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Abstract. The stability of the positive fixed points of a discrete-time mathematical model
for populations consisting of wild and genetically altered mosquitos proposed by Jia Li [1] is
considered in this paper. The model is studied for proportional and constant mating rates.
Under certain conditions the model with proportional mating rate has two positive fixed points,
one unstable and the other locally asymptotically stable. For the constant mating rate case we
show that under certain conditions the positive fixed point is globally asymptotically stable with
respect to initial populations in which both species are present.

1 Introduction

The discrete-time mathematical model for populations consisting of wild and genetically
altered mosquitos proposed by Jia Li [1] is considered in this paper. In [1] a two species
model having a hybrid Ricatti/Ricker type nonlinearity is developed for proportional and
constant mating rates. In this paper we explore the stability of the positive fixed points
of the model with these two types of mating rates.

For the proportional mating rate case under certain conditions the system has two
positive fixed points. The one with the smaller x value is unstable and the other is locally
asymptotically stable provided some conditions are satisfied.

For the constant mating rate case Li [1] gives sufficient conditions guaranteeing the
existence of a locally asymptotically stable fixed point. It is shown below that under less
restrictive conditions the positive fixed point is actually globally asymptotically stable
(GAS) with respect to initial populations in which both species are present.
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2 Model for population of mosquitos

The following description closely follows [1] and [2]. Let xn be the number of wild
mosquitos present at generation n. The population dynamics of the wild mosquitos is
described by the difference equation

xn+1 = f(xn)s(xn)xn, (1)

where f is the birth function (per-capita rate of offspring production) and s is the survival
probability (fraction of the off-spring that survive). The survival probability is assumed
to have a Ricker-type form s(xn) = e−d−kxn .

Let yn be the number of genetically altered mosquitos present at generation n, and
assume that before the wild and altered mosquitos interact, the dynamics of the altered
mosquito population is similar to that of the wild type. Once the altered mosquitos are
released into the wild mosquito habitat, the populations are governed by the system of
difference equations

xn+1 = f1(xn, yn)xne
−d−k(xn+yn), yn+1 = f2(xn, yn)yne

−d−k(xn+yn). (2)

It is assumed that both wild and altered mosquitos have the same survival probability
e−d−k(xn+yn). For xn > 0, yn > 0 the birth rate functions f1 and f2 are given by

f1(xn, yn) = c(Nn)
α1xn + β1yn

xn + yn

, f2(xn, yn) = c(Nn)
α2xn + β2yn

xn + yn

, (3)

where c(Nn) is the number of matings per individual, per unit time with Nn = xn +
yn. At generation n the number of matings, per individual, with wild mosquitos is
c(Nn)xn/(xn + yn) and with altered mosquitos, c(Nn)yn/(xn + yn). Let α1 be the number
of wild offspring that a wild mosquito produces through mating with a wild mosquito, and
β1 be the number of wild mosquitos produced through mating with an altered mosquito.
Similarly, α2 and β2 are the number of altered mosquitos produced by the mating of
altered mosquitos with wild and altered mosquitos respectively.

Combining (2) and (3) gives the following set of difference equations that govern the
interacting populations of wild and altered mosquitos

xn+1 = c(Nn)
α1xn + β1yn

xn + yn

xne
−d−k(xn+yn), yn+1 = c(Nn)

α2xn + β2yn

xn + yn

yne
−d−k(xn+yn) .

(4)

The mating rate depends on the population density. When the population is relatively
small the mating rate will be assumed to be proportional to the total population, Nn, that
is, c(Nn) = c0Nn. Once the population size exceeds a certain level, we expect the number
of matings to saturate, and we assume the mating rate is constant, that is, c(Nn) = c.

