an equivalent norm by replacing

I1(f, g )IIF 'y 0 (2:3) with

({2 A
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Remark 2.8. If u € $7 (7), then v := MDu € $73"(7) and
IMDul| -1,y < N(7,0,)l[ullsy ,r)-

Indeed, we have M ~'v = Du € Hg;l(T), which by Remark 2.4 gives us a part of
the needed properties of v. Also by Remark 2.7, du = f, dt+g"* dwF with f € HZ;I(T)
and g € HZEI(T, l5), so that dv = (MDf — f), dt + M Dg* dwF, where by Remark 1.5

HMDf - f||HW*2(T < N||f||Hw—1(T), ||MD9||HZ’*92(T,12) < N||g||H;;1(r,12)’

12227400, ) r=s-arm = [[MD(MP (0, ) = (2/p = OM¥P~1u(0, )] fr-s-2rs

< NIIMP (0, )21
p,6
Remark 2.9. From Remark 1.3 we have
||A 9U||H“ (r) = HUHH“*W( )

The assertions of the following theorem are straightforward corollaries of Re-
mark 2.4 and of two Sobolev theorems. One says that H) C Clif6:=~v—1/p>0,
where C% = C°(R) is the Zygmund space (which differs from the usual Holder space
C° = C*(R) only if é is an integer; see [13]). The second one says that H) C H¥ if
uw<~vyand v—1/p =pu —1/q. These theorems are easily rewritten in terms of our
spaces H) , = Q;},Hg.

THEOREM 2.10. (i) If a := v —=1/p > 0 and u € 9] 4(7), then QpoM 'u €
L,((0,7],C%), where C* is the Zygmund space. In addition,

E/O ||Qp,0M_1u(t> MNga dt < N(dv%pmu”%;e(ﬂ'

(i) If p<v, vy —1/p=p—1/q, andu € H] 4(), then

—1, (4 [P P
B [l de< Nl

In order to prove the solvability even of the simplest equations we need the fol-
lowing embedding theorem. However, the way in which the right-hand side of (2.4)
depends on T will not be used.

THEOREM 2.11. Let T € (0,00) be a constant and let 7 < T. Then for any
function w € 9] 4 ,(7), we have

(2:4) Esup|lut, )llgy-2 < N(p,0,7)T T2 G

To prove this theorem we use the following fact, which is similar to Remark 2.2
of [5] or Remark 4.11 of [8].

LEMMA 2.12. Let T € (0,00) be a constant and let 7 < T. Let u € H) o(7) and
du = fdt+ g* dwF. Then for any constant ¢ > 0,

Bsup e, s < NOITE 2l

(25) eI oy + el o)

Tl2
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Proof. As always, it suffices to prove (2.5) for any particular v and 7 = T
(regarding 7 see, for instance, the proof of Theorem 7.1 in [8]). We take v = 2. Then
(2.5) becomes

Bsup [us t.- L, < N@)TP 22 (|lugallf o

(2.6) +AE, oy + 19011 71,))-

It suffices to prove this inequality for ¢ = 1. Indeed, for any constant a > 0 we have
du(t,azx) = f(t,ax)dt + g*(t,ax) dwF and if (2.6) holds with ¢ = 1, then

a?~ Esup ||ug(t, )17 = Esup|[[(u(t,a-)a|[]
t<T t<T

< NTE22(||(u(,a )aal gy + 170 gy + oG aNal P z)

= NT¥~ 2)/2( P 1||umm||]L (T 1||f||]1, »(T) +aP” 1Hg$||JLp(Tl2 )
This proves (2.6) with a? in place of c.
We further transform (2.6) with ¢ = 1 by denoting v = u, and h* = g*, so that
dv = fpdt + h* dwF and v € H:,’O(T). We see that we only need to prove that

AP (p—2)/2 p
Eiggﬂv(t, Iz, < Np)T (1o lf, ()

(2.7) HIFIE, oy + NI, (70s))-

By Theorem 2.1 of [5] or Theorem 4.10 of [8] and by the observation that dv =
(Vzz + (f — vz)z) dt + hE dwf, for any A\, T > 0 we have

Efgg(efp”llv(tw)ll’ip) < N(le ™ FIIE, oy + e RIIE (1,9,

where N = N(p, ) and f = f —v,. For A = 1/p this yields

Esup [lo(t, )I[f, < Ne"(AIIE, ¢y + 1AL, (7,10)-

By using the self-similarity of the equation dv = (v, + fi) dt + k¥ dwf (that is,
by considering equations like (3.6)), for any constant ¢ > 0 we get

Bsuplo(t, eI, < NeT(lef(e e, oy + b eI )
with N = N(p). Changing variables we obtain
? p— £l
Bsupo(t, Il < NeT/ @2, oy + I, )

For ¢? = T this is even a little bit stronger than (2.7) and the lemma is proved.
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Proof of Theorem 2.11. For an appropriate ¢ € C§°(R) we have

(2.8) E:‘gDIlU( )IIHW 1SN Z e"91581113\|Cu( "My

n=—oo

Let du = f, dt + g* dwF. Then
d(¢(@)u(t, e"w)) = ¢(2)(fo)(t @) dt + ((2)g" (¢, ") dwy.

By Lemma 2.12 for u,(t,z) := ((x)u(t,e™x), fn(t,z) := ((2)(f2)(t, e™x), gn(t, x) :=
C(x)g(t,e™x), and ¢ = e~ "P we have

Esup [|wng (2, )Hp 2 < NT(piz)/2(einp| |Unaal |ﬁw—2(7)

np p p
(2.9) +e anHHg—Z(T) + ||ganHg_2(T,l2)).

