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Bob Sacker and I met the first time in December 1965 in Mayaguez, Puerto Rico, at an

International Conference on Differential Equations and Dynamical Systems, organized by

Lefschetz, LaSalle and Hale [16,18]. We also met Henry Antosiewicz, who later played a

major role in the Sacker’s career.

Robert John Sacker was born in Miami, Florida in October 1937. While in high

school in Key West, Florida, he developed a strong interest in both mathematics and

electrical engineering. He attended the Georgia Institute of Technology in Atlanta, where

he met John Nohel, who inspired Sacker to specialize in mathematics. Completing his

undergraduate studies in 1959, he entered the graduate program in mathematics at Georgia

Tech and continued working with Nohel.

In 1961, Nohel recommended that Sacker transfer to New York University (NYU) and

study with Jürgen Moser. Sacker completed his PhD with Moser at NYU in 1964 and then

began a postdoctoral fellowship at NYU. In 1966 he began his tenure on the Faculty in the

Department of Mathematics at the University of Southern California, his current academic

home.

Sacker is one of the pioneers in the study of the longtime dynamics of nonautonomous

dynamical systems. We present a description of some of his scientific contributions here.

S. Perturbation Theory for Manifolds. Early on Sacker developed an elegant approach

for the study of the perturbation theory for invariant manifolds [19–22]. The statement
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of invariance for a manifold can be reformulated in terms of a first-order partial differential

equation (PDE). Sacker’s idea was to introduce an ‘elliptic regularization’ to analyze

this PDE. The elliptic problem is readily solvable with good estimates, leading

to the smoothness (including the Hölder continuity in the highest derivative) of the

original PDE.

It is noteworthy that this methodology has been successfully applied in the study of the

infinite dimensional dynamical systems arising in the theory of inertial manifolds [14].

The Sacker methodology is a beautiful idea, and it leads to strong results.

A. Extensions and Lifting Properties. In the study of nonautonomous equations and

skew product flows, one encounters two fundamental questions: does a given differential

equation with almost periodic coefficients have almost periodic solution? and if not, what

kinds of solutions exist? When one transfers such questions into the context of skew

product flows, one is seeking a (dynamical) extension of the flow on the base space.

In other words, one seeks to describe properties which are lifted from the base flow into the

skew product flow. The papers [29,30,33,36] deal with these issues.

(A.1) Extensions. In the paper [33], one studies two spacesM and Y, with a continuous

projection p : M ! Y ofM onto Y. One assumes that the spaces are compact, invariant sets

under the action of a topological group T. The problem is to find sufficient conditions for

the space M to be an N-fold covering space for Y, with p as a covering map.

It is assumed that the group T has the property that there is a compact set K # T such

that T is (finitely) generated by any open neighbourhood of K. Topological groups that

satisfy this finite generation property include the following – all with the usual topologies:

the real line R, the integers Z, the Euclidean space Rn and the lattice Zn, where n is finite.

However, the real line R with the discrete topology does not satisfy this finite generation

property.

The main theorem states that, if p is a mapping of (fibre) distal-type, and if there exists

a point y0 [ Y , where the cardinality of p21ðy0Þ is N, a positive integer, then the spaceM is

such an N-fold covering space of Y. In this setting, p 21 lifts any equicontinuous flow on Y

onto an equicontinuous flow on M.

(A.2): Lifting properties. Before turning to the dynamics in the 1977 AMS Memoir

[36], it is useful to recall some aspects of the theory of almost periodic solutions of

ordinary differential equations (ODEs) with almost periodic coefficients, as they existed

in the early 1970s. There was an apparent paradox in which some theories were

based on various stability concepts, and others were based on various distality concepts.

A Yin-Yang where some theories required solutions to remain close together and others

where solutions stay apart.

In this memoir, the goal was to show that there is no paradox; the two approaches have

a common source, namely is a general theory of distality in dynamical systems. In each

approach, one is looking for appropriate extensions of an almost periodic minimal set

(the hull of the coefficient space). In the memoir, these extensions are referred to as lifting

properties.

In this setting, one begins with a skew product flow (or semiflow) p ¼ pðtÞ on metric

space Y £ X, where Y is a compact, minimal set in the flow s, where sðy; tÞ ¼ y·t. Let

M # Y £ X be a compact, invariant set forp. Assume that the projectionmapping pðy; xÞ ¼ y

ofM onto Y a mapping of ‘distal-type’ and that there is a y0 [ Y and an integer N $ 1 such

that p21ðy0Þ contains precisely N points. Then M is an N-fold covering space of Y, with

covering map being pjM , the restriction of p toM. Also, the flow p onM is almost periodic

(resp. distal) if and only if the flow s on Y is almost periodic (resp. distal). Thus distality and

almost periodicity are properties that are lifted to Y £ X.
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The key point here being that p is of ‘distal-type’. This means that if

pðy; x1Þ ¼ pðy; x2Þ ¼ y, where x1 – x2, then there is an a . 0 such that the metric d on

Y £ X satisfies dðpðtÞðy; x1Þ;pðtÞðy; x2ÞÞ $ a, for all t [ T .