Using (4), and assuming a proportional mating rate for a small population size of
c(Nn) = c0(xn + yn) gives

xn+1 = (a1xn + b1yn)xne
−d−k(xn+yn), yn+1 = (a2xn + b2yn)yne

−d−k(xn+yn), (5)

with ai = c0αi and bi = c0βi, for i = 1, 2.
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Using (4), and assuming a constant mating rate for a large population size of c(Nn) =
c gives

xn+1 =
a1xn + b1yn

xn + yn

xne
−d−k(xn+yn), yn+1 =

a2xn + b2yn

xn + yn

yne
−d−k(xn+yn), (6)

where ai = cαi and bi = cβi, for i = 1, 2.

In (5) and (6) we assume that xn > 0, yn > 0, n ≥ 0.

3 Proportional Mating Rate

In this section we will focus on the proportional mating rate case (for small population
size). We will study the ratio zn = xn/yn and we will show that under certain conditions
(5) has two positive fixed points. Among the two positive fixed points, the one with the
smaller x value is unstable and the other with the larger x value is locally asymptotically
stable. The origin is also a stable fixed point giving rise to a “threshold” effect, i.e., very
small initial populations tend to die out. First we will present a Lemma that establishes
the global asymptotic stability of a fixed point of a difference equation that will arise in
the study of the ratio (zn = xn/yn) dynamics.

Lemma 1 Suppose a, b, c, d > 0, z ≥ 0 and consider the difference equation

zn+1 = f(zn), with f(z) = z
az + b

cz + d
. (7)

If b/d > 1 and c/a > 1, then (7) has a unique positive, GAS fixed point.

Proof. From the hypothesis we have that bc/ad > 1 and so bc − ad > 0. Through
direct computation we have that

f ′(z) =
acz2 + 2adz + bd

(cz + d)2
> 0 for z ≥ 0. (8)

We have that f ′(0) = b/d > 1 and

f ′′ =
2d(ad− bc)

(cz + d)3

Therefore f ′′(z) < 0 for all z > 0, and (7) has the unique positive fixed point z∗ =
(d− b)/(a− c). It is easily seen from the increasing and concave properties of f that the
positive fixed point is unique and GAS (for z > 0). See [3] for more details. �

Considering the ratio zn = xn/yn and using (5) we get

zn+1 =
a1zn + b1

a2zn + b2

zn. (9)

Due to the decay survival probability term in (5) the populations can not grow indefinitely
(xn + yn → ∞ is not possible).
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The nonzero fixed point of (9) is

ẑ =
b2 − b1

a1 − a2

. (10)

With a = a1, b = b1, c = a2, and d = b2 (9) is just (7). If b1/b2 > 1 and a2/a1 > 1,
then the conditions of Lemma 1 apply and the positive fixed point of (9) given in (10)
is GAS (for z > 0).

Note that a fixed point for (9) represents a fixed or invariant line in the (x, y) plane,
i.e. the line S = {(x, y) : y/x = r} is invariant where r = (a2 − a1)/(b1 − b2). From the
GAS of this fixed point we then have that yn/xn → 1/ẑ = r, i.e. the ω-limit set of any
point(x, y) with x > 0, y > 0 lies in the line S. Then to study the solutions in S we can set
yn = rxn in the first equation of (5), and in the second equation we can set xn = (1/r)yn.
Using these substitutions we get the following two uncoupled equations (on S).

xn+1 = (a1 + b1r)x
2
ne

−d−k(1+r)xn , yn+1 = (a2(1/r) + b2)y
2
ne

−d−k(1+1/r)yn . (11)

The x–equation in (11) is of the form

xn+1 = αx2
ne

−βxn , (12)

with α = (a1 + b1r)e
−d and β = k(1 + r). Note that the y–equation in (11) has the

same general form as (12).

If α > βe, then (12) will have two positive fixed points. An unstable fixed point will
occur at x < 1/β, and a stable fixed point will occur at x > 1/β. The fixed point, x∗,
with x∗ > 1/β will be locally asymptotically stable if 1 < βx∗ < 3.

This shows the following result.

Theorem 1 If α > βe, the positive fixed point of (5) with x∗ > 1/β is locally asymptoti-
cally stable in the first open quadrant provided that b1/b2 > 1, a2/a1 > 1 and 1 < βx∗ < 3.