To transform this inequality notice that all the functions u, (¢, z) as functions of x
have supports inside the support of ¢ which is bounded. Therefore (see Remark 1.6),

ICut, " Iy = llun(t, ) gz-1 < Nlluna )| 72

Furthermore, HQWHH;*?(Q) < HgnHH;—l(lZ) and

S Nl sy < VN9l < NI,
Also,
S O, = S M MDA I

< NIMDSIlE sy < NGy < Nl s

)

n(6—p) p n(60—p) p
Z e HunzzHHZ—2(7)§ Z e HunHHg(T)

n=—oo n=—oo

o0

= Z e”9||(MC)(M71U)(" e" ')”%Z(T)

n=—oo

< NIVl ) < Nl )

By combining this with (2.9) and (2.8) we get (2.4). The theorem is proved.

As always the main role is played by the spaces Sﬁp 0, o(7) of functions with zero
initial conditions. In connection with this it is worth notlng that while constructing
our theory we could replace
(2.10) [|u(0, ')Ilm+1 = E|[M*/P (0, )|”

goti—2/p
p,0
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with
. = & 1
int(][eal 2o+ |MBoI, o+ [Sollg, u—v € S5
P P ’

Such an axiomatic approach to defining a norm of (0, -) yields, of course, the solv-
ability results for the widest possible class of initial data, namely, for those which are
extendible at least in some way for ¢ > 0. However, in applications we often want to
know how to describe “admissible” initial data by knowing only their analytic prop-
erties. A partial answer to this question is given in the following theorem, which also
shows why we use the norm given by (2.10).

THEOREM 2.13. If0 < 6 < pandy =2 and 1 < p < oo, then for every
ug satisfying M?/P~1uy € H;gz/p there exists a deterministic u € f);ﬂ such that
du = D*udt, ul;—o = ug, and

(2.11) lullhy < N(poy, O)|M> P gl s,
p,6 Hp,g

Proof. If ug € C3°(R4), then there is a unique function u(¢, x) which is bounded
in Ri together with all its derivatives and which is a unique bounded solution of the
heat equation du/0t = D?u, t > 0 in R% with initial condition u(0,z) = u¢(z) and
boundary condition wu(t,0) = 0. Observe that u is given by u(t,-) = p: * 4o, where
pi(x) = (47t) =1 /? exp(—|z|?/(4t)) and @ is an odd extension of ug on R. By the way,
from this representation it follows that u(¢, ) — 0 exponentially fast as © — oo and
the same is true for any derivative of u.

Next, we observe that d|u(t, )P /0t = p|lu|[P~2uD?u, multiply this equality by z¢,
with c:=0+4+1—p € (1 —p,1), and integrate by parts, and also use |u(t,z)| < N|z|,
lu(t, z)[P~ ¢ < Naf, |u(t,z)|Pzc~t < Naf for x close to zero. Finally we fix T' €
(0,00) and find that

T
/ xc|u(T7x)\pdx—/ xc|u0(ac)|pdx:/ / prf|uP~?uD?u dxdt
Ry Ry 0o Jrs

(2.12)

T
= fc/o /R D (|ulP) dzdt — p(p — 1)1 = c(c — 1)J — p(p — 1)1,

where

T
I::/ / 2¢uP2(Du)? dedt, J :
o Jry

T
/ / 272 |u|P dxdt.
0o Jry

To estimate I from below through J, denote v := |u[P/? and observe that we have
|u|P~2(Du)? = (2/p)*(Dv)? and by Minkowski’s inequality

2

Aoox“’2|u|pdx:/ooozc2v2dz:Aooxc </01v’(y1:)dy) da
< ( / dy (/ wxﬁ(v’(yx»?dx)mf - [Tew@ra ([ W dy>2,
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where b = —1/2 — ¢/2 > —1. By evaluating the last integral we get
(2.13) / 2 ul? de < p*(1 — c)_2/ x¢ulP~2(Du)? da.
0 0
Hence p(p — 1)I > ¢~ (1 — ¢)?J, where 1/¢g =1 — 1/p, and from (2.12) we get

(2.14) 1 —¢e)? —clc—1)]J < /R xug(x)|P de = ||M2/p71u0||€p$9.
+

Here L, D H ; _92/ P with the corresponding inequality for the norms since 2—2/p > 0.

Also, one can easily check that ¢=(1 —¢)? —¢(c—1) > 0 for 0 < § < p and therefore,
after passing to the limit as T — oo, we obtain the following intermediate estimate:

oo
-1 2/p—1
(2.15) /0 [| M~ u(t, -)||’£M dt < N||M>?/» uo||§;2;2/p~
An attentive reader might have noticed that the above derivation of (2.13) and
(2.15) falls into some trouble if 1 < p < 2. Indeed, then we get terms containing |u|
to a negative power and also the absolute continuity of v is not clear. However, the
following fact is true even if 1 < p < 2:

(i) the functions |u|P/? and |u|P~2uu, are absolutely continuous on R;
(ii) almost everywhere on R (oo - 0 :=0)

(/s = Bluf?’* 2

(\u|p72uux)x = |u|p72uum +(p— 1)|U|p72(ux)2-

Above we have only used this fact. However, we do not prove (i) and (ii). Instead,
we show how to get (2.15) for 1 < p < 2 by using an approximation argument.
For ¢ > 0 define G.(s) = (s® + ¢)P/?2 — eP/2. As it is easy to see, we have
|G- (u)] < (14 P/?)|ulP and, for |u| <1,
|GL(u)| = p(u® + )" fu| < N(e)|u| < N(e)lul"~".