C. Linear Skew Product Flows. The story of linear skew product flows is one of

the hallmarks of Sacker’s career over a 20-year period in which the papers

[22–24,32,34,35,37,38–40] appeared.

(C.1) The Splittings Saga. This Saga begins with four papers which include the term

‘invariant splittings’ in the title. The papers cited above are based on a common theme in

the study of nonautonomous differential equations, videlicet: exponential dichotomies and

invariant splittings of linear differential systems. We use the linear skew product

formulation pðtÞðy; xÞ ¼ pðy; x; tÞ with: p ¼ pðtÞ and

pðy; x; tÞ ¼ ðsðy; tÞ;Fðy; tÞxÞ; where y [ Y; x [ X; t [ T ; ð1Þ

X is a finite dimensional Hilbert space, Y is a compact Hausdorff space with a flow

sðy; tÞ ¼ y·t and T is the real number space R, or the integers Z. Also F is a continuous

mapping F : Y £ T ! LðX;XÞ, where LðX;XÞ is the space of bounded, linear operators on
X. The bounded set B, the stable set S, and the unstable set U are defined by

B ¼ {ðy; xÞ [ Y £ X : sup
t[T

kFðy; tÞxk , 1};

S ¼ {ðy; xÞ [ Y £ X : kFðy; tÞxk! 0; as t!þ1};

U ¼ {ðy; xÞ [ Y £ X : kFðy; tÞxk! 0; as t!21}:

ð2Þ

We let BðyÞ, SðyÞ and UðyÞ denote the respective fibres over y [ Y . For example, BðyÞ is
the collection of x [ X, with ðy; xÞ [ B. One defines

Yk ¼ {y [ Y : dimSðyÞ ¼ k and dimUðyÞ ¼ n2 k}; for 0 # k # n:

It is shown that each Yk is a closed set and at least one Yk is nonempty. Also the skew

product flow p has an exponential dichotomy over each nonempty Yk. Furthermore, p has

an exponential dichotomy over Y, and there is an invariant splitting

Y £ X ¼ S%U; ð3Þ

as a Whitney sum, if and only if one has

B ¼ Y £ {0} and Y ¼ Yk; for a unique k [ {0; 1; . . . ; n}:

The Projector. The exponential dichotomy over Y and the splitting (3) comes with a

projector P : Y £ X ! Y £ X, where Pðy; xÞ ¼ ðy;PðyÞÞ and PðyÞ is the linear projection on
X that satisfies PðyÞx ¼ x, when x [ SðyÞ, and PðyÞx ¼ 0, when x [ UðyÞ.
The complementary mapping QðyÞ ¼ I 2 PðyÞ is also a projector. Thus the ranges of

the projectors satisfy RðPÞ ¼ S and RðQÞ ¼ U. Also, there exist constants K $ 1 and

a . 0 such that for all ðy; xÞ [ Y £ X and all t [ R, one has

Pðy·tÞFðy; tÞx ¼ Fðy; tÞPðyÞx and Qðy·tÞFðy; tÞx ¼ Fðy; tÞQðyÞx; ð4Þ
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and

kFðy; tÞPðyÞxk # Kkxke2at; for t $ 0;

kFðy; tÞQðyÞxk # Kkxkeat; for t # 0:
ð5Þ

Theorem 1. (ALTERNATIVE THEOREM) Assume that B ¼ Y £ {0}, where B, S, U and Yk
are given as above, see (2). Then the sets Yk are compact invariant sets, and at least one is

nonempty.

(1) If precisely one set, say Yk0 is nonempty, then Y ¼ Yk0 and there is an exponential

dichotomy over Y, such that the relations (3)–(5) hold.

(2) If there are at least two nonempty sets Yk, then the flow s on Y is a Morse flow,

where the nonempty sets Yk are the Morse sets; and if y � <n
k¼0Yk, then there exist

k1 . k2, such that the alpha limit set aðyÞ is in Yk1 , while the omega limit set vðyÞ

is in Yk2 .

We note that, for each minimal set, or for each alpha or omega limit set, or for each

chain-recurrent set M # Y , there is an integer k [ {0; 1; . . . ; n} such that M lies in Yk.

Two proofs the alternative theorem are given. One in [32], and a shorter and less

complicated version in [34]. Applications include linear differential equations and linear

difference equations.

(C.2): Nontrivial bounded sets. The papers [35,23] present a continuation of the

analysis of the dynamics of (1), but now one threats the case where the bounded set B is not

trivial, that is, B – Y £ {0}. These papers include interesting applications to the theory of

ODEs and the theory of difference equations.

One begins with a closed invariant subbundle M for the skew product flow p

generated by (1). For example, M could be the tangent bundle generated by an invariant

manifold for a nonlinear differential, or difference equation. In these papers, one

encounters various relations between M and the bounded set B. In order to simplify this

treatment, we adopt here the assumption thatM ¼ B. Recall that a subbundleM in Y £ X

is a closed set, where the fibres MðyÞ are linear spaces, and the dimension dimðMðyÞÞ is

constant over every connected component of Y (when T ¼ R), or every invariantly

connected component of Y (when T ¼ Z).

