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Abstract. Equations of the form du = (auxx + fx) dt+
∑

k
(σkux + gk) dwkt are considered for

t > 0 and x > 0. The unique solvability of these equations is proved in weighted Sobolev spaces with
fractional positive or negative derivatives, summable to the power p ∈ [2,∞).

Key words. stochastic partial differential equations, Sobolev spaces with weights

AMS subject classifications. 60H15, 35R60

PII. S0036141097326908

Introduction. We are considering the equation

du = (auxx + fx) dt+
∞∑
k=1

(σkux + gk) dwkt

in one space dimension for x > 0 and t > 0 with some initial condition at t = 0
and zero boundary condition at x = 0. Here wkt are independent one-dimensional
Wiener processes and f and gk are some given functions of (ω, t, x). The functions
a and σk are assumed to depend only on ω and t. Such equations with a finite
number of the processes wkt appear, for instance, in nonlinear filtering problems for
partially observable diffusions (see [11]). Considering infinitely many wkt turns out
to be instrumental in treating equations for measure valued processes, for instance,
driven by space–time white noise (see [8] or [6]).

Our main goal is to prove solvability of such equations in spaces similar to Sobolev
spaces, in which derivatives are understood as generalized functions, the number of
derivatives may be fractional or negative, and underlying power of summability is
p ∈ [2,∞).

The motivation for this goal is explained in detail in [5] or [8], where an Lp-theory
is developed for the equations in the whole space. We only mention that if p = 2, the
theory was developed long ago and an account of it can be found, for instance, in [11].
The case of equations in domains is also treated in [11]. However, the solvability is
only proved in spaces W 1

2 of functions having one generalized derivative in x square
summable in (ω, t, x). It turns out that going to better smoothness of solutions is not
possible in spaces Wn

2 and one needs to consider Sobolev spaces with weights, allowing
derivatives to blow up near the boundary. The theory of solvability in Hilbert spaces
like Wn

2 with weights is developed in [1] and [10], where n is an integer. Here we show
what happens if one takes a fractional or negative number of derivatives and replaces
2 with any p ≥ 2. By the way, according to [2], it is not possible to take p < 2 when
stochastic terms are present in the equation.
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Unlike the above mentioned works, we only concentrate on the one-dimensional
case. There are several reasons for that, the main being that even in the case of
Hilbert spaces in [1] the central estimates are first proved in the one-dimensional case
and after this there is still a rather long way to go to get to multidimensional domains.
Our treatment of the one-dimensional case is long itself.

One of main difficulties in developing the theory presented below was finding
right spaces. The idea was to find a scale of spaces like in [11], [5], or [8] generated
by fractional powers of a certain operator, which is 1 −∆ in [11], [5], and [8]. From
the results of [1] and [10] one can guess that xD = x∂/∂x should be such an operator
in our case. Elliptic second-order operators are more appropriate if one wants to
define fractional powers and expects them to have nice properties. Therefore, our
first attempt was to try the operator L = xD(xD) + xD − c, which is formally self-
adjoint for any constant c. However, after having constructed the theory we noticed
that the same spaces can be defined as images of spaces from [5] or [8] under certain
linear mapping. This made using the results from [5] and [8] easier and allowed us
to avoid developing solvability theory for L and investigating the semigroup and the
resolvent associated with this operator.

In [11], [5], and [8] the solution is sought for in the same scale of spaces (at
least as far as the space variables are concerned) as the one to which the free terms
f and g belong. Surprisingly enough this is not the case in our situation, and this
causes many difficulties practically at each step. The origin of all unusual features
of our theory lies in the fact that there are no operators commuting with ∂/∂x and
generating our scale of spaces. To give one more example of what is unusual we
state the following theorem, which can be obtained from Theorem 3.2 after changing
variables v(t, x) = ex(α−1)u(t, ex), where α = θ/p.

Theorem 0.1. Let α ∈ (0, 1), p ∈ (1,∞), T ∈ (0,∞], and f ∈ Lp([0,∞) × R).
Then in the class of functions v(t, x), t ∈ [0, T ], x ∈ R such that∫ T

0

∫
R
[|vx|p + |v|p] dxdt <∞,

the equation

e2xvt = vxx + (1− 2α)vx − (1− α)αv + fx(0.1)

on (0, T ) × R with zero initial condition has a unique solution. In addition, this
solution satisfies ∫ T

0

∫
R
[|vx|p + |v|p] dxdt ≤ N(α, p)

∫ T

0

∫
R
|f |p dxdt.

Surprising in this theorem is that if we replace e2x with 1 in (0.1), then the result
becomes well known and is true for any finite T (now withN depending on T too). The
presence of e2x makes (0.1) degenerate, and usually results for degenerate equations
differ very much from those for nondegenerate cases. Actually, we do not know much
about (0.1). In particular, it would be interesting to know whether Theorem 0.1
remains true if we replace the term (1−2α)vx in (0.1) with bvx where b is an arbitrary
constant.

The article is organized as follows. In section 1 we introduce and investigate basic
spaces with weights of functions of x ∈ (0,∞). Section 2 is devoted to stochastic
Banach spaces of functions of (ω, t, x) satisfying zero boundary condition at x = 0.
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This condition is expressed by means of requirement (2.1). In section 3 we prove our
main Theorem 3.2 about unique solvability of our equations. The reader will see the
very core of our technique in the proof of Lemma 3.6. Rather long section 4 contains
the proof of the main particular case of Theorem 3.2, which is stated as Lemma 3.5.

1. Sobolev spaces with weights. For γ ∈ R and p ∈ (1,∞) let Hγ
p = Hγ

p (R)
be the spaces of Bessel potentials (see, for instance, [13]) which are formally given
by Hγ

p = Λ−γLp(R), where Λ := (1 − D2)1/2 and D = d/dx. One knows that the
elements of Hγ

p are distributions and C∞0 = C∞0 (R) is dense in Hγ
p . Let D(R) and

D(R+) be the sets of all distributions on C∞0 (R) and C∞0 (R+), respectively, where
R+ = (0,∞). If f ∈ D(R+) and θ ∈ R, then the expression h(x) := f(ex)exθ/p is
well defined and is a distribution on R. Indeed, the action of h on a test function
φ ∈ C∞0 (R) is defined as (h, φ) = (f, ψ), where ψ(x) := φ(log x)xθ/p−1. We denote
h = Qp,θf in this way defining a one-to-one operator

Qp,θ : f(x)→ f(ex)exθ/p.

Definition 1.1. We write f ∈ Hγ
p,θ (= Hγ

p,θ(R+)) if and only if Qp,θf = h ∈ Hγ
p .

We write Lp,θ = H0
p,θ. For f ∈ Hγ

p,θ we define

||f ||Hγ
p,θ

= ||Qp,θf ||Hγp .

Remark 1.2. Since Hγ
p is a Banach space, so is Hγ

p,θ with the norm introduced

above. Also since C∞0 (R) is dense in Hγ
p , the set C∞0 (R+) is dense in Hγ

p,θ.

Remark 1.3. Define Λγp,θ = Q−1
p,θΛ

γQp,θ. Then for any γ, µ, θ ∈ R the operator

Λγp,θ is an isometric operator from Hµ
p,θ onto Hµ−γ

p,θ .
Indeed, by definition,

||Λγp,θu||Hµ−γ
p,θ

= ||Qp,θΛγp,θu||Hµ−γp
= ||ΛγQp,θu||Hµ−γp

= ||Qp,θu||Hµp = ||u||Hµ
p,θ
.

Remark 1.4. The norm in Hγ
p,θ contains norms of, so to speak, γ derivatives of

u. However, it scales in the same way for any γ. We mean that, due to translation
invariance of norms in Hγ

p , for any constant a > 0 and u ∈ Hγ
p,θ,

||u(a ·)||p
Hγ
p,θ

= a−θ||u||p
Hγ
p,θ

.

Remark 1.5. Define M as the operator of multiplying by x, M : u(x) → xu(x).
It turns out that for any γ ∈ R the operator MD is a bounded operator from Hγ

p,θ

into Hγ−1
p,θ and if, in addition, θ 6= 0, then MD maps Hγ

p,θ onto Hγ−1
p,θ and its inverse

is also bounded.
Indeed, an easy computation shows that

Qp,θMDu = LQp,θu, MDu = Q−1
p,θLQp,θu,

where Lv = Dv − vθ/p. One knows (see, for instance, p. 263 in [12]) that for any
constant ν the operator v → Dv+ νv is a bounded operator from Hγ

p into Hγ−1
p and

if ν is real and ν 6= 0, then it maps Hγ
p onto Hγ−1

p and its inverse is bounded. This
and the definition of Hγ

p,θ obviously imply our assertion.
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Remark 1.6. Functions in Hγ
p,θ are different from those in Hγ

p only in what
concerns their behavior near zero and infinity. More precisely, if [a, b] ⊂ R+ and f = 0
outside [a, b], then by the results on changing variables and pointwise multipliers (see
Theorem 4.3.2 and Corollary 4.2.2 of [13]) ||f ||Hγ

p,θ
≤ N ||f ||Hγp ≤ N ||f ||Hγ

p,θ
, where

N is independent of f .
It is convenient here also to notice that for the same f we have

||f ||Hγp ≤ N ||Df ||Hγ−1
p
≤ N ||f ||Hγp ,

with N independent of f .
Indeed, the inequality on the right is known to be true even for any f ∈ Hγ

p . As
far as the left inequality is concerned, by Remark 1.5 we have

||f ||Hγp ≤ N ||f ||Hγp,1 ≤ N ||MDf ||Hγ−1
p,1
≤ N ||ηDf ||Hγ−1

p
,

where η ∈ C∞0 (R) and η(x) = x on [a, b]. It only remains to remember (see [13]) that
such η is a pointwise multiplier in any space Hγ−1

p .
Remark 1.7. Upon noticing that DMu = MDu+u, as in Remark 1.5 we conclude

that for any γ ∈ R the operator DM is a bounded operator from Hγ
p,θ into Hγ−1

p,θ and

if, in addition, θ 6= p, then DM maps Hγ
p,θ onto Hγ−1

p,θ and its inverse is also bounded.

Remark 1.8. Let θ 6= 0, u ∈ ⋃µHµ
p,θ, and MDu ∈ Hγ

p,θ. Then u ∈ Hγ+1
p,θ and

||u||Hγ+1
p,θ
≤ N ||MDu||Hγ

p,θ
.