Also G” > 0. Hence, owing to dG.(u)/0t = G.(u)D?u and introducing

u(t,z)
ot z) ::/ (G (s) 2 ds,
0

we get as above

/R ) 2°G.(u(T, z)) dz — / G (o)) dx

R

T T
=c(c— 1)/ / 172G (u) dadt — / / z°(v')? dadt
0o Jry o Jr,

T T
<clc—1) / / 272G (u) dedt — 4711 — ¢)? / / 2 %0? dadt.
0o Jry 0 Jry
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By letting £ | 0, noticing that lim.jo GZ(s) = p(p — 1)|s|P™2 and ¢ < 1, and using
Fatou’s lemma, we again arrive at (2.14) and (2.15).

Next, take a function ¢ € C§°(R,) and notice that for u, (¢, z) := u(e?"t, e"x) we
have

Hence by inequalities (IV.3.1) and (IV.3.2) in [9] (also see Remark 2.3.2 in [13]) for
any n we obtain

| 1€uar el e < NG 0,01,

+/O ||(<2C’”u")$ - meun)(tv )||1;{;1 dt.

We make the change of variable ¢ replacing it with e2"t; then we multiply through
the inequality by >~ "7 and observe that by Remark 1.6

||(Cun)m”H1jl > NH(Cun)xHLP > NHCUanLp - NHCwUnHva
where N = N((,p). Also use the fact that
||(2<xun)ﬂc - gxxun”szl < 2H(<xun)x||Hp*1 + NHCxxunHLp < N||77U7L|‘va

where N = N((, p,n) and 7 is a more or less arbitrary function of class C§° (R, ) with
support covering that of (.
Then we get

| e et I, e < NS M o) € I
P

on —1 n j2
N [T g,

where &€ = M'=2/P¢ and 7, is a function of type 7. For the right choice of ¢ we rewrite
the last inequality as

(2.17) /0 o (8,5, dt < NIM2 Mg, +N/O Mt dt
: -
Next, we use (2.16) and inequalities (IV.3.1) and (IV.3.2) in [9] to write

/0 1(Ctn)aw (8L, , dt < NG (0,122

+/ ||((2Cwun)a: - g:kun)(t7 ')||1[),p,9 dt.
0
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If n; and 7, are functions of class C§° (R4 ) with supports covering that of ¢, then, for
the same reasons as before, this inequality yields

oo
(Aummm»mwﬁSNm%mN@fm

o o0
+A wwmwwﬁwm+A n2tont, G,

and

|10 e < N
0 p,0

V[l e N [ M eI, d

Together with (2.15), (2.17), and the equation du/dt = M~ (Mu,,) the last inequal-
ity implies that u € $? , and that (2.11) holds with v = 2.

Actually, above we have constructed a mapping ug € C§°(Ry) — u € 56;)9. If we
introduce an operator II : ug — u, then what is proved means that (for v = 2)

(2.18) |Muollsy , < N, O)I|M>7 || -2/

if ug € C§°(Ry). Remembering that 53;,9 is a Banach space and relying on the
usual continuity argument based on (2.18), we see that IT can be extended on all ug
satisfying M2/P~1yg € H'Y /P in such a way that OMlug /0t = D*Tug, Hug|i—o = uo,
and (2.18) holds. The theorem is proved.

Remark 2.14. We will see from Theorem 3.2 that Theorem 2.13 holds for any
~ € R and the solution is unique in ,6;79.

In connection with this it is interesting to notice that Theorem 2.13 without
weights and on R instead of Ry cannot hold for all 1 < p < 2 if v = 1. For instance,
if 1 < p < 3/2, then, for the solution u of the equation du = D?udt, t > 0, z € R,

with initial condition given by the delta function, we have u(0,-) € H;_Z/p, but the
pth power of the function u, is not integrable over R* x R.

3. SPDEs with constant coefficients on Ry . Take a stopping time 7. On
R, we will be dealing with the following equation:

(3.1) du = (atgq + fo) dt + (cFu, + ¢F) dwF, t e (0,7),

where f and g* are given D(R,)-valued P-measurable functions, a and o* are given
real-valued P-measurable functions, v is an unknown D(R)-valued function, and the
equation is understood in the sense of distributions as follows. We say that u is a
solution of (3.1) with given initial condition wg if for any test function ¢ € C§°(R)
we have

(ult, ), 6) = (uo, 9)
+/m&wwmwm—u&m@wm
0

N t—UkS u k ’LUk
(3.2) +;A[ (5) (s 60) + (%, )] o]
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for all t < 7 with probability one, where all integrals are assumed to have sense and
the last series is also assumed to converge uniformly on each interval of time [0, T A 7]
in probability, where T is any finite constant.

Remark 3.1. 1If a function u belongs to 5’_);};1(7), then it satisfies (3.1) with
f = (MD)"*MDu — aDu and g* = S*u — o*Du. In addition (see Remark 1.5),
we have f € HJ ,(7) and g € H) o(7,l2). Below we show that under an additional
assumption on a and o the mapping u — (f, g) is onto.

We always assume that for some constants K > § > 0 and all w,t we have

K >2a>2a—|of}, > 6.

Here is the main result of this section.
THEOREM 3.2. (i) Let0 <0 <p, 1 <p<oo,y€R, feH] (1), g € H y(7,12),

and ug € U;;l. (ii) Assume that one of the following conditions is satisfied:

(a) p>2and b €lp—1,p);

(b)p>2and o =0;

(¢)o=0and g=0.

Then (3.1) with initial data ug has a unique solution in class 53;1(7’). In addition,
for this solution it holds that

(3.3) Tl g1 (ry < N (1l ) + lalley i) + |\Uo||U;’gl),

where N = N(~,0,p, K,6). Finally, the uniqueness holds even if we replace condition
(a) with: p>2 and 6 € (0,p).