One uses the inner product on X and the concept of orthogonality to define the

orthogonal complement

M’ ¼ {ðy; xÞ [ Y £ X : x ’ MðyÞ};

and we let P be the projector Pðy; xÞ ¼ ðy;PðyÞxÞ, where PðyÞ is the orthogonal projection
of X onto the fibre M’ð yÞ, for y [ Y . Note that Pð yÞx ¼ 0, for x [ Mð yÞ.

While M is invariant, it is generally not the case that the complementary bundle M’

is invariant. Nevertheless, several natural questions arise, to wit, when does there exist an

invariant complementary bundle M such that Y £ X ¼ M%N , as a Whitney sum?

Related questions arise in terms of the stable and unstable sets S and U. For example, are

these sets subbundles in Y £ X? If these sets are subbundles, is N ¼ S%U a

complementary subbundle for M? If so, then one would have an exponential trichotomy

for p over Y with the invariant splitting

Y £ X ¼ S%M%U: ð6Þ
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For the case where the subbundle M ¼ B is the tangent bundle for an invariant manifold

in a nonlinear flow, the relation (6), with the exponential trichotomy, means that this

manifold is ‘normally hyperbolic’.

To study these issues, one uses the induced flow p̂ on the subbundle M’, where

p̂ ¼ p̂ðtÞ,

p̂ðtÞðy; xÞ ¼ ðy·t; F̂ðy; tÞxÞ; PðyÞx ¼ x and F̂ðy; tÞx ¼ Pðy·tÞFðy; tÞx: ð7Þ

By using the invariance of the subbundleM, one shows that p̂ is a linear skew product

flow on the subbundle M’. Consequently, the bounded set B̂, the stable set Ŝ, and the

unstable set Û, for p̂, are defined as in (2), where F̂ replaces F. Furthermore, when the

bounded set B̂ is trivial; that is, when B̂ðyÞ ¼ {0}, for all y [ Y ; then the theory of

exponential dichotomies and invariant splittings, which is described above, is applicable

for the induced dynamics on M’.

This brings us to the question: What implications does all this have on the original

dynamical system p on Y £ X? One answer, which is in the theorem below, requires that

M satisfies a distal property, Hypothesis B, which states that there exist positive constants

C0 and C1 such that: 1

C0kxk # kFðy; tÞxk # C1kxk; for every ðy; xÞ [ Mwith x – 0: ð8Þ

Theorem 2. Assume that (i)M ¼ B satisfies the distal property (8); that (ii) the associate

bounded set B̂ is trivial; and that (iii) the induced flow p̂ on M’ has an exponential

dichotomy over Y, then the following hold:

. the sets S and U are subbundles of p;

. the flow p on Y £ X has an exponential trichtomy over Y and

. one has Y £ X ¼ S%B%U, as a Whitney sum.

(C.3) Without hypothesis B. The distal property (8) is very restrictive. The theory

developed in [23] address some issues that arise when (8) fails to hold. It can happen, for

example, that the bounded set B is no longer a subbundle. It need not be a closed set in

Y £ X, or the dimensions dimðBðyÞÞ may change as y changes.

The theory developed in [23] is based on the spectral theory appearing in [37,39],

see Section K. What typically happens is that the bounded set M ¼ B in the

decomposition (6) is replaced by a spectral subbundle V0, where B # V0. One of the goals

of this article is, for example, to derive good estimates of dimðBðyÞÞ and dimðV0ðyÞÞ in

terms of dimensions of S and U over aðyÞ and vðyÞ, the alpha and omega limit sets.

(C.4) Banach space theory. As noted in Section C.1, the original theory concerning the

existence of exponential dichotomies and invariant splittings is developed for finite

dimensional Hilbert spaces X. The extensions of this theory to general Banach spaces,

where the solution operatorFðy; tÞ is now a uniformly a-contracting operator on a Banach

space X, offers special challenges. (First and foremost, the linear operator Fðy; tÞ is now
defined only for t $ 0, and pðtÞ is a semiflow and not a flow [45].) Eventually these

challenges were met, as seen in [40], and the alternative theorem is valid in this setting.

(An important aspect of the extension of the invariant splittings theory to Banach spaces,

was the use of Conley theory of chain-recurrence [4], also see [22]).

The theory described above applies in the study of the linearization of the following

nonlinear evolutionary equations: (i) parabolic PDEs including systems of reaction

Journal of Difference Equations and Applications 741
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diffusion equations and the Navier–Stokes equations; (ii) hyperbolic PDEs, including the

nonlinear wave equation, as well as the nonlinear Schrödinger equation, with dissipation;

(iii) retarded differential delay equations; and (iv) certain neutral differential delay

equations.

K. Spectral Theory. In this section, we present remarks on the theories appearing in

[24,31,37,38,39]. In the first section, we examine the linear theory of the dynamical

spectrum.2 In the second section, we examine the application of this Spectral Theory to the

nonlinear theory of invariant manifolds. We use here the notation developed in Section C.