Indeed, by Remark 1.5 there is v ∈ Hγ+1
p,θ such that MDv = MDu and ||v||Hγ+1

p,θ
≤

N ||MDu||Hγ
p,θ

. Then v′ = u′ and v−u = c, where c is a constant. Since v, u ∈ Hµ
p,θ for

some µ, we have c ∈ Hµ
p,θ, which is only possible if c = 0. Therefore, u = v ∈ Hγ+1

p,θ .

Remark 1.9. Let θ 6= p, u ∈ ⋃µHµ
p,θ, and DMu ∈ Hγ

p,θ. Then u ∈ Hγ+1
p,θ and

||u||Hγ+1
p,θ
≤ N ||DMu||Hγ

p,θ
.

Indeed, one can repeat the argument in Remark 1.8 relying on Remark 1.7 instead
of Remark 1.5 and noticing that from the equality DMv = DMu it follows that
v − u = c/x, where c is a constant.

Remark 1.5 and the observation that H0
p,θ = Lp,θ is just an Lp-space of functions

on R+ with measure mθ(dx) = xθ−1 dx yield inequalities (1.1) in the following useful
result, which can also be restated in a natural way on the basis of Remark 1.7.

Theorem 1.10. If γ is an integer satisfying γ ≥ 1 and θ 6= 0, then for any
u ∈ Hγ

p,θ we have

||(MD)γu||Lp(R+,mθ) ≤ N ||u||Hγ
p,θ
≤ N ||(MD)γu||Lp(R+,mθ),(1.1)

γ∑
n=1

||MnDnu||Lp(R+,mθ) ≤ N ||u||Hγ
p,θ
≤ N

γ∑
n=1

||MnDnu||Lp(R+,mθ),(1.2)

where N is independent of u. Thus, the space Hγ
p,θ can also be defined as a closure of

the set C∞0 (R+) with respect to either of the norms

||(MD)γ · ||Lp(R+,mθ),

γ∑
n=1

||MnDn · ||Lp(R+,mθ).
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To prove (1.2) observe that for any integer k ≥ 1,

(MD)k =

k∑
n=1

ck,nMnDn,(1.3)

where ck,n are some constants and ck,k = 1. This and the inequality on the right in
(1.1) give us the inequality on the right in (1.2). On the other hand, one can solve
the triangular system (1.3) with respect to MnDn. Then from the inequality on the
left in (1.1) we get

γ∑
n=1

||MnDnu||Lp(R+,mθ) ≤ N
γ∑
n=1

||(MD)nu||Lp(R+,mθ)

≤ N
γ∑
n=1

||u||Hn
p,θ
≤ N ||u||Hγ

p,θ
,

which proves the inequality on the left in (1.2).
The following theorem will play the most important role in obtaining results for

equations on R+ from those on R.
Theorem 1.11. Let ζ ∈ C∞0 (R+), γ, θ ∈ R, and p ∈ (1,∞). Then there exists a

constant N depending only on ζ, γ, p, and θ such that, for any u ∈ Hγ
p,θ,

∞∑
n=−∞

enθ||ζu(en ·)||p
Hγp
≤ N ||u||p

Hγ
p,θ

.

In addition, if there is a δ > 0 such that

∞∑
n=−∞

e(n−x)θ|ζ(ex−n)|p ≥ δ(1.4)

for all x ∈ [0, 1], then

||u||p
Hγ
p,θ

≤ N
∞∑

n=−∞
enθ||ζu(en ·)||p

Hγp
,

where N depends on δ as well.
Proof. Since the functions ζ(x)u(enx) vanish outside the support of ζ, by the

change of variables (see Theorem 4.3.2 in [13])

enθ||ζu(en ·)||p
Hγp
≤ Nenθ||ζ(e·)u(e·+n)||p

Hγp

with N independent of n, u. By translation invariance of the norm in Hγ
p the last

expression equals

enθ||ζ(e·−n)u(e·)||p
Hγp

= ||η(e·−n)Qp,θu||pHγp ,

where η(ex−n) = ζ(ex−n)e(n−x)θ/p. Next it is easy to find a finite m such that for
x ∈ [0, 1],

I(x) :=

∞∑
n=−∞

|η(ex−n)|p =
∞∑

n=−∞
|ζ(ex−n)|pe(x−n)θ

=
∑
|n|≤m

|ζ(ex−n)|pe(x−n)θ.
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It follows that I(x) is bounded on [0, 1]. On the other hand I(x) is obviously periodic
with period 1. Thus I(x) is bounded on R. The same is true for

∞∑
n=−∞

|(η(ex−n))′|p,
∞∑

n=−∞
|(η(ex−n))′′|p,

and so on. By Theorem 2.2 and Remark 2.1 of [2]

∞∑
n=−∞

||η(e·−n)Qp,θu||pHγp ≤ N ||Qp,θu||
p
Hγp
,

which yields our first assertion.
To prove the second one we use the same resources as above and get

||Qp,θu||pHγp ≤ N
∞∑

n=−∞
||η(e·−n)Qp,θu||pHγp = N

∞∑
n=−∞

enθ||ζ(e·−n)u(e·)||p
Hγp

= N
∞∑

n=−∞
enθ||ζ(e·)u(e·+n)||p

Hγp
≤ N

∞∑
n=−∞

enθ||ζu(en ·)||p
Hγp
.

The theorem is proved.
Remark 1.12. Similar to properties of I(x) in the above proof, we find that

if ζ ∈ C∞0 (R+) and β ∈ R, then
∑
n e

(n+x)βζ(en+x) is bounded on R, which after
substituting log x in place of x implies that

∑
n e

nβζ(enx) ≤ Nx−β on R+.
The following theorem is used in establishing some properties of our stochastic

Banach spaces.
Theorem 1.13. Recall that the operator M is defined by Mu(x) = xu(x) and let

θ, γ ∈ R, θ 6= p. Then

M−1u ∈ Hγ+1
p,θ ⇐⇒ Du ∈ Hγ

p,θ and M
−1u ∈

⋃
µ

Hµ
p,θ.(1.5)

In addition, under either one of the above conditions

||M−1u||Hγ+1
p,θ
≤ N ||Du||Hγ

p,θ
≤ N ||M−1u||Hγ+1

p,θ
.(1.6)

Proof. If M−1u ∈ Hγ+1
p,θ , then by Remark 1.7 we have

Du = DM(M−1u) ∈ Hγ
p,θ

and the right inequality in (1.6) holds. On the other hand, under the condition on
the right in (1.5) we have

DM(M−1u) ∈ Hγ
p,θ and M−1u ∈

⋃
µ

Hµ
p,θ,

which by Remark 1.9 yields M−1u ∈ Hγ+1
p,θ and the inequality on the left in (1.6).

The theorem is proved.
The following result will also be used in the future.



304 N. V. KRYLOV AND S. V. LOTOTSKY

Lemma 1.14. For any constants p, θ, α we have

Q−1
p,θDQp,θ = bI +MD, Q−1

p,θD
2Qp,θ = (bI +MD)2, DM = MD + I,

MαΛ2
p,θM

−α = Λ2
p,θ + c1I + c2MD, MΛ2

p,θ − Λ2
p,θM = MP1,

Λ2
p,θD −DΛ2

p,θ = P1D,(1.7)

Λ2
p,θDM −DΛ2

p,θM = P1DM, Λ2
p,θD

2M −D2Λ2
p,θM = 4DP2,

where b = θ/p, I is the identity operator, ci are certain constants, and

P1 := (2b+ 1)I + 2MD, P2 := bDM + (MD)(DM).

Furthermore, for any θ, γ ∈ R there exists a constant N = N(γ, θ, p) such that
for any u ∈ Hγ+2

p,θ ,

||P1u||Hγ+1
p,θ

+ ||P2u||Hγ
p,θ
≤ N ||u||Hγ+2

p,θ
.(1.8)

Indeed, equalities (1.7) are checked out by straightforward computations and (1.8)
follows immediately from Remarks 1.5 and 1.7.

2. Stochastic Banach spaces on R+. Let (Ω,F , P ) be a complete probability
space, (Ft, t ≥ 0) be an increasing filtration of σ-fields Ft ⊂ F containing all P -null
subsets of Ω, and P be the predictable σ-field generated by (Ft, t ≥ 0). Let {wkt ; k =
1, 2, ...} be a family of independent one-dimensional Ft-adapted Wiener processes
defined on (Ω,F , P ). We are going to use the Banach spaces Hγp(τ), Hγp(τ, l2), and
Hγp(τ) introduced in [5] or [8], where we take d = 1. Also throughout the remaining
part of the paper θ 6= 0, θ 6= p, and p ≥ 2 unless another range of p is specified
explicitly.

Definition 2.1. Let τ be a stopping time, f and gk, k = 1, 2..., be D(R+)-valued
P-measurable functions defined on |(0, τ ]]. We write f ∈ Hγp,θ(τ) and g ∈ Hγp,θ(τ, l2) if
and only if Qp,θf ∈ Hγp(τ) and Qp,θg ∈ Hγp(τ, l2), respectively. We also denote

||f ||Hγ
p,θ

(τ) = ||Qp,θf ||Hγp(τ), ||g||Hγ
p,θ

(τ,l2) = ||Qp,θg||Hγp(τ,l2),

Hγp,θ = Hγp,θ(∞), Hγp,θ(l2) = Hγp,θ(∞, l2), L...... = H0
...... .

In the case f ∈ Hγp,θ(τ), g ∈ Hγ+1
p,θ (τ, l2) we write (f, g) ∈ Fγp,θ(τ) and

||(f, g)||Fγ
p,θ

(τ) = ||f ||Hγ
p,θ

(τ) + ||g||Hγ+1
p,θ

(τ,l2).

Finally, we introduce spaces of initial data. We write u0 ∈ Uγp,θ if and only if

M2/p−1u0 ∈ Lp(Ω,F0, H
γ−2/p
p,θ ) and denote

||u0||pUγ
p,θ

= E||M2/p−1u0||p
H
γ−2/p

p,θ

.