Remark 3.3. In a subsequent paper on equations in Ri we will show that con-
dition (a) can be relaxed to be p > 2 and 1 < § < p. This could be done here too if
one uses interpolation with respect to 6 and the result of [7], where the case § =1 is
treated. However, there is a small gap in the arguments proving (2.9) of [7], so that
strictly speaking we cannot use the result of [7].

Remark 3.4. Notice that when conditions (b) or (c) are satisfied, § may be any
number in (0, p).

It is also worth noting that if & > p or 6 < 0, then the statement of Theorem 3.2
is false even in the case of the heat equation. This can be shown by simple examples.

The proof of this theorem is based on two lemmas, the first of which we prove in
section 4.

LEMMA 3.5. Theorem 3.2 holds if v = 1.

LEMMA 3.6. Let assumption (i) of Theorem 3.2 be satisfied and let p < . Assume

that either p>2 oroc=g=0. Let 01 € R and let u € 5’_)’;:'511 (1) be a solution of (3.1)

with initial condition uy. Assume that M ~u € Hg;l(T). Then u € 5’);;1(7) and
el < N1l o)+ ol o) + el o) + llollgyse )

where N = N (v, i, 6,p).

Proof. For simplicity of notation we will only consider the case 7 = oco. The
reader can easily make the necessary changes for general 7.

By virtue of (3.2) we have (2.2) with x(au,, + f.) instead of f and o*u, + g"
instead of g*. Upon taking into account the assumptions on f and g and remembering
Remark 1.5, we conclude that we only need to prove that

p p p p p
B sl < NUAG, + ol )+l +uol? ).
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Since [[ug |y, < ||u”f||HZ.e for v < p, it suffices to prove (3.4) with some v < p
in place of y. This shows that we may assume that v — y is an integer. Also we can
go from p up to v in several steps each time getting an increase by one. Therefore,
without loss of generality we may and will assume that v = p + 1, so that (3.4)
becomes

(3.5) HUwHﬁ;rﬂ < N(Hf”%ge + ||9Hﬁ;,9(12) + ||uz|‘%251 + ||U0H1;J;zl)

Take a function ¢ € C§°(R;) with M ( satisfying condition (1.4). One can easily
check that the functions u,(t,x) := u(e*'t, e"x) satisfy the equation

(3.6) duy, = (aptnge + frn) dt + (Uﬁum + gﬁ) dwf(n),
where

an(t) = a(e®™t), ok (t) = a* (™), wlF(n) = e "weany,

fn(t ) = > (f,)(e*"t, "), gﬁ(t, x) = e"gk(egnt, e"r).

Observe that for any n, the processes w¥(n) are independent Wiener processes. From

(3.6) we get

(3.7) d(Cun) = (an(Ctn)zz + fn) dt + (Uﬁ(cun)m + gfb) dwf(n),

where
.fn = Cfn — 2apCaUng — AnCrzln, gqli = ngli - O—SCmun

Since M~y € Hgﬁ, it is easy to see that for any n € Cg°(R ) we have nu,, € HY
and nun, € H)™', so that fn € H)~' and g, € H}(l2). By Theorem 2.1 of [5] or
Theorem 4.10 of [8] for p > 2 (with uniqueness in H}(7) and existence in H}*!(7),
here we use Cu,, € HJ(7)), (3.7) implies that

(38)  [1(Cun)aallyy+ < N(Ilf_nllﬁg-l +119nlliy ) + EllCuo(e” ')Ilzgﬂfz/p),

where ug,(x) = ug(e™z). Actually, Theorem 2.1 of [5] or Theorem 4.10 of [8] treats
the case ug = 0. One deals with arbitrary ug as in the beginning of the proof of
Theorem 5.1 of [8] by just subtracting the solution of the heat equation Ov/0t = vy,
with initial condition ug. Owing to the fact that supports of all functions (u,, coincide
with that of ¢, from (3.8) by Remark 1.6, we get

(3.9) ICunlly s < N(”fn”ﬁ;fl + 119l 1) + EllCuo(e” ')ll’;;ﬂfz/p)

The same conclusions are true if 1 < p < 2 and ¢ = g = 0, which can be seen from
section 9, Chapter IV of [9] or from the proof of Theorem 2.1 of [5] or Theorem 4.10
of [8], where one can take any p € (1,00) if 0 = g = 0. In particular, in all cases
Cup, € H7 ™ and (3.9) holds.
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Now we multiply (3.9) through by e?=P+9" and sum up over all n. We also use

Z I fullfy = D BTN (fa) (€2, € )Ll
= > el e Al = Y eI L) (e )M

SN|IMfellPy - < NIl
p,0 P,0

o
S ey = 3 o Kl < Nl
n=-—00 n=-0o0
o) oo
Z 6(2_p+9)n||gruna:||§]1;*1 = Z 6(2_1’4‘9)””671(”96)(62”.7e7b.)cz|‘%;*1
n=-—00 n=-00
oo
= > P Gl < Vil
n=-—oo :
o) o0
2 I Cortinll = 30 I )" M ol
n=-—oo n=-—o0
< N||M~ u||H7 S Nl
P,

Similarly, we estimate (,u,, we notice that

262 p+9)nE||Cu0( ')HHWJrl 2/p

:ZeonEH (M2~ tug) (e ) M2/ P

H'Y+1 2/p

<J\“‘JIIMQ“" fuo [ = Nluoll7

'y+1 2/p T Ut
p,0

and we get

Z e~ p+9)n||gun||Hw+1 =

n=—oo

where I is the right-hand side of (3.5). Here the left-hand side equals

[e.9]

Y I (e )M = NTHM uHHerl 2 N7 luallgy

n=—oo

and the lemma is proved.
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Proof of Theorem 3.2. For simplicity of notation we only consider the case 7 = co.
Actually, as it is easy to see, the statement of existence for 7 = oo implies the
statement of existence for other 7, and the proof of uniqueness for general T can be
done in the same way as in the case 7 = co.