(K.1) Dynamical spectrum. The dynamical spectrum theory arises after one takes a

small step away from the linear skew product flow p on Y £ X in (1), where X is an

n-dimensional linear space and n $ 1. In particular, let l denote any real number, and

define plðtÞðy; xÞ ¼ plðy; x; tÞ with: pl ¼ plðtÞ,

plðtÞðy; xÞ ¼ plðy; x; tÞ ¼ ðy·t;Flðy; tÞxÞ;

Flðy; tÞ ¼ e2ltFðy; tÞ:
ð9Þ

where y [ Y ; x [ X; t [ T , and Fðy; tÞ is given as in (1). It is easily verified that pl is a

linear skew product flow, for each l [ R. Next one uses (2), with Flðy; tÞ replacing

Fð y; tÞ to defined the bounded set Bl, the stable set Sl, and the unstable set Ul.

One says that l belongs to the resolvent set of p when pl has an exponential

dichotomy over Y, and one has the invariant splitting Y £ X ¼ Sl %Ul, as a Whitney sum.

TheDynamical Spectrum S ¼ SðpÞ is defined as the complement inR of the resolvent set,

that is, l [ SðpÞ when pl does not have an exponential dichotomy over Y.

The Spectral Theorem for the skew product flow p states the following:

. There is an integer k, with 1 # k # n, such that the spectrum S ¼ SðpÞ satisfies

S ¼ <
k

i¼1
½ai; bi�;

where ai # bi , aiþ1 # biþ1, for i ¼ 1; . . . ; k2 1 and

. there exist k invariant subbundles {V1; . . . ;Vk} and k positive integers {n1; . . . ; nk}
such that

dimV i ¼ dimV iðyÞ ¼ ni; for i ¼ 1; . . . ; k;

with n1 þ · · ·þ nk ¼ n; also,

. one has V iðyÞ> V jðyÞ ¼ {0}, for all y [ Y , when i – j, and

Y £ X ¼ V1% · · ·%Vk; as aWhitney sum:

That completes the geometric aspect of the Spectral Theorem. Next, we turn to the

dynamical aspects which describe the growth and decay rates in the subbundles Vi. For this

purpose, we fix values lj, for j ¼ 0; 1 . . . k in the resolvent set for p, where

lj21 , aj # bj , lj; for j ¼ 1; . . . ; k:

We then use (2) to define the bounded set Bl, the stable set Sl, and the unstable set Ul,

where

l [ L ¼ {l0; l1; . . . ; lk}:

G.R. Sell742
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As l gets larger, the set Sl gets larger, while Ul gets smaller. The subbundles Sl0 and Ulk

are trivial, and one has Y £ X ¼ Ul0 ¼ Slk , as well as

V i ¼ Uli21
> Sli ; for i ¼ 1; . . . ; k:

One also obtains various exponential trichotomies and associate invariant splittings, for

example:

Y £ X ¼ V1%V2%Ul2 ; and Y £ X ¼ Sl2%V3%Ul3 :

as Whitney sums. The projectors Pl and Ql and the ranges satisfy RðPlÞ ¼ Sl and

RðQlÞ ¼ Ul, for l [ L. The relations (4) and (5) hold for l [ L, as well.

The applications of the Spectral Theory in [2,3] are noteworthy. In these works, one

finds a theory of kinematic similarity and asymptotic diagonalization for linear difference

and differential equations.

(K.2) Spectrum of an invariant manifold. The major application of the Dynamical

Spectrum is to study the longtime dynamics in the vicinity of a compact, invariant

manifold for a nonlinear problem. While the spectral theory in [39] is formulated in the

context of vector bundles with local metrics, the main ideas can be seen by examining a

special nonlinear problem, which is more directly connected with the theory developed in

Section C.

We begin with a nonlinear ODE

y 0 ¼ VðyÞ on X ¼ Rn; ð10Þ

where V is a C 1-vector field on X. Let Y denote a compact, invariant manifold for this

ODE, and let y·t denote the solution of this ODE, where y·0 ¼ y and y [ Y . The n £ n

Jacobian matrix AðyÞ ¼ DVðyÞ is used to generate the linearized flow on the tangent bundle

TY, as follows: In local coordinates ðy; xÞ [ TY , we let Fðy; tÞx denote the solution of the

nonautonomous linear equation

x 0 ¼ Aðy·tÞx; with Fðy; 0Þx ¼ x:

One then has a local skew product flow, which is a fibre preserving flow p ¼ pðtÞ on the

tangent bundle TY, where

pðtÞðy; xÞ ¼ ðy·t;Fðy; tÞxÞ:

Next, we letM denote a compact, invariant submanifold for the vector field given by (10)

with M # Y . The tangent bundle TM ¼ M £ X for M is an invariant subbundle of p.

Wewill let pT ¼ pT ðtÞ denote the restriction of p to TM. A major question in the

dynamics of this problem is: when does there exist a complementary subbundleNinv that is

invariant in the skew product flow p?