Definition 2.2. For a D(R+)-valued function u defined on Ω × [0,∞) with
u(0, ·) ∈ Uγ+1

p,θ and

M−1u ∈
⋃
µ

⋂
T>0

Hµp,θ(τ ∧ T ),(2.1)
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we write u ∈ Hγ+1
p,θ (τ) if and only if ux ∈ Hγp,θ(τ) and there exists (f, g) ∈ Fγ−1

p,θ (τ)
such that for any φ ∈ C∞0 (R+) we have

(u(t, ·), φ) = (u(0, ·), φ) +

∫ t

0

(M−1f(s, ·), φ) ds+
∞∑
k=1

∫ t

0

(gk(s, ·), φ) dwks(2.2)

for all t ≤ τ at once with probability one. In this situation we also write M−1f = D̃u,
g = S̃u,

du = M−1f dt+ gk dwkt

and define Hγ+1
p,θ,0(τ) = Hγ+1

p,θ (τ) ∩ {u : u(0, ·) = 0},
||u||p

Hγ+1
p,θ

(τ)
= ||ux||pHγ

p,θ
(τ)

+ ||(f, g)||pFγ−1
p,θ

(τ)
+ ||u(0, ·)||p

Uγ+1
p,θ

.(2.3)

As always, we drop τ in Hγp,θ(τ) and Fγp,θ(τ) if τ =∞.

Remark 2.3 (cf. Remark 3.3 in [8]). Given u ∈ Hγp,θ(τ), there exists only one pair

of functions f and g in Definition 2.2. Therefore, the notation M−1f = D̃u, g = S̃u,
and (2.3) make sense.

It is also worth noting that the last series in (2.2) converges uniformly in t on
each interval [0, τ ∧ T ], T ∈ (0,∞), in probability.

Remark 2.4. It follows from Theorem 1.13 that, in Definition 2.2, the two re-
quirements (2.1) and ux ∈ Hγp,θ(τ) can be replaced with only one: M−1u ∈ Hγ+1

p,θ (τ).
In addition,

||M−1u||Hγ+1
p,θ

(τ) ≤ N ||ux||Hγp,θ(τ) ≤ N ||M−1u||Hγ+1
p,θ

(τ),

where N = N(γ, θ, p).
Remark 2.5. The space Hγp,θ(τ) is not Q−1

p,θHγp(τ). However, obviously φu lies

in Q−1
p,θHγp(τ) for any φ ∈ C∞0 (R+) if u ∈ Hγp,θ(τ). By Theorem 3.7 of [8] this easily

implies that if u ∈ Hγp,θ(τ) and ||u||Hγ
p,θ

(τ) = 0, then u is indistinguishable from zero.

Of course, we identify elements of Hγp,θ(τ) which are indistinguishable.

Remark 2.6. The spaces Hγp,θ(τ) and Hγp,θ,0(τ) are Banach spaces.
Indeed, their completeness is obtained as follows. If un is a Cauchy sequence

in Hγp,θ(τ), then M−1un is a Cauchy sequence in Hγp,θ(τ) by Remark 2.4 and hence

it converges to some M−1u ∈ Hγp,θ(τ). Also, M D̃un → f and S̃un → g for some

(f, g) ∈ Fγ−2
p,θ (τ).

Next, for any φ ∈ C∞0 (R+) the sequence φun is a Cauchy sequence in Hγp(τ),
which is a Banach space by Theorem 3.7 of [8]. This easily implies that u has a
modification ū such that φū belongs to Hγp(τ) for any φ ∈ C∞0 (R+), and ū satisfies
(2.2), so that ū ∈ Hγp,θ(τ). One treats Hγp,θ,0(τ) similarly.

Remark 2.7. By Remark 1.5 it follows that f ∈ Hγ−1
p,θ (τ) if and only if there

exists a unique h ∈ Hγp,θ(τ) such that M−1f = Dh. In addition, the norms of f

and h are equivalent. Hence, one obtains the same space Hγ+1
p,θ (τ) if in Definition 2.2

one replaces M−1f with fx and instead of the condition (f, g) ∈ Fγ−1(τ) requires
f ∈ Hγp,θ(τ), g ∈ Hγp,θ(τ, l2). In this case one obtains an equivalent norm by replacing

||(f, g)||pFγ−1
p,θ

(τ)
in (2.3) with

||f ||pHγ
p,θ

(τ)
+ ||g||pHγ

p,θ
(τ,l2)

.
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Remark 2.8. If u ∈ Hγp,θ(τ), then v := MDu ∈ Hγ−1
p,θ (τ) and

||MDu||Hγ−1
p,θ

(τ) ≤ N(γ, θ, p)||u||Hγ
p,θ

(τ).

Indeed, we have M−1v = Du ∈ Hγ−1
p,θ (τ), which by Remark 2.4 gives us a part of

the needed properties of v. Also by Remark 2.7, du = fx dt+g
k dwkt with f ∈ Hγ−1

p,θ (τ)

and g ∈ Hγ−1
p,θ (τ, l2), so that dv = (MDf − f)x dt+MDgk dwkt , where by Remark 1.5

||MDf − f ||Hγ−2
p,θ

(τ) ≤ N ||f ||Hγ−1
p,θ

(τ), ||MDg||Hγ−2
p,θ

(τ,l2) ≤ N ||g||Hγ−1
p,θ

(τ,l2),

||M2/p−1v(0, ·)||
H
γ−1−2/p

p,θ

= ||MD(M2/p−1u(0, ·))− (2/p− 1)M2/p−1u(0, ·)||
H
γ−1−2/p

p,θ

≤ N ||M2/p−1u(0, ·)||
H
γ−2/p

p,θ

.

Remark 2.9. From Remark 1.3 we have

||Λγp,θu||Hµp,θ(τ) = ||u||Hµ+γ
p,θ

(τ).

The assertions of the following theorem are straightforward corollaries of Re-
mark 2.4 and of two Sobolev theorems. One says that Hγ

p ⊂ Cδ if δ := γ − 1/p > 0,

where Cδ = Cδ(R) is the Zygmund space (which differs from the usual Hölder space
Cδ = Cδ(R) only if δ is an integer; see [13]). The second one says that Hγ

p ⊂ Hµ
q if

µ < γ and γ − 1/p = µ − 1/q. These theorems are easily rewritten in terms of our
spaces Hγ

p,θ = Q−1
p,θH

γ
p .

Theorem 2.10. (i) If α := γ − 1/p > 0 and u ∈ Hγp,θ(τ), then Qp,θM
−1u ∈

Lp( |(0, τ ]], Cα), where Cα is the Zygmund space. In addition,

E

∫ τ

0

||Qp,θM−1u(t, ·)||pCα dt ≤ N(d, γ, p)||u||p
Hγ
p,θ

(τ)
.

(ii) If µ < γ, γ − 1/p = µ− 1/q, and u ∈ Hγp,θ(τ), then

E

∫ τ

0

||M−1u(t, ·)||p
Hµ
q,θq/p

dt ≤ N(d, γ, µ, p)||u||p
Hγ
p,θ

(τ)
.

In order to prove the solvability even of the simplest equations we need the fol-
lowing embedding theorem. However, the way in which the right-hand side of (2.4)
depends on T will not be used.

Theorem 2.11. Let T ∈ (0,∞) be a constant and let τ ≤ T . Then for any
function u ∈ Hγp,θ,0(τ), we have

E sup
t≤τ
||u(t, ·)||p

Hγ−1
p,θ

≤ N(p, θ, γ)T (p−2)/p||u||p
Hγ
p,θ

(τ)
.(2.4)

To prove this theorem we use the following fact, which is similar to Remark 2.2
of [5] or Remark 4.11 of [8].

Lemma 2.12. Let T ∈ (0,∞) be a constant and let τ ≤ T . Let u ∈ Hγp,0(τ) and

du = f dt+ gk dwkt . Then for any constant c > 0,

E sup
t≤τ
||ux(t, ·)||p

Hγ−2
p
≤ N(p)T (p−2)/2(c||uxx||pHγ−2

p (τ)

+c−1||f ||pHγ−2
p (τ)

+ ||gx||pHγ−2
p (τ,l2)

).(2.5)
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Proof. As always, it suffices to prove (2.5) for any particular γ and τ = T
(regarding τ see, for instance, the proof of Theorem 7.1 in [8]). We take γ = 2. Then
(2.5) becomes

E sup
t≤T
||ux(t, ·)||pLp ≤ N(p)T (p−2)/2(c||uxx||pLp(T )

+c−1||f ||pLp(T ) + ||gx||pLp(T,l2)).(2.6)

It suffices to prove this inequality for c = 1. Indeed, for any constant a > 0 we have
du(t, ax) = f(t, ax) dt+ gk(t, ax) dwkt and if (2.6) holds with c = 1, then

ap−1E sup
t≤T
||ux(t, ·)||pLp = E sup

t≤T
||(u(t, a ·))x||pLp

≤ NT (p−2)/2(||(u(·, a ·))xx||pLp(T ) + ||f(·, a ·)||pLp(T ) + ||(g(·, a ·))x||pLp(T,l2))

= NT (p−2)/2(a2p−1||uxx||pLp(T ) + a−1||f ||pLp(T ) + ap−1||gx||pLp(T,l2)).

This proves (2.6) with ap in place of c.
We further transform (2.6) with c = 1 by denoting v = ux and hk = gkx, so that

dv = fx dt+ hk dwkt and v ∈ H1
p,0(T ). We see that we only need to prove that

E sup
t≤T
||v(t, ·)||pLp ≤ N(p)T (p−2)/2(||vx||pLp(T )

+||f ||pLp(T ) + ||h||pLp(T,l2)).(2.7)

By Theorem 2.1 of [5] or Theorem 4.10 of [8] and by the observation that dv =
(vxx + (f − vx)x) dt+ hk dwkt , for any λ, T > 0 we have

E sup
t≤T

(e−pλt||v(t, ·)||pLp) ≤ N(||e−λtf̄ ||pLp(T ) + ||e−λth||pLp(T,l2)),

where N = N(p, λ) and f̄ = f − vx. For λ = 1/p this yields

E sup
t≤T
||v(t, ·)||pLp ≤ NeT (||f̄ ||pLp(T ) + ||h||pLp(T,l2)).