Case v > 1. The uniqueness follows from Lemma 3.5 and the fact that 5’)127 0.0 2

Y)p o 0, which implies that the difference of two solutions belongs to 5’9 0.0° The exis-
tence and estimate (3.3) follow from Lemmas 3.5 and 3.6 (applied with w=1) and
the observation that by Lemma 3.5

el < NG + gl ) + ol )

NIl , + 91l @) + llwollgy):

Case v < 1. Denote by R the operator which maps (f,g,ug) with f € Hpe,
g € HJ 4(l2), and ug € U;‘gl into the solution u € .6;:’(;1 of (3.1) with initial data wy.

So far we know that R is well defined in spaces H) , x H ,(l2) x U;‘gl fory>1. If
v < 1, as a candidate for the solution of (3.1) we try

W= AL gR(A G f A G g, MY 2PN UM ),
where n ++ > 1 and (see Remark 1.3)
(A5 f A g, MY 2P A MPP— gy € HVET < HIVEY (1) x Uy

If the operators A, g, M?/P~! and D were commuting, then our candidate would
be an exact solution of (3.1). Since this is not the case, we need an additional argument
based on Lemma 1.14.

Take n = 2 and first let 1 > v > 0. Then by what we know in the case v > 1, we
have

vi=R(A G A 59, MITHPASMPP ug) € 757

p,0

dv = (avg, + (A;zf) )dt + (% v, +Ap 2g") dwf.

We apply A2 o to both parts of this equality, or in other words we substitute (Ai’g)*qﬁ,
where (A;Z),e)* is the formal adjoint to A2 ,, in place of ¢ in (3.2). Now our candidate
becomes

p,0?

~ A2
u = Ap)e’U.

We claim that @ belongs to ﬁggl and there exists

(3.10) (f.g,10) € H) B x HYH (1) x UJ3°
such that
3.11 dit = (aligy + fo + fz) dt + (i, + g8 + g¥) dw?,
t

ﬁ(o, ) = Uug + Ug.
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Indeed, by Remarks 2.4 and 2.8 and Lemma 1.14 we easily get that

aenrtt, MTlwel P MTla=A2,M v+ PM v e )G

p,0 p,0

Dii= A} ,Dv+ P Dv e H ,
and that @ satisfies (3.11) with
f=4P,M v+ (20— 1)I+2MD)A 3 f, §"=o"PDo.
Obviously, f and g are as in (3.10). Also by Lemma 1.14 at ¢ = 0,

M2/P15 = M2/p—1A]2070M1—2/p(M2/p—1u)

= A2y M*/P7 1y + ey MP/P" w4 o MDM?/P~ y =: MP/P~ g + M7 g
where
M?P~ag € Ly(Q, Fo, H)5272/7).

This finishes the proofs of (3.10) and our claim.

Since y+1 > 1, it follows from (3.10) that the function @ := R(f, g,uo) is well
defined, belongs to 357 , and the function u = @ — @ is of class .‘737+ and solves
(3.1). For thus Constructed u estimate (3.3) follows from the explicit representatlon
and known estimates for R, P;, M D.

By repeating the above argument, we consider the case 0 > ~v > —1, this time
using the fact that v+ 1 > 0 and relying upon the result for v > 0. One can continue
in the same way, and it only remains to prove the uniqueness of solutions in 55;“

It suffices to con51der the case f = 0,9 = 0,up = 0 (and v < 1). In this case any
solution u € ﬁ7 also belongs to 532 0,0 by Lemma 3.6 and its uniqueness follows
from Lemma 3. 5

The theorem is thus proved.

Remark 3.7. In the above argument one can use (M D)? instead of A2 ,, which
would make the argument shorter. We prefer A;%,a bearing in mind a generalization
to a multidimensional case.

Remark 3.8. From the above derivation of Theorem 3.2 from Lemma 3.5 it is
seen that, if the assertions of Theorem 3.2 hold for some particular v, p,8,a, and o
satisfying the conditions of Theorem 3.2, then they hold for any v € R with the same
p,0,a,0.

4. Proof of Lemma 3.5. First notice that by Theorem 2.13 for almost every w
the function @ := Ilug is well defined, @ € 5’)2,9, t|t—o = uo, 0U/Ot = f, with f € ]HIP 01
and an appropriate estimate of ||7jm|\H;l9 and ||f|\H!1)9 through ||u0||U§l9 holds. This
implies that in the equation ' ' '

du = (atze + (ally + f — f)z) dt + (0Fug + (6T, + ¢%)) dw?

we have ati, + f — f € Hzliﬂ and otz + g € Hzl)ﬂ(lg). Also, obviously if we can solve
the above equation in .6]2),0’0, then by adding to the solution the function u we get a
solution of (3.1) with initial data ug. Therefore, in the proof of Lemma 3.5 without
loss of generality, we may and will confine ourselves only to the case ug = 0.
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Furthermore, we may assume that a = 1. Indeed, to get the result for the general
case one only needs to use a random time change. Namely, let us define

P(t) = /0 a(s)ds, 7(t) =1inf{s >0:¢(s) >t},

7(t) B
n(t) = / Va)dwi(s),  F(t.x) = [(r(t). 2)/a(r (b)),

5(t) = o(r(t)/Va(r(®), §(t,x) = g(r(t),z)/V/ a(r(t)),

a(t,z) = u(r(t), ).