To address this question, one lets N denote any complementary subbundle of TM in

TY. (For example, one might take N ¼ ðTMÞ’, see Section C.2.). Next one lets

PNðy; xÞ ¼ ðy;PNðyÞxÞ denote the projector on TY that satisfies (i) PNðyÞx ¼ x, when

x [ N ðyÞ, and (ii) PNðyÞx ¼ 0, when x [ TMðyÞ. One then uses this projector to construct

an induced flow pN ¼ pNðtÞ on N, where

pNðtÞðy; xÞ ¼ ðy·t;FNðy; tÞxÞ; PNðyÞx ¼ x; and FNðy; tÞx ¼ PNðy·tÞFðy; tÞx; ð11Þ

Journal of Difference Equations and Applications 743
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compare with (7). Since TM is invariant, pN is a linear skew product flow on N. In

this way, one obtains three linear skew product flows: p, pT, and pN. Associated

with these flows are three spectra: S, ST and SN.
3 One shows that the spectra do not

depend on the choice of the complementary subbundle N, which brings us to a key

theorem.

Theorem 3. Let the spectra S, ST and SN be given as above. Assume that

ST > SN ¼ Y: ð12Þ

Then there is a local coordinate system such that the solution operator Fðy; tÞ can be

represented as a block triangular matrix. Also one has S ¼ ST < SN, and there exist a

complementary subbundle Ninv for TM, where Ninv is an invariant bundle for the flow p.

In addition, there is an exponential trichotomy, and one has the invariant splitting (6).

E. Splitting Index. For the theory of the Splitting Index, which is introduced in the

paper [24], it is convenient to make a change of notation. In particular, one now studies the

dynamics of solutions of the linear problem

x 0ðtÞ ¼ AðtÞxðtÞ; ð13Þ

as well as the linear inhomogeneous problem

x 0ðtÞ ¼ AðtÞxðtÞ þ f ðtÞ; ð14Þ

where A ¼ AðtÞ [ A, x [ X ¼ Rn, and t [ R. The topological space A is a collection of

n £ n matrix-valued functions. We require that At [ A, whenever A [ A and t [ R,

where AtðtÞ ¼ Aðtþ tÞ. We let FðA; tÞ denote the general solution operator of (13), where
FðA; 0Þ ¼ I and xðtÞ ¼ FðA; tÞx0 denotes the solution of (13) that satisfies xð0Þ ¼ x0.

We assume that A is compact in the stated topology and that the mapping p ¼ pðsÞ, where

pðsÞðA; xÞ ¼ ðAs;FðA; sÞxÞ

is continuous, and thereby, a linear skew product flow on A £ X. Several examples of

spaces A that satisfy these conditions are presented in [24].

We use the theory of Section C, with ðY ; Yk; yÞ being replaced with ðA;Ak;AÞ and use

As on A in place of the flow y·s on Y for the flow on the base space. For example, the sets

B, S, and U, with the fibres BðAÞ, SðAÞ, and UðAÞ are defined in (2). However,

before defining the Splitting Index, we turn to the equation (14) and the related Fredholm

theory.

The object of the Fredholm theory is to develop a methodology to solve the equation

(14) for xðtÞ, when f ðtÞ is known. For this purpose, we note that equation (14) can be

written in the equivalent form Lx ¼ f where

ðLxÞðtÞ ¼ x 0ðtÞ2 AðtÞxðtÞ: ð15Þ

The classical Lyapunov–Perron method offers a linkage between certain solutions of

equation (14) and the existence of exponential dichotomies for equation (13). For

example, if f ¼ f ðtÞ is in the space BðnÞ ¼ CðR;XÞ> L1ðR;XÞ of bounded continuous

functions with the sup-norm, and equation (13) has an exponential dichotomy with
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projectors PðAÞ and QðAÞ, then (14) has a unique solution w inB0ðnÞ, the space of bounded

uniformly continuous, given by

wðtÞ ¼

ðt
21

FðA; t2 sÞQðAÞf ðsÞds2

ð1
t

FðA; t2 sÞPðAÞf ðsÞds: ð16Þ

This pair of spaces ðB0ðnÞ;BðnÞÞ are ‘admissible’ in the following sense:

1. There exists a dense subset D # B0ðnÞ on which L is defined;

2. w [ D implies that Lw [ BðnÞ. Thus, D # DðLÞ, the domain of L;

3. Whenever A [ A admits an exponential dichotomy, then the mapping

L̂ : BðnÞ! B0ðnÞ, where w ¼ L̂f satisfies (16), is a bounded linear operator;

4. If w : R! X satisfies kwðtÞk # Ke2rjtj, for some K . 0, some r . 0, and all

t [ R, then w [ B0ðnÞ, and

5. If w : R! X satisfies either limt!1kwðtÞk ¼ 1, or limt!21kwðtÞk ¼ 1, then

w � B0ðnÞ.

The use of several examples of admissible pairs plays a major role in this paper. These

examples lie at the heart of deriving the connection between the Splitting Index and the

Fredholm Index.

