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Resonance and attenuation in the n-periodic Beverton–Holt equation

Yi Yanga1 and Robert J. Sackerb*

With Appendix A by Cymra Haskellb

aDepartment of Mathematics and Physics, Chongqing University of Science and Technology,
Chongqing 401331, P.R. China; bDepartment of Mathematics, University of Southern California,

Los Angeles, CA 90089, USA

(Received 31 May 2012; final version received 29 August 2012)

An exact expression is derived relating the state average of the periodic solution {xj} to
the average of the environmental carrying capacities {Kj} for the periodic Beverton–
Holt equation for arbitrary period. By studying numerically period 3 case, we show that
the correlation coefficient of the intrinsic growth rates {uj} and {Kj}, is not relevant in
determining attenuation or resonance. By studying period 4 case, it is shown that if the
intrinsic growth rate jumps upward along with steadily increasing carrying capacities,
then resonance prevails. A period 7 example using out-of-step step functions is also
seen to produce resonance.

Keywords: Beverton–Holt; attenuance; resonance; jump effect

AMS Subject Classification: 39A05; 92D99

1. Introduction

The study of fractional linear maps dates back to August Ferdinand Möbius (1790–1868).

The Beverton–Holt map

f ðxÞ ¼
ux

1 þ cx

is an example of such a map. By making the substitution c ¼ ð1 2 uÞ=K, the mapping

takes the form

f ðxÞ ¼
uKx

K þ ðu2 1Þx
; ð1Þ

which is the form we wish to study. The only parameters present are significant biological

parameters, the intrinsic growth rate u and the carrying capacity K. This particular form of

the mapping makes it straightforward to study the evolution of the population x of a

species governed by

xtþ1 ¼ f tðxtÞ; t ¼ 0; 1; . . . ; f tþn ¼ f t;

where environmental fluctuations give rise to periodically varying carrying capacities and
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intrinsic growth parameters with period n. The existence of a globally attracting periodic

solution, a qualitative fact, follows just from the concavity of the functions f t and the

semigroup property [4, p. 272]. See [17] for further results following from the semigroup

property.

In early papers, 1976 [18] and 1980 [12], it was noted through experimental

observation that environmental fluctuations could produce average population densities

that were higher than in the case of constant environments, i.e. resonance as defined in

Section 2. In [3], it was conjectured that for the n-periodic Beverton–Holt equation

xtþ1 ¼
uKtxt

Kt þ ðu2 1Þxt
; t ¼ 0; 1; . . . ; ð2Þ

with constant growth rate u . 1 there exists a globally attracting n-periodic solution

{�x} ¼ {�x0; �x1; . . . ; �xn21} and attenuation takes place. In that paper both questions were

answered in the affirmative for period n ¼ 2. The complete solution was announced in

2003, and later appeared [5] using an inductive approach and an easily derived formula

for the fixed point of two Beverton–Holt maps. There followed other creative solutions

[13–15]. In 2004, an exact formula was announced and appeared in [7] and [6] relating

the average avð�xÞ of the periodic solution and the average avðKÞ of the carrying capacities

for the 2-periodic case with both u and K varying periodically, see (5) where the formula

is repeated.

In [10], criteria were given in the 2-periodic case for resonance or attenuation for

certain 1D maps near a bifurcation point. In [2] resonance and attenuation were observed

in the 2-periodic larvae, pupae, adult (LPA) model and results were compared to the

Jillson experiment. See also [1,11]. In [8] several models are studied in which resonance or

attenuation is attained with special emphasis on period 2.