Direct computations (see, for instance, Lemma IV.2.2 and Theorem IV.2.3 in [3])
show that @y (t) are independent Wiener processes and also that w is a solution of
(3.1) if and only if @ is a solution of

dit = (g + f) dt + (Griiy + Gr) dig(1).

Therefore, we easily get the desired result for general a from the result for a = 1.
Finally, obviously we may assume that 7 < T where the constant T' < co. Thus, we
may and will assume that ug = 0, a = 1, and unless stated explicitly otherwise 7 < T..
We divide the proof of the lemma in this case into the following subcases:
l.p>2and 6 € [p—1,p), existence;
2. p>2and 0 € (0,p), uniqueness;
3.p>2and g =0;
4.0 =0and g =0.

4.1. Case p > 2 and 0 € [p—1,p). Existence. We use the following simple
lemma.

LEMMA 4.1. Let functions f, h be defined on R, be locally absolutely continuous,
and satisfy

(41) [ 1@l de < .
0
Then
| st@g@yds =~ [ af @t ds - [ fwgte)ds
if at least one of the sides of this equality makes sense.

This fact easily follows if one integrates by parts between a,b with 0 < a < b < 00
and then lets a | 0 and b — oo after noticing that (4.1) implies that

limlionf laf(a)g(a)| = ligninf |bf(b)g(b)| = 0.

Denote by £ the collection of functions of the form

ft ) = ZIM_hﬂﬂ(t)fi(x),
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where f; € C§°(R4) and 7; are stopping times, 7; < 7,41 < 7. The set € is dense
in H;)’G(T), which follows from a similar fact for spaces H) (see [5] or [8]) and the
definition of HZ79(T). Also, the collection of sequences g = (gx), such that each g
belongs to £ and only finitely many of g are different from 0, is dense in H}j’o(r, l2).
It follows that in the proof of existence and estimate (3.3) we may assume that f and
g are of this type.

Next, we use an argument from [7]. We continue f(¢,z) to be an even function
and g(¢,z) to be an odd function of € R. Also take an infinitely differentiable odd
function a(z) such that a(z) =1 for large x, a(x) = 0 for |z| < 2 and on R consider
the equation

(4.2) du = (e + fo) dt + (ac™u, + ¢*) dw?.

The following lemma is proved in the end of this subsection.
LEMMA 4.2. In H(7) there exists a unique solution u of (4.2) with zero initial
condition. Moreover, u € 5’)279(7') and

(43) lullgo vy < Nfllsz ey + Nllglley o

where N is independent of T, f, and g.
Now notice that the equation

(4.4) du = (Ugy + fo) dt + (anakum + gk) dwf,

where ay,(z) = a(e™z), also has a solution u € 5732’9(7') for which (4.3) holds with
the same N. To prove this, it suffices to use scaling properties of the norms in
H), (see Remark 1.4) and to observe that if u is a solution of (4.2), then the function
un(t, ) = u(e®* t, e"x) satisfies (3.6) with the same f,,, g,,, and w;(n) and with a,, = 1
and o, (t) = a(e"x)o(e*t).

Denote u, the solution of (4.4). Then u,, satisfies (4.3) and, in particular, M ~'u,
form a bounded sequence in L, o(7). Denote u a weak limit of a subsequence of w,,.
As in the proof of Theorem 3.11 of [8] we get that u € §9 4(7). Then passing to the
limit in (4.4) and observing that a(e”x) — 1 for x > 0, we get that u satisfies (3.1)
and estimate (4.3). It follows from Lemma 3.6 that u € 5’)12779(7') and (3.3) holds with
v =1 and ug = 0. This finishes the proof of existence.

Proof of Lemma 4.2. The existence and uniqueness of solution u € H}(7) of (4.2)
is asserted in Theorem 3.2 of [5] or Theorem 5.1 of [8]. Therefore, we only need to
prove that u € 7 ,(7) and that (4.3) holds.

By the definition of the norm in 5');79(7) and by Remarks 2.4 and 2.7, it is sufficient
to show that M ~'u € L, »(7) and

(4.5) 1Ml iy < NIy + NI, oy

Owing to our choice of f and g, from [5] or [8] we know that u € H}(7) for any
~ and, in particular, for almost any w, the function u(¢,z) is infinitely differentiable
with respect to x and all its derivatives are continuous in ¢. This implies that (4.2)
holds pointwise (a.s.). In addition, by uniqueness the function u(t,z) is odd with
respect to x, so that, in particular, u(¢,0) = 0.

Again by choice of f and g, the function wu satisfies the heat equation u; = u,; for
0 < z < 2 with zero initial and zero boundary value for z = 0. If we set u(¢,z) =0
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for t < 0, then it satisfies the heat equation for all ¢t < T and 0 < =z < 2. For such
functions it is well known (see, for instance, the maximum principle and Theorem
8.4.4 in [4]) that for any integer n > 0,

sup | D"u(t,x)| < N(n)sup |u(t,2)|.
0<z<1,t<T t<T

Therefore, for § > 0,
T 1
E/ / lu/x|Pe? tdedt < NE  sup  |ug|? < NEsup|u(t,2)|P.
o Jo 0<z<1,t<T t<T

In addition, as has been mentioned above, we have u € H (7) for any . By embedding
theorems (see [5] or [8])

E sup |u|f < oo,
[O,T]XR+
which proves that, for any 6 > 0, we have M ~'un € L, ¢(7) if n = n(z) is smooth

and vanishes for x > 1. In the same way it is proved that for any integer n > 0 and
0 >0,

T 1
(4.6) E/ / |D"ulPx? 1 dedt < oco.
0o Jo

On the other hand, |[M ~'u[P2?~! < |u|P if # > 1 and @ < p + 1. Hence, M~ 1u €
L,.¢(7) not only for § € [p — 1,p) but for all 8 € (0,p+ 1].
Next, we claim that, actually, for any 6 € (0,p + 1] and v > 0, we have

(4.7) ue 97 ,(r).