By using the self-similarity of the equation dv = (vxx + f̄x) dt + hk dwkt (that is,
by considering equations like (3.6)), for any constant c > 0 we get

E sup
t≤T
||v(c2t, c ·)||pLp ≤ NeT (||cf̄(c2t, c ·)||pLp(T ) + ||ch(c2t, c ·)||pLp(T,l2))

with N = N(p). Changing variables we obtain

E sup
t≤T
||v(t, ·)||pLp ≤ NeT/c

2

cp−2(||f̄ ||pLp(T ) + ||h||pLp(T,l2)).

For c2 = T this is even a little bit stronger than (2.7) and the lemma is proved.
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Proof of Theorem 2.11. For an appropriate ζ ∈ C∞0 (R+) we have

E sup
t≤τ
||u(t, ·)||p

Hγ−1
p,θ

≤ N
∞∑

n=−∞
enθE sup

t≤τ
||ζu(t, en ·)||p

Hγ−1
p

.(2.8)

Let du = fx dt+ gk dwkt . Then

d(ζ(x)u(t, enx)) = ζ(x)(fx)(t, enx) dt+ ζ(x)gk(t, enx) dwkt .

By Lemma 2.12 for un(t, x) := ζ(x)u(t, enx), fn(t, x) := ζ(x)(fx)(t, enx), gn(t, x) :=
ζ(x)g(t, enx), and c = e−np we have

E sup
t≤τ
||unx(t, ·)||p

Hγ−2
p
≤ NT (p−2)/2(e−np||unxx||pHγ−2

p (τ)

+enp||fn||pHγ−2
p (τ)

+ ||gnx||pHγ−2
p (τ,l2)

).(2.9)

To transform this inequality notice that all the functions un(t, x) as functions of x
have supports inside the support of ζ which is bounded. Therefore (see Remark 1.6),

||ζu(t, en ·)||Hγ−1
p

= ||un(t, ·)||Hγ−1
p
≤ N ||unx(t, ·)||Hγ−2

p
.

Furthermore, ||gnx||Hγ−2
p (l2) ≤ ||gn||Hγ−1

p (l2) and

∞∑
n=−∞

enθ||gn||pHγ−1
p (τ,l2)

≤ N ||g||pHγ−1
p,θ

(τ,l2)
≤ N ||u||p

Hγ
p,θ

(τ)
.

Also,

∞∑
n=−∞

en(θ+p)||fn||pHγ−2
p (τ)

=

∞∑
n=−∞

enθ||(M−1ζ)(MDf)(·, en ·)||pHγ−2
p (τ)

≤ N ||MDf ||pHγ−2
p,θ

(τ)
≤ N ||f ||pHγ−1

p,θ
(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
,

∞∑
n=−∞

en(θ−p)||unxx||pHγ−2
p (τ)

≤
∞∑

n=−∞
en(θ−p)||un||pHγp(τ)

=
∞∑

n=−∞
enθ||(Mζ)(M−1u)(·, en ·)||pHγp(τ)

≤ N ||M−1u||pHγ
p,θ

(τ)
≤ N ||u||p

Hγ
p,θ

(τ)
.

By combining this with (2.9) and (2.8) we get (2.4). The theorem is proved.
As always the main role is played by the spaces Hγp,θ,0(τ) of functions with zero

initial conditions. In connection with this it is worth noting that while constructing
our theory we could replace

||u(0, ·)||p
Uγ+1
p,θ

:= E||M2/p−1u(0, ·)||p
H
γ+1−2/p

p,θ

(2.10)



A SOBOLEV SPACE THEORY OF SPDEs 309

with

inf{||vx||pHγ+1
p,θ

+ ||M D̃v||pHγ−1
p,θ

+ ||S̃v||pHγ
p,θ

: u− v ∈ Hγ+1
p,θ,0}.

Such an axiomatic approach to defining a norm of u(0, ·) yields, of course, the solv-
ability results for the widest possible class of initial data, namely, for those which are
extendible at least in some way for t > 0. However, in applications we often want to
know how to describe “admissible” initial data by knowing only their analytic prop-
erties. A partial answer to this question is given in the following theorem, which also
shows why we use the norm given by (2.10).

Theorem 2.13. If 0 < θ < p and γ = 2 and 1 < p < ∞, then for every

u0 satisfying M2/p−1u0 ∈ H
γ−2/p
p,θ there exists a deterministic u ∈ Hγp,θ such that

du = D2u dt, u|t=0 = u0, and

||u||p
Hγ
p,θ

≤ N(p, γ, θ)||M2/p−1u0||p
H
γ−2/p

p,θ

.(2.11)

Proof. If u0 ∈ C∞0 (R+), then there is a unique function u(t, x) which is bounded
in R2

+ together with all its derivatives and which is a unique bounded solution of the
heat equation ∂u/∂t = D2u, t > 0 in R2

+ with initial condition u(0, x) = u0(x) and
boundary condition u(t, 0) = 0. Observe that u is given by u(t, ·) = pt ∗ ū0, where
pt(x) = (4πt)−1/2 exp(−|x|2/(4t)) and ū0 is an odd extension of u0 on R. By the way,
from this representation it follows that u(t, x)→ 0 exponentially fast as x→∞ and
the same is true for any derivative of u.

Next, we observe that ∂|u(t, x)|p/∂t = p|u|p−2uD2u, multiply this equality by xc,
with c := θ + 1− p ∈ (1− p, 1), and integrate by parts, and also use |u(t, x)| ≤ N |x|,
|u(t, x)|p−1xc ≤ Nxθ, |u(t, x)|pxc−1 ≤ Nxθ for x close to zero. Finally we fix T ∈
(0,∞) and find that∫

R+

xc|u(T, x)|p dx−
∫
R+

xc|u0(x)|p dx =

∫ T

0

∫
R+

pxc|u|p−2uD2u dxdt

(2.12)

= −c
∫ T

0

∫
R+

xc−1D(|u|p) dxdt− p(p− 1)I = c(c− 1)J − p(p− 1)I,

where

I :=

∫ T

0

∫
R+

xc|u|p−2(Du)2 dxdt, J :=

∫ T

0

∫
R+

xc−2|u|p dxdt.

To estimate I from below through J , denote v := |u|p/2 and observe that we have
|u|p−2(Du)2 = (2/p)2(Dv)2 and by Minkowski’s inequality∫ ∞

0

xc−2|u|p dx =

∫ ∞
0

xc−2v2 dx =

∫ ∞
0

xc
(∫ 1

0

v′(yx) dy

)2

dx

≤
(∫ 1

0

dy

(∫ ∞
0

xc(v′(yx))2 dx

)1/2
)2

=

∫ ∞
0

xc(v′(x))2 dx

(∫ 1

0

yb dy

)2

,
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where b = −1/2− c/2 > −1. By evaluating the last integral we get∫ ∞
0

xc−2|u|p dx ≤ p2(1− c)−2

∫ ∞
0

xc|u|p−2(Du)2 dx.(2.13)

Hence p(p− 1)I ≥ q−1(1− c)2J , where 1/q = 1− 1/p, and from (2.12) we get

[q−1(1− c)2 − c(c− 1)]J ≤
∫
R+

xc|u0(x)|p dx = ||M2/p−1u0||pLp,θ .(2.14)

Here Lp,θ ⊃ H2−2/p
p,θ with the corresponding inequality for the norms since 2−2/p > 0.

Also, one can easily check that q−1(1− c)2− c(c− 1) > 0 for 0 < θ < p and therefore,
after passing to the limit as T →∞, we obtain the following intermediate estimate:∫ ∞

0

||M−1u(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

2−2/p

p,θ

.(2.15)

An attentive reader might have noticed that the above derivation of (2.13) and
(2.15) falls into some trouble if 1 < p < 2. Indeed, then we get terms containing |u|
to a negative power and also the absolute continuity of v is not clear. However, the
following fact is true even if 1 < p < 2:

(i) the functions |u|p/2 and |u|p−2uux are absolutely continuous on R;
(ii) almost everywhere on R (∞ · 0 := 0)

(|u|p/2)x = p
2 |u|p/2−2uux,

(|u|p−2uux)x = |u|p−2uuxx + (p− 1)|u|p−2(ux)2.

Above we have only used this fact. However, we do not prove (i) and (ii). Instead,
we show how to get (2.15) for 1 < p < 2 by using an approximation argument.

For ε > 0 define Gε(s) = (s2 + ε)p/2 − εp/2. As it is easy to see, we have
|Gε(u)| ≤ (1 + εp/2)|u|p and, for |u| ≤ 1,

|G′ε(u)| = p(u2 + ε)p/2−1|u| ≤ N(ε)|u| ≤ N(ε)|u|p−1.

Also G′′ε ≥ 0. Hence, owing to ∂Gε(u)/∂t = G′ε(u)D2u and introducing

v(t, x) :=

∫ u(t,x)

0

(G′′ε (s))1/2 ds,

we get as above ∫
R+

xcGε(u(T, x)) dx−
∫
R+

xcGε(u0(x)) dx

= c(c− 1)

∫ T

0

∫
R+

xc−2Gε(u) dxdt−
∫ T

0

∫
R+

xc(v′)2 dxdt

≤ c(c− 1)

∫ T

0

∫
R+

xc−2Gε(u) dxdt− 4−1(1− c)2

∫ T

0

∫
R+

xc−2v2 dxdt.
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By letting ε ↓ 0, noticing that limε↓0G′′ε (s) = p(p − 1)|s|p−2 and c < 1, and using
Fatou’s lemma, we again arrive at (2.14) and (2.15).

Next, take a function ζ ∈ C∞0 (R+) and notice that for un(t, x) := u(e2nt, enx) we
have

∂

∂t
(ζun) = (ζun)xx − 2(ζxun)x + ζxxun.(2.16)

Hence by inequalities (IV.3.1) and (IV.3.2) in [9] (also see Remark 2.3.2 in [13]) for
any n we obtain ∫ ∞

0

||(ζun)xx(t, ·)||p
H−1
p
dt ≤ N ||ζun(0, ·)||p

H
1−2/p
p

+

∫ ∞
0

||((2ζxun)x − ζxxun)(t, ·)||p
H−1
p
dt.