4 Constant Mating Rate

In this section we will again consider the ratio zn = xn/yn, but applied to the constant
mating rate case given by (6). We will show that under certain conditions the positive
fixed point of (6) is globally asymptotically stable. In fact, we will show that this takes
place under less stringent conditions than those imposed in [1] to obtain local asymptotic
stability.

As in the proportional mating rate case, the the ratio zn = xn/yn of (6) yields a
difference equation of identical form to (9). The only difference is that now the values
of the coefficients come from (6) and not (5). The exact same argument used in the
proportional mating rate case applies and the positive fixed point (10) of (9) is GAS
provided b1/b2 > 1 and a2/a1 > 1.

As before, to study the solutions in S we can set yn = rxn in the first equation of (6),
and in the second equation we can set xn = (1/r)yn. Using these substitutions we get the
following two uncoupled Ricker’s equations (on S).
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xn+1 =
a1 + b1r

1 + r
xne

−d−k(1+r)xn , yn+1 =
a2 + b2r

1 + r
yne

−d−k(1+1/r)yn . (13)

The above two equations are of the general form of the Ricker’s equation

wn+1 = R(wn), where R(w)
.
= ρwep−αw. (14)

The nonzero fixed point of (14) is w∗ = (p+ln (ρ))/α, and w∗ is GAS for 0 < p+ln (ρ) < 2,
or e−p < ρ < e2−p with

ρ =
a1 + b1r

1 + r
=

a2 + b2r

1 + r
=

a1b2 − b1a2

a1 − a2 + b2 − b1

. (15)

The fixed points of the decoupled system (13) are

x̂ = (−d + ln (ρ))/(k(1 + r)), ŷ = r(−d + ln (ρ))/(k(1 + r)), (16)

and these fixed points are stable provided 0 < −d + ln (ρ) < 2.

This shows the following result.

Theorem 2 The positive fixed point of (6) (given in (16)) is globally asymptotically stable
in the first open quadrant provided that b1/b2 > 1, a2/a1 > 1 and 0 < −d + ln (ρ) < 2.

Let

N =
(a1 − a2)(b2 − b1)

a1b2 − b1a2

, and P = −d + ln (ρ). (17)

Thus if b1/b2 > 1, a2/a1 > 1 and 0 < P < 2, then (6) has a positive fixed point and
it is GAS.

In terms of N and P , Li’s result (Theorem 3.3, [1]) requires b1/b2 > 1, a2/a1 > 1,
0 < P , and

N(P − 1) < P < 2 + (N/2)(P − 2) (18)

for local asymptotic stability of the positive fixed point. The right portion (P < 2 +
(N/2)(P − 2)) of the inequality in (18) is equivalent to P < 2. Note that N < 0, and
thus our condition 0 < P < 2 is less restrictive than (18). If P < 1 then N(P − 1) is a
finite positive quantity and therefore more restrictive than just P > 0.

In [2] we show that when the mortality rates (fixed as well as density dependent) are
different for the two species, the constant mating rate model becomes very sensitive to
small changes in the reproductive parameters.

5 Conclusions

In this paper we explored the stability of the positive fixed points of a discrete-time
mathematical model for populations consisting of wild and genetically altered mosquitos
proposed by Jia Li [1]. We studied a model with proportional mating rate and a model
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with a constant mating rate. For the proportional mating rate case, we showed that
under a set of conditions the system will have two positive fixed points. The positive
fixed point with the largest x value is locally asymptotically stable, provided certain
conditions are satisfied, and the other positive fixed point is unstable. The origin is also
a locally asymptotically stable fixed point. This creates a ”threshold” effect so that very
small initial populations tend to die out.

We also show that under certain conditions the fixed point of the system with constant
mating rate is globally asymptotically stable. The global stability is achieved under less
stringent conditions than those imposed by [1] to obtain local asymptotic stability.
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