The Splitting Index SðAÞ is defined in two cases. The first being the case where A is

compact and the bounded set B is trivial, that is B ¼ A £ {0}. Then the theory in Section

C.1 is in play. If A � <n
k¼0Ak, then there exist two integers k1 . k2, such that aðAÞ, the

alpha-limit set of A, is in Ak1 , while vðAÞ, the omega-limit set of A, is in Ak2 . The Splitting

Index of A is: SðAÞ ¼
def

k1 2 k2. If A [ Ak, for some k, then the alpha and the omega

limit sets of A are in Ak, as well, and SðAÞ ¼
def

0.

The second definition of SðAÞ is for the case where the hull of A (A ¼ HðAÞ) is assumed

to be compact, and the bounded sets over the alpha and omega limit sets of A are assumed

to be trivial, that is

BðaðAÞÞ¼def{ðy; xÞ [ B : y [ aðAÞ} and BðvðAÞÞ¼def{ðy; xÞ [ B : y [ vðAÞ};

satisfy

BðaðAÞÞ ¼ aðAÞ £ {0} and BðvðAÞÞ ¼ vðAÞ £ {0}: ð17Þ

It follows from the theory in Section C.1, that the equation (13) has exponential

dichotomies over each set aðAÞ and vðAÞ. The Splitting Index is defined as

SðAÞ¼
def
dimSðaðAÞÞ2 dimSðvðAÞÞ:

One then obtains the following result concerning the Splitting Index and the Fredholm

Index,

iðLÞ ¼
def

dimðNull–spaceðLÞÞ2 codimðRangeðLÞÞ:
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Theorem 4. Let ðB0;BÞ be an admissible pair for (14) and let L satisfy (15), where the hull

HðAÞ is compact and (17) is satisfied. Then L is a Fredholm operator with

iðLÞ ¼ 2SðAÞ:

R. Other Topics. During the last several years, Sacker has turned his attention to the

theory and applications of discrete dynamics and difference equations. In this context, it is

important to mention the role of the Sacker bifurcation theorem. This theorem has become

known as the Neimark–Sacker Theorem, see [26] and [27]. The theorem had been

announced in late 1950s by Neimark in the Soviet Doklady, but no detailed proof was ever

offered. This theorem, with the proof by Sacker was included in 1964 in his NYU PhD

thesis. We are very pleased that this very important bifurcation theorem is now being

reprinted in this Issue of the Journal. This should serve the community well.

(R.1) Mathematical biology and genetics. In the papers [41–44] one finds the theory of

discrete dynamics applied to a class of problems dealing with genetics in mathematical

biology, including applications for genetically altered mosquitoes. In [44] the concept of

Dynamic Reduction is introduced. This concept is easily described for the periodic

difference equation:

xnþ1 ¼ f nðxnÞ; x [ Rd; f nþp ¼ f n; n ¼ 0; 1; 2; . . . ð18Þ

Let P denote the class of periodic functions from Z to Rd, where

v ¼ {v0; v1; . . . ; vp21} [ P:

In certain cases the dependency on x in the function f can be re-distributed so that

f nðxÞ ¼ Fnðx; gðxÞÞ; g : Rd ! Rd;

and the reduced equation

xnþ1 ¼ Fnðxn; gðvnÞÞ

has a globally attracting asymptotically stable p-periodic solution v̂ [ P. This establishes
a mapping

T : P ! P; v 7! v̂:

Under certain smallness conditions on the derivative of g, T is shown to be a contraction.

This technique is used in [44] to establish a globally attracting asymptotically stable

p-periodic solution of a system in ðRþÞ2 modelling the interaction of genetically altered

and wild type mosquitoes.

In [28] it is shown that the class of mappings from Rþ ! Rþ that are either convex or

concave, the latter satisfying some minimality conditions, and have a non-negative

Schwarzian on Rþ form a semigroup. This reduces the search for globally attracting

asymptotically stable periodic solutions of such periodic systems to the observation that

each mapping in the class automatically possesses a globally attracting asymptotically

stable fixed point. This technique is applied to the decoupling of large dimensional

nonlinear systems and rational delay difference equations, which are referred to in [1],

pp. 492–512, for example. This in turn greatly expands the class of rational equations

currently being studied in the literature.
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(R.2) Periodic phenomena for mappings. In the papers [7–13,17,25,28], one finds

various theories of periodic behaviour appearing in nonautonomous difference equations

and population biology. For these papers one is dealing with discrete-time semiflows

generated by a (generally) nonautonomus family of mappings, or difference equations,

xnþ1 ¼ Fðn; xnÞ on a metric space X, where F ¼ Fðn; xÞ [ C, and C ¼ CðN0 £ XÞ is the

space of sequences of continuous mappings of X into X, n [ N0, with N0 being the set of

nonnegative integers.