We make the change of variable t replacing it with e2nt; then we multiply through
the inequality by e2n−np+θn and observe that by Remark 1.6

||(ζun)xx||H−1
p
≥ N ||(ζun)x||Lp ≥ N ||ζunx||Lp −N ||ζxun||Lp ,

where N = N(ζ, p). Also use the fact that

||(2ζxun)x − ζxxun||H−1
p
≤ 2||(ζxun)x||H−1

p
+N ||ζxxun||Lp ≤ N ||ηun||Lp ,

where N = N(ζ, p, η) and η is a more or less arbitrary function of class C∞0 (R+) with
support covering that of ζ.

Then we get∫ ∞
0

∑
n

eθn||ζux(t, en ·)||pLp dt ≤ N
∑
n

eθn||ξ(M2/p−1u0)(en ·)||p
H

1−2/p
p

+N

∫ ∞
0

∑
n

eθn||η1M
−1u(t, en ·)||pLp dt,

where ξ = M1−2/pζ and η1 is a function of type η. For the right choice of ζ we rewrite
the last inequality as∫ ∞

0

||ux(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

1−2/p

p,θ

+N

∫ ∞
0

||M−1u(t, ·)||pLp,θ dt.(2.17)

Next, we use (2.16) and inequalities (IV.3.1) and (IV.3.2) in [9] to write∫ ∞
0

||(ζun)xx(t, ·)||pLp,θ dt ≤ N ||ζun(0, ·)||p
H

2−2/p
p

+

∫ ∞
0

||((2ζxun)x − ζxxun)(t, ·)||pLp,θ dt.
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If η1 and η2 are functions of class C∞0 (R+) with supports covering that of ζ, then, for
the same reasons as before, this inequality yields∫ ∞

0

||ζunxx(t, ·)||pLp,θ dt ≤ N ||ζun(0, ·)||p
H

2−2/p
p

+

∫ ∞
0

||η1unx(t, ·)||pLp,θ dt+

∫ ∞
0

||η2un(t, ·)||pLp,θ dt,

and ∫ ∞
0

||Muxx(t, ·)||pLp,θ dt ≤ N ||M2/p−1u0||p
H

2−2/p

p,θ

+N

∫ ∞
0

||ux(t, ·)||pLp,θ dt+N

∫ ∞
0

||M−1u(t, ·)||pLp,θ dt.

Together with (2.15), (2.17), and the equation ∂u/∂t = M−1(Muxx) the last inequal-
ity implies that u ∈ H2

p,θ and that (2.11) holds with γ = 2.

Actually, above we have constructed a mapping u0 ∈ C∞0 (R+)→ u ∈ Hγp,θ. If we
introduce an operator Π : u0 → u, then what is proved means that (for γ = 2)

||Πu0||Hγ
p,θ
≤ N(p, θ)||M2/p−1u0||Hγ−2/p

p,θ

(2.18)

if u0 ∈ C∞0 (R+). Remembering that Hγp,θ is a Banach space and relying on the
usual continuity argument based on (2.18), we see that Π can be extended on all u0

satisfying M2/p−1u0 ∈ Hγ−2/p
p,θ in such a way that ∂Πu0/∂t = D2Πu0, Πu0|t=0 = u0,

and (2.18) holds. The theorem is proved.
Remark 2.14. We will see from Theorem 3.2 that Theorem 2.13 holds for any

γ ∈ R and the solution is unique in Hγp,θ.
In connection with this it is interesting to notice that Theorem 2.13 without

weights and on R instead of R+ cannot hold for all 1 < p < 2 if γ = 1. For instance,
if 1 < p < 3/2, then, for the solution u of the equation du = D2u dt, t > 0, x ∈ R,

with initial condition given by the delta function, we have u(0, ·) ∈ H1−2/p
p , but the

pth power of the function ux is not integrable over R+ × R.

3. SPDEs with constant coefficients on R+. Take a stopping time τ . On
R+ we will be dealing with the following equation:

du = (auxx + fx) dt+ (σkux + gk) dwkt , t ∈ (0, τ),(3.1)

where f and gk are given D(R+)-valued P-measurable functions, a and σk are given
real-valued P-measurable functions, u is an unknown D(R+)-valued function, and the
equation is understood in the sense of distributions as follows. We say that u is a
solution of (3.1) with given initial condition u0 if for any test function φ ∈ C∞0 (R+)
we have

(u(t, ·), φ) = (u0, φ)

+

∫ t

0

[a(s)(u(s, ·), φxx)− (f(s, ·), φx)] ds

+
∞∑
k=1

∫ t

0

[−σk(s)(u, φx) + (gk, φ)] dwkt(3.2)
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for all t ≤ τ with probability one, where all integrals are assumed to have sense and
the last series is also assumed to converge uniformly on each interval of time [0, T ∧ τ ]
in probability, where T is any finite constant.

Remark 3.1. If a function u belongs to Hγ+1
p,θ (τ), then it satisfies (3.1) with

f = (MD)−1M D̃u − aDu and gk = S̃ku − σkDu. In addition (see Remark 1.5),
we have f ∈ Hγp,θ(τ) and g ∈ Hγp,θ(τ, l2). Below we show that under an additional
assumption on a and σ the mapping u→ (f, g) is onto.

We always assume that for some constants K ≥ δ > 0 and all ω, t we have

K ≥ 2a ≥ 2a− |σ|2l2 ≥ δ.
Here is the main result of this section.
Theorem 3.2. (i) Let 0 < θ < p, 1 < p <∞, γ ∈ R, f ∈ Hγp,θ(τ), g ∈ Hγp,θ(τ, l2),

and u0 ∈ Uγ+1
p,θ . (ii) Assume that one of the following conditions is satisfied:

(a) p ≥ 2 and θ ∈ [p− 1, p);
(b) p ≥ 2 and σ ≡ 0;
(c) σ ≡ 0 and g ≡ 0.
Then (3.1) with initial data u0 has a unique solution in class Hγ+1

p,θ (τ). In addition,
for this solution it holds that

||u||Hγ+1
p,θ

(τ) ≤ N
(||f ||Hγ

p,θ
(τ) + ||g||Hγ

p,θ
(τ,l2) + ||u0||Uγ+1

p,θ

)
,(3.3)

where N = N(γ, θ, p,K, δ). Finally, the uniqueness holds even if we replace condition
(a) with: p ≥ 2 and θ ∈ (0, p).

Remark 3.3. In a subsequent paper on equations in Rd+ we will show that con-
dition (a) can be relaxed to be p ≥ 2 and 1 ≤ θ < p. This could be done here too if
one uses interpolation with respect to θ and the result of [7], where the case θ = 1 is
treated. However, there is a small gap in the arguments proving (2.9) of [7], so that
strictly speaking we cannot use the result of [7].

Remark 3.4. Notice that when conditions (b) or (c) are satisfied, θ may be any
number in (0, p).

It is also worth noting that if θ ≥ p or θ ≤ 0, then the statement of Theorem 3.2
is false even in the case of the heat equation. This can be shown by simple examples.

The proof of this theorem is based on two lemmas, the first of which we prove in
section 4.

Lemma 3.5. Theorem 3.2 holds if γ = 1.
Lemma 3.6. Let assumption (i) of Theorem 3.2 be satisfied and let µ ≤ γ. Assume

that either p ≥ 2 or σ ≡ g ≡ 0. Let θ1 ∈ R and let u ∈ Hµ+1
p,θ1

(τ) be a solution of (3.1)

with initial condition u0. Assume that M−1u ∈ Hµ+1
p,θ (τ). Then u ∈ Hγ+1

p,θ (τ) and

||u||Hγ+1
p,θ

(τ) ≤ N
(||f ||Hγ

p,θ
(τ) + ||g||Hγ

p,θ
(τ,l2) + ||ux||Hµ

p,θ
(τ) + ||u0||Uγ+1

p,θ

)
,

where N = N(γ, µ, θ, p).
Proof. For simplicity of notation we will only consider the case τ ≡ ∞. The

reader can easily make the necessary changes for general τ .
By virtue of (3.2) we have (2.2) with x(auxx + fx) instead of f and σkux + gk

instead of gk. Upon taking into account the assumptions on f and g and remembering
Remark 1.5, we conclude that we only need to prove that

||ux||pHγ
p,θ

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||ux||pHµ

p,θ

+ ||u0||pUγ+1
p,θ

).(3.4)
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Since ||ux||Hν
p,θ
≤ ||ux||Hµ

p,θ
for ν ≤ µ, it suffices to prove (3.4) with some ν ≤ µ

in place of µ. This shows that we may assume that γ − µ is an integer. Also we can
go from µ up to γ in several steps each time getting an increase by one. Therefore,
without loss of generality we may and will assume that γ = µ + 1, so that (3.4)
becomes

||ux||pHγ
p,θ

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||ux||pHγ−1

p,θ

+ ||u0||pUγ+1
p,θ

).(3.5)

Take a function ζ ∈ C∞0 (R+) with Mζ satisfying condition (1.4). One can easily
check that the functions un(t, x) := u(e2nt, enx) satisfy the equation

dun = (anunxx + fn) dt+ (σknunx + gkn) dwkt (n),(3.6)

where

an(t) = a(e2nt), σkn(t) = σk(e2nt), wkt (n) = e−nwe2nt,

fn(t, x) = e2n(fx)(e2nt, enx), gkn(t, x) = engk(e2nt, enx).

Observe that for any n, the processes wkt (n) are independent Wiener processes. From
(3.6) we get

d(ζun) = (an(ζun)xx + f̄n) dt+ (σkn(ζun)x + ḡkn) dwkt (n),(3.7)

where

f̄n = ζfn − 2anζxunx − anζxxun, ḡkn = ζgkn − σknζxun.