In this paper we state and prove a theorem that guarantees attenuance for the case of

varying {uj} and {Kj} for arbitrary period. We then expand the result obtained in [6,7] by

deriving an exact expression relating the state average avð�xÞ to the average of the carrying

capacities avðKÞ for the periodic Beverton–Holt model

xtþ1 ¼
utKtxt

Kt þ ðut 2 1Þxt
; t ¼ 0; 1; . . . ð3Þ

for arbitrary period n in Section 3. In Appendix B we state the formula for the 3-periodic

case and in Appendix C, the 4-periodic case. In Section 2.1 we put to rest the informal

conjecture that the correlation coefficient is the determining factor in whether we have

attenuation or resonance. Although no definitive result is achieved, in Section 2.1 we show

numerically for period 4 that if the sequences {u0; u1; . . . ; un21} , ð1:05; 4Þ and

{K0;K1; . . . ;Kn21} , ð3; 5Þ are both increasing (or decreasing) and the variance of uj is

sufficiently close to its theoretical maximum, then from 1:5 £ 108 random such samples

resonance occurred in 100% of the samples.

Since in period 4 case, the condition on the variance in the increasing case implies

u0; u1 are near 1 while u2; u3 are near 4, we experimented with uj that ‘jump’ from a small

neighbourhood of the left endpoint 1.05 to a small neighbourhood of 4 but not necessarily

a monotone sequence. {Kj} were increasing. In all three cases resonance prevailed. A

period 7 example employing a step function that jumps at different times is also seen to

produce resonance.

Journal of Difference Equations and Applications 1175

D
ow

nl
oa

de
d 

by
 [

U
SC

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a]
 a

t 1
6:

54
 2

2 
A

ug
us

t 2
01

3 



2. The Beverton–Holt equation

Consider the following n-periodic Beverton–Holt equation:

xtþ1 ¼
utKtxt

Kt þ ðut 2 1Þxt
; t ¼ 0; 1; . . . ; ð4Þ

where ut . 1, x0 . 0, utþn ¼ ut and Ktþn ¼ Kt. The following is well established.

Theorem 2.1. There is a positive n-periodic solution {�x} ¼ {�x0; �x1; . . . ; �xn21} of (4) and it

globally attracts all solutions with x0 . 0 [4, p. 272].

Definition. A periodic solution {�x} of equation (4) is said to be attenuant or resonant if

avð�xÞ , avðKÞ or avð�xÞ . avðKÞ;

respectively, where ‘av’ represent the average of any n-periodic sequence t ¼ {t0; t1; . . . ;
tn21};

avðtÞ ¼
1

n

Xn21

i¼0

ti:

In the following sections we will prove the following.

Theorem 2.2. An n-periodic Beverton–Holt equation (4) with uj . 1 is attenuant if

Ks – Ksþ1 for at least one s [ {0; 1; . . . ; n2 2} and one of the following two conditions

is satisfied:

(H1) u0 # u1 # · · · # un21 and K0 $ K1 $ · · · $ Kn21,

(H2) u0 $ u1 $ · · · $ un21 and K0 # K1 # · · · # Kn21.

Note: In [6, p. 342] and [7, p. 206] the following was established for n ¼ 2:

avð�xÞ ¼ avðKÞ þ
u0 2 u1

u0u1 2 1

K0 2 K1

2
2 D

ðu0 2 1Þðu1 2 1Þ

2ðu0u1 2 1Þ
ðK0 2 K1Þ

2; ð5Þ

where

D8
u0ðu

2
1 2 1ÞK0 þ u1ðu

2
0 2 1ÞK1

u0ðu1 2 1Þ2K2
0 þ ðu0 2 1Þðu1 2 1Þðu0u1 þ 1ÞK0K1 þ u1ðu0 2 1Þ2K2

1

. 0:

In Section 3 we re-derive (5) in a form (24) suitable for generalization and then derive a

similar equality for the n-periodic case from which the proof of Theorem 2.2 follows. The

derivation is computationally intensive and is carried out in Section 3. The formulas

similar to (24) are stated for reference in Appendix B for period 3 and in Appendix C for

period 4.