To prove this claim, let ¢ € C*°(R) be such that ((z) = 1 for + < 1/2 and
¢(x) = 0 for x > 1. We want to apply Theorem 1.10 to prove that (u € 56;0(7).

Notice that we already know that M ~'Cu € Ly o(7). Also from (4.6) it follows that
M"D"™(Cu), € Ly for any integer n. Hence the inclusion (u € §) ,(7) follows indeed
from Theorem 1.10.

To prove the claim it only remains to prove that v := (1 —()u € ) »(7). Observe
that u € H)(7) and v € H)(7) for any 7. Also, v satisfies

(4.8) dv = (Vge + f) dt + (ac®v, + g") dwk,
where
F=0=0f+2Gus + Cou, 78 = (1-)g" + ac®Cu.
Now, consider the following equation on R:

diit = (fipy — 2ii, tanh z + (2tanh® z — 1)@ + f coshz) dt

k

+(aofi, — ackitanh z + §* cosh x) dw?,

with zero initial condition. Because of compactness of supports of f and g, by already
cited results from [5] or [8] there is a unique solution @ in class H})(7) for any . Of
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course, i/ coshx € H)(7) for any 7. In addition, one can easily check that i/ coshx
satisfies (4.8). By the uniqueness of solutions of (4.8) in class H}(7), we conclude
that v = 4/ coshx and, in particular, v coshx € H)(7) for any 7. Now the fact that
v € .‘7);9(7) for any ~ follows easily from the observation that v = 0 if x < 1 and
a™/ cosh z is bounded.

Next we remember that (4.2) holds pointwise and we apply Ito’s formula to
|u(t, x)|Pxc, where ¢ = 0 + 1 — p. We get that, for any x € Ry and ¢ < 7, a.s.

t t
(4.9) / I(s,x)ds + Z/ prlulP2u(ac®u, — ¢F) dw® = |u(t, )Pz > 0,
0 — Jo

where

I :=px? 1G(v)(2use) + pr G (v) (2 fy) + baf ! Z lv|P~2 (ao™u, — g*)?,
i

b:i=p(p—1)/2, v:=ufzx, G(r):=|r[~?r

It follows that for any 2 € R, there is a sequence of stopping times 7(n) 1 7 localizing
the stochastic integral in (4.9) so that

7(n)
(4.10) E/ I(s,z)ds > 0.
0

It turns out that for almost any = € R, here one can replace 7(n) with 7 and integrate
with respect to x over R . To prove this it suffices to prove that

(4.11) E// |1(s,x)|dxds < co.
0 Jry

Observe that (4.7) for v = 2 means that
(4.12) M_1U7 Uy, Mugy € 1y o(T),

which implies (4.11) since by Hoélder’s inequality

E/ / ()] |2t |27 dadt

—E/ / u(t, ) /z|P [ @up, (t, )|~ dadt

S IM Ml P o [ M g

p,0(T) p,0(T)?

E / / ()2 a2 dedt < M2 M ol o,
E/o /0 0[P~2 |uy 22t dodt < || M~ [P Z(T)H m||Lp9(T)

T o0
- 2
E/ / [ofP=2lglf, " dudt < || M allf 2 lglE, e
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Having thus proved (4.11), from (4.10) we conclude

(4.13) E// I(s,x)dxds > 0.
0o Jry

While estimating the integral with respect to x in (4.13) we integrate by parts after
noticing that (4.12) also implies that

E// |G (u)||ug |2t dedt < oo.
o Jo

By Lemma 4.1 for almost all (w,t) € (0,7] we get

p/ 22 71G(v) (2ugy ) da :p/ 2°G(U)Ugy dx
0 0

:—p(p—l)/ |u|p*2|ux\2:ccdx—c/ 27 (|ulP), da

0 0

o0

=—p(p— 1)/ |u|P ™2 ug |22 da + c(c — 1)/ |M~YuPz?t da.
0 0

Furthermore,

/OO 271G () (zfy) do

0

-1
< lollz 2 1M el o

<Ml , + NEpIfil

where € > 0 is arbitrary. Finally, while estimating the terms in (4.13) which came
from stochastic integrals we also use

(aotuz — g")? < (14 e)|o" Plusl* + (1 + 715"

Then from (4.13) we conclude that for any € > 0,

T o
po-DE [ [ [0+ 2)lolh /2~ Ml ot de
0 0

+[(0+1 —p)<9—p)+5]E/ / | M~ u|P2?~ dadt
0 0

(4.14) ENEP I oy + 911, ) dad > 0.

Now comes the only place where we need 6 € [p — 1,p). This condition implies
that (0 +1 —p)(60 —p) < 0. Also |o|7, <2 — 6. By using (2.13) we conclude that the
first term in (4.14) is strong enough if € is small and (4.14) implies (4.5). This brings
the proof of Lemma 4.2 to an end.
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4.2. Case p > 2 and 0 € (0,p). Uniqueness. Suppose that u € 55;)9(7') is a
solution of

4.15 du = Ugy dt + Ukum dw?
( ¢

with zero initial condition. By Lemma 3.6 it follows that u € 53;9(7') for all v and
also u¢ € HJ(r) for all ¢ € C5°(Ry). Hence we again have (4.12) and the equation
is satisfied pointwise. For 6 € [p — 1, p), this makes it possible to estimate the norm
||qu?2 ,(r) using the same computations as in Lemma 4.2. Since now f = g = 0, the
result is [Jullg1 ) = 0.