Since M−1u ∈ Hγp,θ, it is easy to see that for any η ∈ C∞0 (R+) we have ηun ∈ Hγp
and ηunx ∈ Hγ−1

p , so that f̄n ∈ Hγ−1
p and ḡn ∈ Hγp(l2). By Theorem 2.1 of [5] or

Theorem 4.10 of [8] for p ≥ 2 (with uniqueness in Hγp(τ) and existence in Hγ+1
p (τ),

here we use ζun ∈ Hγp(τ)), (3.7) implies that

||(ζun)xx||pHγ−1
p
≤ N(||f̄n||pHγ−1

p
+ ||ḡn||pHγp(l2)

+ E||ζu0(en ·)||p
H
γ+1−2/p
p

),(3.8)

where u0n(x) = u0(enx). Actually, Theorem 2.1 of [5] or Theorem 4.10 of [8] treats
the case u0 = 0. One deals with arbitrary u0 as in the beginning of the proof of
Theorem 5.1 of [8] by just subtracting the solution of the heat equation ∂v/∂t = vxx
with initial condition u0. Owing to the fact that supports of all functions ζun coincide
with that of ζ, from (3.8) by Remark 1.6, we get

||ζun||pHγ+1
p
≤ N(||f̄n||pHγ−1

p
+ ||ḡn||pHγp(l2)

+ E||ζu0(en ·)||p
H
γ+1−2/p
p

).(3.9)

The same conclusions are true if 1 < p < 2 and σ ≡ g ≡ 0, which can be seen from
section 9, Chapter IV of [9] or from the proof of Theorem 2.1 of [5] or Theorem 4.10
of [8], where one can take any p ∈ (1,∞) if σ ≡ g ≡ 0. In particular, in all cases
ζun ∈ Hγ+1

p and (3.9) holds.
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Now we multiply (3.9) through by e(2−p+θ)n and sum up over all n. We also use

∞∑
n=−∞

e(2−p+θ)n||ζfn||pHγ−1
p

=
∞∑

n=−∞
e(2−p+θ)n||e2n(fx)(e2n ·, en ·)ζ||pHγ−1

p

=
∞∑

n=−∞
eθn||en(fx)(·, en ·)ζ||pHγ−1

p
=

∞∑
n=−∞

eθn||(Mfx)(·, en ·)M−1ζ||pHγ−1
p

≤ N ||Mfx||pHγ−1
p,θ

≤ N ||f ||pHγ
p,θ

,

∞∑
n=−∞

e(2−p+θ)n||ζgn||pHγp(l2)
=

∞∑
n=−∞

eθn||g(·, en ·)ζ||pHγp(l2)
≤ N ||g||pHγ

p,θ
(l2)

,

∞∑
n=−∞

e(2−p+θ)n||ζxunx||pHγ−1
p

=
∞∑

n=−∞
e(2−p+θ)n||en(ux)(e2n ·, en ·)ζx||pHγ−1

p

=
∞∑

n=−∞
eθn||(ux)(·, en ·)ζx||pHγ−1

p
≤ N ||ux||pHγ−1

p,θ

,

∞∑
n=−∞

e(2−p+θ)n||ζxxun||pHγ−1
p

=

∞∑
n=−∞

eθn||(M−1u)(·, en ·)Mζxx||pHγ−1
p

≤ N ||M−1u||pHγ−1
p,θ

≤ N ||ux||pHγ−1
p,θ

.

Similarly, we estimate ζxun, we notice that∑
n

e(2−p+θ)nE||ζu0(en ·)||p
H
γ+1−2/p
p

=
∑
n

eθnE||(M2/p−1u0)(en ·)M1−2/pζ||p
H
γ+1−2/p
p

≤ NE||M2/p−1u0||p
H
γ+1−2/p

p,θ

= N ||u0||pUγ+1
p,θ

,

and we get

∞∑
n=−∞

e(2−p+θ)n||ζun||pHγ+1
p
≤ I,

where I is the right-hand side of (3.5). Here the left-hand side equals

∞∑
n=−∞

eθn||(M−1u)(·, en·)Mζ||pHγ+1
p
≥ N−1||M−1u||pHγ+1

p,θ

≥ N−1||ux||pHγ
p,θ

and the lemma is proved.
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Proof of Theorem 3.2. For simplicity of notation we only consider the case τ ≡ ∞.
Actually, as it is easy to see, the statement of existence for τ ≡ ∞ implies the
statement of existence for other τ , and the proof of uniqueness for general τ can be
done in the same way as in the case τ ≡ ∞.

Case γ ≥ 1. The uniqueness follows from Lemma 3.5 and the fact that H2
p,θ,0 ⊃

Hγ+1
p,θ,0, which implies that the difference of two solutions belongs to H2

p,θ,0. The exis-
tence and estimate (3.3) follow from Lemmas 3.5 and 3.6 (applied with µ = 1) and
the observation that by Lemma 3.5

||ux||pH1
p,θ

≤ N(||f ||pH1
p,θ

+ ||g||pH1
p,θ

(l2)
+ ||u0||pU2

p,θ

)

≤ N(||f ||pHγ
p,θ

+ ||g||pHγ
p,θ

(l2)
+ ||u0||pUγ+1

p,θ

).

Case γ < 1. Denote by R the operator which maps (f, g, u0) with f ∈ Hγp,θ,
g ∈ Hγp,θ(l2), and u0 ∈ Uγ+1

p,θ into the solution u ∈ Hγ+1
p,θ of (3.1) with initial data u0.

So far we know that R is well defined in spaces Hγp,θ ×Hγp,θ(l2)× Uγ+1
p,θ for γ ≥ 1. If

γ < 1, as a candidate for the solution of (3.1) we try

ũ = Λnp,θR(Λ−np,θf,Λ
−n
p,θg,M

1−2/pΛ−np,θM
2/p−1u0),

where n+ γ ≥ 1 and (see Remark 1.3)

(Λ−np,θf,Λ
−n
p,θg,M

1−2/pΛ−np,θM
2/p−1u0) ∈ Hn+γ

p,θ ×Hn+γ
p,θ (l2)× Un+γ+1

p,θ .

If the operators Λp,θ, M
2/p−1, and D were commuting, then our candidate would

be an exact solution of (3.1). Since this is not the case, we need an additional argument
based on Lemma 1.14.

Take n = 2 and first let 1 > γ ≥ 0. Then by what we know in the case γ ≥ 1, we
have

v := R(Λ−2
p,θf,Λ

−2
p,θg,M

1−2/pΛ−2
p,θM

2/p−1u0) ∈ Hγ+3
p,θ ,

dv = (avxx + (Λ−2
p,θf)x) dt+ (σkvx + Λ−2

p,θg
k) dwkt .

We apply Λ2
p,θ to both parts of this equality, or in other words we substitute (Λ2

p,θ)
∗φ,

where (Λ2
p,θ)
∗ is the formal adjoint to Λ2

p,θ, in place of φ in (3.2). Now our candidate
becomes

ũ = Λ2
p,θv.

We claim that ũ belongs to Hγ+1
p,θ and there exists

(f̄ , ḡ, ū0) ∈ Hγ+1
p,θ ×Hγ+1

p,θ (l2)× Uγ+2
p,θ(3.10)

such that

dũ = (aũxx + fx + f̄x) dt+ (σkũx + gk + ḡk) dwkt ,(3.11)

ũ(0, ·) = u0 + ū0.
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Indeed, by Remarks 2.4 and 2.8 and Lemma 1.14 we easily get that

ũ ∈ Hγ+1
p,θ , M−1v ∈ Hγ+3

p,θ , M−1ũ = Λ2
p,θM

−1v + P1M
−1v ∈ Hγ+1

p,θ ,

Dũ = Λ2
p,θDv + P1Dv ∈ Hγp,θ

and that ũ satisfies (3.11) with

f̄ = 4P2M
−1v + ((2b− 1)I + 2MD)Λ−2

p,θf, ḡk = σkP1Dv.

Obviously, f̄ and ḡ are as in (3.10). Also by Lemma 1.14 at t = 0,

M2/p−1ũ = M2/p−1Λ2
p,θM

1−2/p(M2/p−1v)

= Λ2
p,θM

2/p−1v + c1M
2/p−1v + c2MDM2/p−1v =: M2/p−1u0 +M2/p−1ū0,

where

M2/p−1ū0 ∈ Lp(Ω,F0, H
γ+2−2/p
p,θ ).

This finishes the proofs of (3.10) and our claim.
Since γ + 1 ≥ 1, it follows from (3.10) that the function ū := R(f̄ , ḡ, ū0) is well

defined, belongs to Hγ+2
p,θ , and the function u = ũ − ū is of class Hγ+1

p,θ and solves
(3.1). For thus constructed u estimate (3.3) follows from the explicit representation
and known estimates for R, Pi, MD.

By repeating the above argument, we consider the case 0 > γ ≥ −1, this time
using the fact that γ+ 1 ≥ 0 and relying upon the result for γ ≥ 0. One can continue
in the same way, and it only remains to prove the uniqueness of solutions in Hγ+1

p,θ .
It suffices to consider the case f = 0, g = 0, u0 = 0 (and γ < 1). In this case any

solution u ∈ Hγ+1
p,θ,0 also belongs to H2

p,θ,0 by Lemma 3.6 and its uniqueness follows
from Lemma 3.5.

The theorem is thus proved.
Remark 3.7. In the above argument one can use (MD)2 instead of Λ2

p,θ, which

would make the argument shorter. We prefer Λ2
p,θ bearing in mind a generalization

to a multidimensional case.
Remark 3.8. From the above derivation of Theorem 3.2 from Lemma 3.5 it is

seen that, if the assertions of Theorem 3.2 hold for some particular γ, p, θ, a, and σ
satisfying the conditions of Theorem 3.2, then they hold for any γ ∈ R with the same
p, θ, a, σ.

4. Proof of Lemma 3.5. First notice that by Theorem 2.13 for almost every ω
the function ū := Πu0 is well defined, ū ∈ H2

p,θ, ū|t=0 = u0, ∂ū/∂t = f̄x with f̄ ∈ H1
p,θ,

and an appropriate estimate of ||ūx||H1
p,θ

and ||f̄ ||H1
p,θ

through ||u0||U2
p,θ

holds. This

implies that in the equation

du = (auxx + (aūx + f − f̄)x) dt+ (σkux + (σkūx + gk)) dwkt

we have aūx + f − f̄ ∈ H1
p,θ and σūx + g ∈ H1

p,θ(l2). Also, obviously if we can solve

the above equation in H2
p,θ,0, then by adding to the solution the function ū we get a

solution of (3.1) with initial data u0. Therefore, in the proof of Lemma 3.5 without
loss of generality, we may and will confine ourselves only to the case u0 ≡ 0.
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Furthermore, we may assume that a ≡ 1. Indeed, to get the result for the general
case one only needs to use a random time change. Namely, let us define

ψ(t) =

∫ t

0

a(s)ds, τ(t) = inf{s ≥ 0 : ψ(s) ≥ t},

w̃k(t) =

∫ τ(t)

0

√
a(s)dwk(s), f̃(t, x) = f(τ(t), x)/a(τ(t)),

σ̃(t) = σ(τ(t))/
√
a(τ(t)), g̃(t, x) = g(τ(t), x)/

√
a(τ(t)),

ũ(t, x) = u(τ(t), x).