One constructs the solution xnþ1 of the system xnþ1 ¼ Fðn; xnÞ and the associate skew

product semiflow pðmÞ by means of a sequence of composition mappings. For example,

x1 ¼ Fð0; x0Þ; x2 ¼ Fð1; x1Þ ¼ Fð1;Fð0; x0ÞÞ; etc:

However, a better notation is to use the composition operator F, which is defined

inductively as follows: x1 ¼ FðF; 1Þx0 ¼ Fð0; x0Þ and

x2 ¼ FðF; 2Þx0 ¼ FðF1; 1ÞFðF; 1Þx0 ¼ FðF1; 1Þx1:

In this way one obtains a family of mappings FðFm; nÞ, which satisfy

xmþn ¼ FðF;mþ nÞx0 ¼ FðFm; nÞFðF;mÞx0 ¼ FðFm; nÞxn;

for all m; n [ N0, and all F [ C, and one has the co-cycle property:

FðF;mþ nÞ ¼ FðFm; nÞFðF;mÞ; for all m; n [ N0 and all F [ C: ð19Þ

By using the topology of uniform convergence on compact sets in X for the space C,
one obtains a skew product semiflow

pðmÞðF; x0Þ ¼ ðFm;FðF;mÞx0Þ;

on C £ X, where Fmðn; xÞ ¼ Fðmþ n; xÞ and F is a continuous mapping that satisfies

FðF; 0Þx ¼ x, for all ðF; xÞ [ C £ XÞ, and (19) holds.

The Periodic Problem. Of special interest here is the case where the sequence

{Fnðm; xÞ} is periodic in n with minimal period p $ 1. One then has

Fðpþ m; xÞ ¼ Fpðm; xÞ; for all m [ N0 and all x [ X: ð20Þ

A periodic motion with period r in the skew product semiflow pðmÞ occurs when there is

an x0 [ X such that

pðr þ mÞðF; x0Þ ¼ pðmÞðF; x0Þ; for all m [ N0: ð21Þ

As usual, we require r to be positive, and that it be a minimal period, which brings

us to the question: What are the permissible periods r for periodic solutions of

equation (21)?

For r # p, one defines an r-periodic cycle as an ordered set

Cr ¼ {x0; x1; . . . ; xr21}

with the property that

FðFm; nrÞxm ¼ xmþ1; for all n $ 0 and allmwith 0 # m # r 2 1: ð22Þ
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Let s ¼ lcm½p; r�, the least common multiple of p and r. One uses (22) with the co-cycle

identity (19) to extend the representation in Cr to obtain an ordered set Cs ¼

{x0; . . . ; xs21} with s members, where FðFm; 0Þxm ¼ xmþ1, for 0 # m # s2 1.

Furthermore, one has

pðsþ mÞðF; x0Þ ¼ pðmÞðF; x0Þ; for all m $ 0:

Thus pðmÞðF; x0Þ is an s-periodic orbit for the skew product flow pðmÞ.

By introducing appropriate stability concepts for the periodic orbits of pðmÞ, one can

use the theory of distal dynamics (see [33,36] and Sections A.1 and A.2) to obtain an

N-fold covering of the base space {F0;F1; . . . ;Fp21} in C. For example, in the setting

described above, one would have exactly N ¼ s=p points in each fibre over Fj, for

0 # j # p2 1, and each of these points spawns an s-periodic orbit for the skew product

semiflow.

The Beverton–Holt equations. In the papers [9,10] it is shown that the p-periodic

Beverton–Holt equation

xnþ1 ¼
mKnxn

Kn þ ðm2 1Þxn
; n [ N0; ð23Þ

where the carrying capacities Kn are periodic with period p, has a globally asymptotically

p-periodic solution FðF;mÞx0 that satisfies the attenuation relation

�x ¼
1

p

Xp21

i¼0

xi ,
1

p

Xp21

i¼0

Ki ¼ �K: ð24Þ

This result is a proof of a conjecture of Cushing and Henson, see [5] and [6].

However, the attenuation relation can fail to hold in a variation of (23), where both the

parameter mn, as well as the carrying capacity Kn, are periodic in n. A very interesting

example, which illustrates such complexity, is presented in [10,12].

Our Meetings. In January 2009, we recalled on our earliest years as researchers in the

mathematical community, including the conference in Mayaguez, Puerto Rico in 1965.

Bob pointed out that: His entire career, his future for the next 40 þ years, was set in

motion during that one week. He met the world leaders in dynamical systems (Lefschetz,

Hale and LaSalle). He met Henry Antosiewicz, who offered him a position in the

Mathematics Department at the University of Southern California (USC). And he met his

future wife, Marti, on the flight back to New York!

Marti was a flight attendant for Pan American World Airways, which had a base in Los

Angeles. As Bob put it: that made the decision to accept the USC offer very simple!

Antosiewicz had another major role, offering me a position in the Mathematics

Department at USC. I accepted, and our family moved to Los Angeles for the 1967–1968

academic year. This was a time that will never be forgotten. It was a year of profound sadness

and shock over the assassinations ofMartin Luther King and Robert Kennedy. But it was also

a time of excitement and satisfaction over the beginning of the Sacker–Sell mathematical

collaboration, an effort which grew out of the Seminar on Dynamical Systems organized by

Henry Antosiewicz and Tom Kyner. Many visitors were invited for the Seminar, including

Charles Conley and, a one-month visit by, Victor A Pliss, from Russia.