Next notice that, for any § € (0,p), there exists 6; € (p — 1,p) such that 6 <
61 < 0+ p. Also as above, for any v any solution of (4.15) in 5’);0(7') with zero initial
condition also belongs to 5’)11779(7'). Hence, the following result implies the uniqueness
for general 6 € (0, p).

LEMMA 4.3. Let v, 61, and p be such that the first two assertions of Theorem 3.2
hold for ug = 0, any stopping time 7, and these vy, 61, and p (for instance, v = 1,
01 €p—1,p), andp>2). Let ¢ >p, 0 #0, and 0 # q satisfy 0/q < 61/p < 0/q+ 1.
Let 7 be a stopping time and u € 9} o (7) satisfy (3.1) with some f € Ly, (1) and
g €Ly (1,l2). Thenu e 5311,,91)0(7).

Proof. By Remark 3.8 we may assume that v = 0. Let v be the unique solution
of (3.1) in ,6[1,79,0(7) with given f and g. To prove the lemma we prove that u = v.

Let x be an infinitely differentiable function such that x(xz) = 1 for |z| < 1 and
k(x) = 0 for |z| > 2. Define k,, = k(z/n).

First we prove that for any n,

(4.16) ukin € $,.9, 0(T)-

To this end observe that
E/ / |(whin )z |P2? 1 dzdt < 21’*1E/ / |t i [P 1 dadt
o Jo o Jo

(4.17) —|—2p_1E// [k [P~ dadt,
o Jo

where by Holder’s inequality the first term on the right is less than a constant times

T 2n
E/ / a2 @D/ 011010/ gy
0 0

T 20 p/q 2n 1-p/q
< (E/ / |1 |20 dzdt) T'-r/a (/ x° d:c) ,
o Jo 0

c=10—1—(0—-1)p/qlq/(q¢—p) = (qq,pp) (2 - z> -k

with

Since ¢ > —1, the first term on the right in (4.17) is finite. One can similarly treat
the second term after noticing that |ukn,| < N|u/x| and u/x € Lqg(7). The same
argument yields uk,/x € L, g, (7) and this proves (4.16).
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Now, let & = u —v. By what we have just proved, @, belongs to 55;,’91’0(7). Also
Uk, satisfies the following equation similar to (3.7)

d(irn) = (a(tkn)se + fre) dt + (ak(fmn)w + g,’j) dw,’f7

where

Ft:a) = a(t) [ 2ran)alt.9) + e (1, )] dy

= —2aKkpzU + (MD)*l(M(mnmﬂ), " = —oF ket

Hence, by our assumptions and Remark 1.5

(4.18) ||fmn‘|3§;,91 (r) < Nl[EnatllL )+ NIM Enga 1,

.01 (T .0 (T)

Here, for instance, (kn, < N/n)

T 2n
asilf o < N0 7B [ [ alrat dnay
n

T p2n T r2n
< NE/ / lv/2Paf 1 dmdt+Nn91_p—1E/ / |ul? dxdt.
0 Jn 0 Jn

The first term on the right tends to zero as n — oo since v/x € Hgﬂl (7). To prove
the same for the second term use Holder’s inequality to get that it is less than

T 2n p/q
NT'-Plapbi—p=p/a <E / / |u|? dmdt)
0 n

T 2n p/q
(4.19) < Nnf <E/ / |u|9291 dxdt) ,
0 n

where c =61 —p—p/q— (6 — 1)p/q < 0 by virtue of 61 /p <1+ 6/q. Theorem 2.11
implies that the right-hand side of (4.19) tends to zero as n — oo.

In the same way using the fact that |M k.| < N/n we get that the second term
on the right in (4.18) tends to zero as well. Thus (use Theorem 2.11)

o0
Esup/ |a(t, z)|P2? ~1 dzdt < liminf Esup ||a(t, Vnl%ro
t<r Jo n—oo i <lr P01

g e [P _
< Nhgglg(l}f ||w£””~‘3,1,,91(7) =0.

The lemma is proved.

4.3. Case 0 = 0 and p > 2. Uniqueness follows directly from section 4.2. To
prove existence notice that as has been emphasized in section 4.1 the only place where
we used 6 € [p — 1,p) is right after (4.14). But in our present situation o = 0 and
from (4.14) and (2.13) we conclude that

™ =1 —0)*+ (O +1—p)(p—0) +e]|| M ul]

p,0(T)

(1.20) < NER L, + 1911, i)

Observe that the condition 0 < § < p is equivalent to p~t(p — 1)(p — )+ (0 + 1 —
p)(p — 0) > 0. Therefore, for € small enough we again get (4.5). This takes care of
the existence.
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4.4. Case o0 = 0 and g = 0. Actually, this is the case of the heat equation
without any stochastic terms. In this case Lemma 3.6 is available for any p > 1 and
as in section 4.1, to prove existence, it suffices to prove (4.5) for f as in section 4.1.
This time we get (4.20) with e = 0 even for 1 < p < 2, which is proved by the same
approximating argument as in the proof of Theorem 2.13 right after (2.15). Hence,
we have existence.

The uniqueness is proved as in the beginning of section 4.2 observing that this
time we do not need condition 6 € [p — 1, p) to be satisfied and yet have (4.20).

This finishes the proof of Lemma 3.5.
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