Direct computations (see, for instance, Lemma IV.2.2 and Theorem IV.2.3 in [3])
show that w̃k(t) are independent Wiener processes and also that u is a solution of
(3.1) if and only if ũ is a solution of

dũ = (ũxx + f̃) dt+ (σ̃kũx + g̃k) dw̃k(t).

Therefore, we easily get the desired result for general a from the result for a ≡ 1.
Finally, obviously we may assume that τ ≤ T where the constant T < ∞. Thus, we
may and will assume that u0 = 0, a ≡ 1, and unless stated explicitly otherwise τ ≤ T .

We divide the proof of the lemma in this case into the following subcases:
1. p ≥ 2 and θ ∈ [p− 1, p), existence;
2. p ≥ 2 and θ ∈ (0, p), uniqueness;
3. p ≥ 2 and σ ≡ 0;
4. σ ≡ 0 and g ≡ 0.

4.1. Case p ≥ 2 and θ ∈ [p− 1, p). Existence. We use the following simple
lemma.

Lemma 4.1. Let functions f, h be defined on R+, be locally absolutely continuous,
and satisfy ∫ ∞

0

|f(x)g(x)| dx <∞.(4.1)

Then ∫ ∞
0

xf(x)g′(x) dx = −
∫ ∞

0

xf ′(x)g(x) dx−
∫ ∞

0

f(x)g(x) dx

if at least one of the sides of this equality makes sense.
This fact easily follows if one integrates by parts between a, b with 0 < a < b <∞

and then lets a ↓ 0 and b→∞ after noticing that (4.1) implies that

lim inf
a↓0

|af(a)g(a)| = lim inf
b→∞

|bf(b)g(b)| = 0.

Denote by E the collection of functions of the form

f(t, x) =

m∑
i=1

I |(τi−1,τi]]
(t)fi(x),
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where fi ∈ C∞0 (R+) and τi are stopping times, τi ≤ τi+1 ≤ τ . The set E is dense
in H1

p,θ(τ), which follows from a similar fact for spaces Hγp (see [5] or [8]) and the

definition of Hγp,θ(τ). Also, the collection of sequences g = (gk), such that each gk
belongs to E and only finitely many of gk are different from 0, is dense in H1

p,θ(τ, l2).
It follows that in the proof of existence and estimate (3.3) we may assume that f and
g are of this type.

Next, we use an argument from [7]. We continue f(t, x) to be an even function
and g(t, x) to be an odd function of x ∈ R. Also take an infinitely differentiable odd
function α(x) such that α(x) = 1 for large x, α(x) = 0 for |x| ≤ 2 and on R consider
the equation

du = (uxx + fx) dt+ (ασkux + gk) dwkt .(4.2)

The following lemma is proved in the end of this subsection.
Lemma 4.2. In H0

p(τ) there exists a unique solution u of (4.2) with zero initial
condition. Moreover, u ∈ H0

p,θ(τ) and

||u||H0
p,θ

(τ) ≤ N ||f ||H1
p,θ

(τ) +N ||g||Lp,θ(τ,l2),(4.3)

where N is independent of τ , f , and g.
Now notice that the equation

du = (uxx + fx) dt+ (αnσ
kux + gk) dwkt ,(4.4)

where αn(x) = α(enx), also has a solution u ∈ H0
p,θ(τ) for which (4.3) holds with

the same N . To prove this, it suffices to use scaling properties of the norms in
Hγ
p,θ (see Remark 1.4) and to observe that if u is a solution of (4.2), then the function

un(t, x) = u(e2nt, enx) satisfies (3.6) with the same fn, gn, and wt(n) and with an = 1
and σn(t) = α(enx)σ(e2nt).

Denote un the solution of (4.4). Then un satisfies (4.3) and, in particular, M−1un
form a bounded sequence in Lp,θ(τ). Denote u a weak limit of a subsequence of un.
As in the proof of Theorem 3.11 of [8] we get that u ∈ H0

p,θ(τ). Then passing to the
limit in (4.4) and observing that α(enx) → 1 for x > 0, we get that u satisfies (3.1)
and estimate (4.3). It follows from Lemma 3.6 that u ∈ H2

p,θ(τ) and (3.3) holds with
γ = 1 and u0 = 0. This finishes the proof of existence.

Proof of Lemma 4.2. The existence and uniqueness of solution u ∈ H1
p(τ) of (4.2)

is asserted in Theorem 3.2 of [5] or Theorem 5.1 of [8]. Therefore, we only need to
prove that u ∈ H0

p,θ(τ) and that (4.3) holds.

By the definition of the norm in Hγp,θ(τ) and by Remarks 2.4 and 2.7, it is sufficient

to show that M−1u ∈ Lp,θ(τ) and

||M−1u||pLp,θ(τ) ≤ N ||f ||pH1
p,θ

(τ)
+N ||g||pLp,θ(τ,l2).(4.5)

Owing to our choice of f and g, from [5] or [8] we know that u ∈ Hγp(τ) for any
γ and, in particular, for almost any ω, the function u(t, x) is infinitely differentiable
with respect to x and all its derivatives are continuous in t. This implies that (4.2)
holds pointwise (a.s.). In addition, by uniqueness the function u(t, x) is odd with
respect to x, so that, in particular, u(t, 0) = 0.

Again by choice of f and g, the function u satisfies the heat equation ut = uxx for
0 < x < 2 with zero initial and zero boundary value for x = 0. If we set u(t, x) = 0
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for t < 0, then it satisfies the heat equation for all t ≤ T and 0 < x < 2. For such
functions it is well known (see, for instance, the maximum principle and Theorem
8.4.4 in [4]) that for any integer n ≥ 0,

sup
0<x<1,t≤T

|Dnu(t, x)| ≤ N(n) sup
t≤T
|u(t, 2)|.

Therefore, for θ > 0,

E

∫ τ

0

∫ 1

0

|u/x|pxθ−1 dxdt ≤ NE sup
0<x<1,t≤T

|ux|p ≤ NE sup
t≤τ
|u(t, 2)|p.

In addition, as has been mentioned above, we have u ∈ Hγp(τ) for any γ. By embedding
theorems (see [5] or [8])

E sup
[0,τ ]×R+

|u|p <∞,

which proves that, for any θ > 0, we have M−1uη ∈ Lp,θ(τ) if η = η(x) is smooth
and vanishes for x ≥ 1. In the same way it is proved that for any integer n ≥ 0 and
θ > 0,

E

∫ τ

0

∫ 1

0

|Dnu|pxθ−1 dxdt <∞.(4.6)

On the other hand, |M−1u|pxθ−1 ≤ |u|p if x ≥ 1 and θ ≤ p+ 1. Hence, M−1u ∈
Lp,θ(τ) not only for θ ∈ [p− 1, p) but for all θ ∈ (0, p+ 1].

Next, we claim that, actually, for any θ ∈ (0, p+ 1] and γ ≥ 0, we have

u ∈ Hγp,θ(τ).(4.7)

To prove this claim, let ζ ∈ C∞(R) be such that ζ(x) = 1 for x ≤ 1/2 and
ζ(x) = 0 for x ≥ 1. We want to apply Theorem 1.10 to prove that ζu ∈ Hγp,θ(τ).

Notice that we already know that M−1ζu ∈ Lp,θ(τ). Also from (4.6) it follows that
MnDn(ζu)x ∈ Lp,θ for any integer n. Hence the inclusion ζu ∈ Hγp,θ(τ) follows indeed
from Theorem 1.10.

To prove the claim it only remains to prove that v := (1−ζ)u ∈ Hγp,θ(τ). Observe
that u ∈ Hγp(τ) and v ∈ Hγp(τ) for any γ. Also, v satisfies

dv = (vxx + f̄) dt+ (ασkvx + ḡk) dwkt ,(4.8)

where

f̄ = (1− ζ)fx + 2ζxux + ζxxu, ḡk = (1− ζ)gk + ασkζxu.

Now, consider the following equation on R:

dũ = (ũxx − 2ũx tanhx+ (2 tanh2 x− 1)ũ+ f̄ coshx) dt

+(ασkũx − ασkũ tanhx+ ḡk coshx) dwkt ,

with zero initial condition. Because of compactness of supports of f̄ and ḡ, by already
cited results from [5] or [8] there is a unique solution ũ in class Hγp(τ) for any γ. Of



A SOBOLEV SPACE THEORY OF SPDEs 321

course, ũ/ coshx ∈ Hγp(τ) for any γ. In addition, one can easily check that ũ/ coshx
satisfies (4.8). By the uniqueness of solutions of (4.8) in class Hγp(τ), we conclude
that v = ũ/ coshx and, in particular, v coshx ∈ Hγp(τ) for any γ. Now the fact that
v ∈ Hγp,θ(τ) for any γ follows easily from the observation that v = 0 if x ≤ 1 and
xn/ coshx is bounded.

Next we remember that (4.2) holds pointwise and we apply Itô’s formula to
|u(t, x)|pxc, where c = θ + 1− p. We get that, for any x ∈ R+ and t ≤ τ , a.s.∫ t

0

I(s, x) ds+
∑
k

∫ t

0

pxc|u|p−2u(ασkux − gk) dwks = |u(t, x)|pxc ≥ 0,(4.9)

where

I := pxθ−1G(v)(xuxx) + pxθ−1G(v)(xfx) + bxθ−1
∑
k

|v|p−2(ασkux − gk)2,

b := p(p− 1)/2, v := u/x, G(r) := |r|p−2r.