Bob and Marti visited Firenze in 1972, where both Jack Hale and I were spending

sabbatical leaves. In 1973–1974, Bob spent his sabbatical at the University of Minnesota,

and he visited me in Palermo, Italy in 1975. This latter trip was especially important

G.R. Sell748

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
e
r
n
 
C
a
l
i
f
o
r
n
i
a
]
 
A
t
:
 
1
6
:
5
9
 
9
 
F
e
b
r
u
a
r
y
 
2
0
1
1



because it was at that time and in that place where the Splittings Saga began. Due to our

interest in the then popular Hollywood Saga: ‘the Godfather’, we took a drive to Corleone

in Sicily to check it out!

Bob is a man of many talents. Among other things, he is a small aircraft pilot. We have

had flights on several occasions around the Los Angeles area. One memorable flight was

over Catalina Island, where we had the opportunity to observe from the air a pod of 15–20

whales in the ocean. He also loves the opera. A beautiful photo of Guiseppe Verdi graces

his office at USC, and he has an impressive collection of Verdi tapes from the operas at the

Met in New York.

Our working in Italy was especially noteworthy because we discovered that there are

major advantages of combining hard work, good food and great wines, to aid in the

discovery of new mathematics. Nor did it hurt to replay an opera from time-to-time.

I value highly my working relation with Bob. Grazie a molto.

Notes

1. A variation of (8) is used by Favard in his theory of almost periodic equations, [15].
2. This is sometimes referred to as the Sacker–Sell spectrum.
3. Note that if dimM $ 1, then l ¼ 0 [ ST .

References

[1] M.R. Bellavia, E. Camouzis, Z.A. Kudlak, and G. Ladas, On the boundedness character of
rational equations, III, J. Difference Equ. Appl. 13 (2007), pp. 479–521.

[2] S.I. Bodine and R.J. Sacker, A new approach to asymptotic diagonalization of linear
differential systems, J. Dynam. Differential Equations 12 (2000), pp. 229–245.

[3] S.I. Bodine and R.J. Sacker, Asymptotic diagonalization of linear difference equations,
J. Difference Equ. Appl. 7 (2001), pp. 637–650.

[4] C. Conley, Isolated invariant sets and the Morse index, in CBMS Regional Conference Series,
American Mathematical Society, Providence, RI, 1978.

[5] J.M. Cushing,Oscillations in age-structured population models with an Allee effect, J. Comput.
Appl. Math. 52 (1994), pp. 71–80.

[6] J. Cushing and S.M. Henson, A periodically forced Beverton–Holt equation, J. Difference Equ.
Appl. 8 (2002), pp. 1119–1120.

[7] S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, 2nd ed., Chapman
and Hall/CRC, Boca Raton, FL, 2008.

[8] S. Elaydi and R.J. Sacker, Basin of attraction of periodic orbits of maps on the real line,
J. Difference Equ. Appl. 10 (2004), pp. 881–888.

[9] S. Elaydi and R.J. Sacker, Global stability of periodic orbits of nonautonomous difference
equations and population biology, J. Differential Equations 208 (2005), pp. 258–273.

[10] S. Elaydi and R.J. Sacker, Nonautonomous Beverton–Holt equations and the Cushing–Henson
conjectures, J. Difference Equ. Appl. 11 (2005), pp. 337–346.

[11] S. Elaydi and R.J. Sacker, Skew-product dynamical systems: Applications to difference
equations, in Proceedings of Second Annual Celebration of Math, United Arab Emirates,
2005.

[12] S. Elaydi and R.J. Sacker, Periodic difference equations, population biology and the Cushing–
Henson conjectures, Math. Biosci. 201 (2006), pp. 195–207.

[13] S. Elaydi and R.J. Sacker, Population models with Allee effect: A new model, Preprint.
[14] E. Fabes, M. Luskin, and G.R. Sell, Construction of inertial manifolds by elliptic

regularization, J. Differential Equations 89 (1991), pp. 355–387.
[15] J. Favard, Fonctions Presque-Périodiques, Gauthier-Villars, Paris, 1933.
[16] J.K. Hale and J.P. LaSalle, Differential Equations and Dynamical Systems, in Proceedings of

International Symposium, Mayaguez, PI, 1965, Academic Press, New York, 1967.

Journal of Difference Equations and Applications 749

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
e
r
n
 
C
a
l
i
f
o
r
n
i
a
]
 
A
t
:
 
1
6
:
5
9
 
9
 
F
e
b
r
u
a
r
y
 
2
0
1
1



[17] C. Haskell and R.J. Sacker, The stochastic Beverton–Holt equation and the M Neubert
conjecture, J. Dynam. Differential Equations 17 (2005), pp. 825–844.

[18] S. Lefschetz, Geometric differential equations: Recent past and proximate future, in
Differential Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle, eds., Academic
Press, New York, 1967, pp. 1–14.

[19] R.J. Sacker, A new approach to the perturbation theory of invariant surfaces, Comm. Pure
Appl. Math. 18 (1965), pp. 717–732.

[20] R.J. Sacker, A perturbation theorem for invariant Riemannian manifolds, in Differential
Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle, eds., Academic Press,
New York, 1967, pp. 43–54.

[21] R.J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math.
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