It follows that for any x ∈ R+ there is a sequence of stopping times τ(n) ↑ τ localizing
the stochastic integral in (4.9) so that

E

∫ τ(n)

0

I(s, x) ds ≥ 0.(4.10)

It turns out that for almost any x ∈ R+, here one can replace τ(n) with τ and integrate
with respect to x over R+. To prove this it suffices to prove that

E

∫ τ

0

∫
R+

|I(s, x)| dxds <∞.(4.11)

Observe that (4.7) for γ = 2 means that

M−1u, ux, Muxx ∈ Lp,θ(τ),(4.12)

which implies (4.11) since by Hölder’s inequality

E

∫ τ

0

∫ ∞
0

|G(v)| |xuxx|xθ−1 dxdt

= E

∫ τ

0

∫ ∞
0

|u(t, x)/x|p−1|xuxx(t, x)|xθ−1 dxdt

≤ ||M−1u||p−1
Lp,θ(τ)||Muxx||Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|G(v)| |xfx|xθ−1 dxdt ≤ ||M−1u||p−1
Lp,θ(τ)||Mfx||Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|v|p−2|ux|2xθ−1 dxdt ≤ ||M−1u||p−2
Lp,θ(T )||ux||2Lp,θ(τ),

E

∫ τ

0

∫ ∞
0

|v|p−2|g|2l2xθ−1 dxdt ≤ ||M−1u||p−2
Lp,θ(τ)||g||2Lp,θ(τ,l2).
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Having thus proved (4.11), from (4.10) we conclude

E

∫ τ

0

∫
R+

I(s, x) dxds ≥ 0.(4.13)

While estimating the integral with respect to x in (4.13) we integrate by parts after
noticing that (4.12) also implies that

E

∫ τ

0

∫ ∞
0

|G(u)||ux|xθ−1 dxdt <∞.

By Lemma 4.1 for almost all (ω, t) ∈ |(0, τ ]] we get

p

∫ ∞
0

xθ−1G(v)(xuxx) dx = p

∫ ∞
0

xcG(u)uxx dx

= −p(p− 1)

∫ ∞
0

|u|p−2|ux|2xc dx− c
∫ ∞

0

xc−1(|u|p)x dx

= −p(p− 1)

∫ ∞
0

|u|p−2|ux|2xc dx+ c(c− 1)

∫ ∞
0

|M−1u|pxθ−1 dx.

Furthermore, ∣∣∣∣∫ ∞
0

xθ−1G(v)(xfx) dx

∣∣∣∣ ≤ ||v||p−1
Lp,θ
||Mfx||Lp,θ

≤ ε||M−1u||pLp,θ +N(ε, p)||f ||p
H1
p,θ

,

where ε > 0 is arbitrary. Finally, while estimating the terms in (4.13) which came
from stochastic integrals we also use

(ασkux − gk)2 ≤ (1 + ε)|σk|2|ux|2 + (1 + ε−1)|gk|2.

Then from (4.13) we conclude that for any ε > 0,

p(p− 1)E

∫ τ

0

∫ ∞
0

[(1 + ε)|σ|2l2/2− 1]|u|p−2|ux|2xc dxdt

+[(θ + 1− p)(θ − p) + ε]E

∫ τ

0

∫ ∞
0

|M−1u|pxθ−1 dxdt

+N(ε, p)(||f ||pH1
p,θ

(τ)
+ ||g||pLp,θ(τ,l2)) dxdt ≥ 0.(4.14)

Now comes the only place where we need θ ∈ [p − 1, p). This condition implies
that (θ + 1− p)(θ − p) ≤ 0. Also |σ|2l2 ≤ 2− δ. By using (2.13) we conclude that the
first term in (4.14) is strong enough if ε is small and (4.14) implies (4.5). This brings
the proof of Lemma 4.2 to an end.
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4.2. Case p ≥ 2 and θ ∈ (0, p). Uniqueness. Suppose that u ∈ Hγp,θ(τ) is a
solution of

du = uxx dt+ σkux dw
k
t(4.15)

with zero initial condition. By Lemma 3.6 it follows that u ∈ Hγp,θ(τ) for all γ and
also uζ ∈ Hγp(τ) for all ζ ∈ C∞0 (R+). Hence we again have (4.12) and the equation
is satisfied pointwise. For θ ∈ [p − 1, p), this makes it possible to estimate the norm
||u||H0

p,θ
(τ) using the same computations as in Lemma 4.2. Since now f = gk = 0, the

result is ||u||H1
p,θ

(τ) = 0.

Next notice that, for any θ ∈ (0, p), there exists θ1 ∈ (p − 1, p) such that θ <
θ1 < θ+ p. Also as above, for any γ any solution of (4.15) in Hγp,θ(τ) with zero initial

condition also belongs to H1
p,θ(τ). Hence, the following result implies the uniqueness

for general θ ∈ (0, p).
Lemma 4.3. Let γ, θ1, and p be such that the first two assertions of Theorem 3.2

hold for u0 ≡ 0, any stopping time τ , and these γ, θ1, and p (for instance, γ = 1,
θ1 ∈ [p− 1, p), and p ≥ 2). Let q ≥ p, θ 6= 0, and θ 6= q satisfy θ/q < θ1/p ≤ θ/q + 1.
Let τ be a stopping time and u ∈ H1

q,θ,0(τ) satisfy (3.1) with some f ∈ Lp,θ1(τ) and

g ∈ Lp,θ1(τ, l2). Then u ∈ H1
p,θ1,0

(τ).
Proof. By Remark 3.8 we may assume that γ = 0. Let v be the unique solution

of (3.1) in H1
p,θ,0(τ) with given f and g. To prove the lemma we prove that u = v.

Let κ be an infinitely differentiable function such that κ(x) = 1 for |x| ≤ 1 and
κ(x) = 0 for |x| ≥ 2. Define κn = κ(x/n).

First we prove that for any n,

uκn ∈ H1
p,θ1,0(τ).(4.16)

To this end observe that

E

∫ τ

0

∫ ∞
0

|(uκn)x|pxθ1−1 dxdt ≤ 2p−1E

∫ τ

0

∫ ∞
0

|uxκn|pxθ1−1 dxdt

+2p−1E

∫ τ

0

∫ ∞
0

|uκnx|pxθ1−1 dxdt,(4.17)

where by Hölder’s inequality the first term on the right is less than a constant times

E

∫ τ

0

∫ 2n

0

|uxx(θ−1)/q|pxθ1−1−(θ−1)p/q dxdt

≤
(
E

∫ τ

0

∫ 2n

0

|ux|qxθ−1 dxdt

)p/q
T 1−p/q

(∫ 2n

0

xc dx

)1−p/q
,

with

c = [θ1 − 1− (θ − 1)p/q]q/(q − p) =
qp

(q − p)
(
θ1

p
− θ

q

)
− 1.

Since c > −1, the first term on the right in (4.17) is finite. One can similarly treat
the second term after noticing that |uκnx| ≤ N |u/x| and u/x ∈ Lq,θ(τ). The same
argument yields uκn/x ∈ Lp,θ1(τ) and this proves (4.16).
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Now, let ū = u−v. By what we have just proved, ūκn belongs to H1
p,θ1,0

(τ). Also
ūκn satisfies the following equation similar to (3.7)

d(ūκn) = (a(ūκn)xx + f̄nx) dt+ (σk(ūκn)x + ḡkn) dwkt ,

where

f̄n(t, x) = a(t)

∫ ∞
x

[2κnx(y)ūx(t, y) + κnxx(y)ū(t, y)] dy

= −2aκnxū+ (MD)−1(Maκnxxū), ḡk = −σkκnxū.
Hence, by our assumptions and Remark 1.5

||ūκn||H1
p,θ1

(τ) ≤ N ||κnxū||Lp,θ1 (τ) +N ||Mκnxxū||Lp,θ1 (τ).(4.18)

Here, for instance, (κnx ≤ N/n)

||κnxū||pLp,θ1 (τ) ≤ Nn−pE
∫ τ

0

∫ 2n

n

|ū|pxθ1−1 dxdt

≤ NE
∫ τ

0

∫ 2n

n

|v/x|pxθ1−1 dxdt+Nnθ1−p−1E

∫ τ

0

∫ 2n

n

|u|p dxdt.

The first term on the right tends to zero as n → ∞ since v/x ∈ H0
p,θ1

(τ). To prove
the same for the second term use Hölder’s inequality to get that it is less than

NT 1−p/qnθ1−p−p/q
(
E

∫ τ

0

∫ 2n

n

|u|q dxdt
)p/q

≤ Nnc
(
E

∫ τ

0

∫ 2n

n

|u|qxθ−1 dxdt

)p/q
,(4.19)

where c = θ1 − p − p/q − (θ − 1)p/q ≤ 0 by virtue of θ1/p ≤ 1 + θ/q. Theorem 2.11
implies that the right-hand side of (4.19) tends to zero as n→∞.

In the same way using the fact that |Mκnxx| ≤ N/n we get that the second term
on the right in (4.18) tends to zero as well. Thus (use Theorem 2.11)

E sup
t≤τ

∫ ∞
0

|ū(t, x)|pxθ1−1 dxdt ≤ lim inf
n→∞ E sup

t≤τ
||ū(t, ·)κn||pH0

p,θ1

≤ N lim inf
n→∞ ||ūκn||

p
H1
p,θ1

(τ)
= 0.

The lemma is proved.

4.3. Case σ ≡ 0 and p ≥ 2. Uniqueness follows directly from section 4.2. To
prove existence notice that as has been emphasized in section 4.1 the only place where
we used θ ∈ [p − 1, p) is right after (4.14). But in our present situation σ ≡ 0 and
from (4.14) and (2.13) we conclude that

[p−1(p− 1)(p− θ)2 + (θ + 1− p)(p− θ) + ε]||M−1u||pLp,θ(τ)

≤ N(ε, p)(||f ||pH1
p,θ

+ ||g||pLp,θ(τ,l2)).(4.20)

Observe that the condition 0 < θ < p is equivalent to p−1(p − 1)(p − θ)2 + (θ + 1 −
p)(p − θ) > 0. Therefore, for ε small enough we again get (4.5). This takes care of
the existence.



A SOBOLEV SPACE THEORY OF SPDEs 325

4.4. Case σ ≡ 0 and g ≡ 0. Actually, this is the case of the heat equation
without any stochastic terms. In this case Lemma 3.6 is available for any p > 1 and
as in section 4.1, to prove existence, it suffices to prove (4.5) for f as in section 4.1.
This time we get (4.20) with ε = 0 even for 1 < p < 2, which is proved by the same
approximating argument as in the proof of Theorem 2.13 right after (2.15). Hence,
we have existence.

The uniqueness is proved as in the beginning of section 4.2 observing that this
time we do not need condition θ ∈ [p− 1, p) to be satisfied and yet have (4.20).

This finishes the proof of Lemma 3.5.
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