2.1 Phase as measured by correlation of u and K is not relevant

It is easily seen from (5) that in period 2 case, resonance is impossible unless the u and K

vectors are in ‘phase’ in the following sense: u0 , u1 together with K0 , K1 or u0 . u1

Y. Yang and R.J. Sacker1176
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together with K0 . K1. The result for period 2 led some, including the second author, to

conjecture that resonance occurred due to uj and Kj being ‘in phase’. Since the attenuation

result [5] inspired a subsequent similar result in the stochastic case [9], it was natural to ask

whether sufficiently high correlation would lead to resonance. For vectors X and Y of

length n, the correlation coefficient is defined by

r ¼
1

ðn2 1ÞsXsY

Xn
j¼1

ðXj 2 �XÞðYj 2 �YÞ; ð6Þ

where �X is the mean or average of X and sX is the standard deviation of X defined in (9).

The surprise comes when we consider the 3-periodic case where u and K are the first

and second rows, respectively, of

M ¼
u0 u1 u2

K0 K1 K2

" #
:

For example if

M ¼
1:6013 1:0407 1:8244

4:2778 4:1796 4:1321

" #
; ð7Þ

the correlation coefficient r ¼ 20:08155 while the state average avð�xÞ ¼ 4:2003 and

avð �KÞ ¼ 4:1965, i.e. resonance. However, if we define

M2;3 ¼
1:6013 1:8244 1:0407

4:2778 4:1321 4:1796

" #
;

which is just M with its last two columns interchanged, we obtain avð�xÞ ¼ 4:1892 and

avð �KÞ ¼ 4:1965, i.e. attenuation. But the correlation coefficient (6) is invariant under

permutations of the columns of the matrix having X in row 1 and Y in row 2. Thus the

correlation coefficient can never be the only marker in determining attenuation or resonance.

From an examination of (B1) in Appendix B and (36) in Section 3 we see that the

combinations of uj multiplying the terms ðKk 2 Kkþ1Þ have a special form, e.g.

ðuk 2 un21Þ þ ðuk21uk 2 un22un21Þ þ ðuk22uk21uk 2 un23un22un21Þ þ . . . ;

that suggests the best chance at observing resonance takes place when uj and Kj either both

increase or both decrease, i.e.

u0 # u1 # · · · # nn21 and K0 # K1 # · · · # Kn21; or

u0 $ u1 $ · · · $ nn21 and K0 $ K1 $ · · · $ Kn21:
ð8Þ

But this cannot be the whole story since (8) can hold for a sequence uj with

max
j;k

uj 2 uk
�� �� , 1; 0 , 1p 1;

and for 1 sufficiently small, one simply has an 1-perturbation of the constant u case where

attenuation is known to prevail provided Kj are not all the same. Thus we need to establish

Journal of Difference Equations and Applications 1177
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a criterion that guarantees the elements of the vector u ¼ {uj} are sufficiently disbursed on

the interval from which they are chosen. If we choose a vector u ¼ {uj} of length n where

uj are chosen randomly from a uniform distribution on ða; bÞ, then the variance, VarðuÞ and

standard deviation, sðuÞ are defined by

s2ðuÞ ¼ VarðuÞ8
1

n

Xn21

0

ðuj 2 mÞ2; ð9Þ

where m is the mean,

m8
1

n

Xn21

0

uj: ð10Þ

Then for N . 0, a large integer, and some u [ ½0; 1Þ, we choose N such vectors u and

discard all the vectors such that

sðuÞ , u smax;

and set r to be the number of remaining vectors. Here smax is the theoretical maximum

standard deviation of n real numbers chosen from a uniform distribution on ½a; b�. See

Appendix A for a derivation:

smax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 2 1

p

n

b2 a

2
; n is an odd integer;

b2 a

2
; n is an even integer:

8>>><
>>>:

ð11Þ

Then we choose the same number r of vectors K ¼ {Kj} from a uniform distribution

on ½c; d�. For the kth vector u and the kth vector K, we form the matrix

Mk ¼
u0 u1 · · · un21

K0 K1 · · · Kn21

" #
: ð12Þ

The tth column in (12) represents the tth Beverton–Holt function

f tðxÞ ¼
utKtx

Kt þ ðut 2 1Þx

on the right side of (4). Thus we may establish a one-to-one correspondence

Mk $ Fk;

where Fk is the composition,

FkðxÞ8 f n21 + f n22 + · · · + f 1 + f 0ðxÞ: ð13Þ

But the state average along a periodic orbit is invariant under cyclic permutations of the

factors in (13), and thus the occurrence of resonance is invariant under cyclic permutations

of the columns of Mk. Thus condition (8) may be replaced by the following assumption.

Assumption 1. The elements of some cyclic permutation M0
k of the columns of Mk should

satisfy (8).

Y. Yang and R.J. Sacker1178
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This procedure was then carried out by generating, from a uniform distribution on

½1:05; 4�, r ¼ 1:5 £ 108 random 4-periodic sequences satisfying (8) for each

u ¼ 0; 0:1; 0:2; . . . ; 0:8. The results are shown in Table 1 where it is easily seen that the

number of resonances increases as uj become more disbursed.

Remark. Regarding formula (11), the variance of each sample of n points is computed

relative to the mean (10) of the sample rather than the mean of the distribution. It can be

shown (see Appendix A) that the maximum variance occurs when n=2 points are at each

endpoint of the interval ½a; b� in the case n is even and when n ¼ 2k þ 1 for k a positive

integer, there are k points at one endpoint and k þ 1 at the other. Five of the samples of uj
that gave rise to the last row of Table 1 are shown below as the columns ðu0; u1; u2; u3Þ

T of

1:2031 1:1011 1:0972 1:1535 1:1606

1:2225 1:586 1:1293 1:9844 1:1993

3:7717 3:4647 3:6364 3:8617 3:5366

3:8856 3:9424 3:8770 3:8737 3:8539

2
666664

3
777775:

This suggests that if the Kj sequence is increasing while in the sequence

{u0; u1; . . . ; un21}, the values of uj with small indices are clustered near the left endpoint

of the interval then jump to the remaining values clustered near the right endpoint then

resonance will prevail. This was tried with period 4 by artificially creating a jump at

indices 1, 2 and 3, i.e. for u ¼ {u0; u1; u2; u3},

u < {1; 4; 4; 4}; u < {1; 1; 4; 4} and u < {1; 1; 1; 4}:

The results of running 1:5 £ 108 random sets of four increasing Kj [ ð3; 5Þ while

choosing the same number of not-necessarily increasing uj [ ð1; 1:1Þ< ð3:9; 4Þ with a

jump at 1, 2 and 3 are shown in Table 2 together with one sample of the u’s for each case.

Note that the jump at 1, 2 or 3 all gives rise to 100% resonances. In Figure 1 we give a

curious example giving rise to resonance for period 7 using an ‘out-of-step’ step function.

In the light of formula (B1) and its period-n counterpart (36) in Section 3 plus all that

has been said so far, it appears that a practical analytic criterion to determine resonance or

Table 1. Resonances from 1:5 £ 108 random 4-periodic increasing sequences.a

u Resonancesb % Resonances

0.0 1.38435429 £ 108 92.29029
0.1 1.39241057 £ 108 92.82737
0.2 1.42624031 £ 108 95.08269
0.3 1.46845425 £ 108 97.89695
0.4 1.49199147 £ 108 99.46610
0.5 1.49851007 £ 108 99.90067
0.6 1.49986898 £ 108 99.99127
0.7 1.49999824 £ 108 99.99988
0.8 1.50000000 £ 108 100.0000

a uj [ ð1:05; 4Þ; Kj [ ð3; 5Þ.
b No rounding took place.
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attenuation seems elusive and in fact this problem seems destined to become the poster

child for numerical explorations.

3. The general case

For completeness we now derive the formula relating the state average and the average of

the carrying capacities and prove Theorem 2.2 in the n-periodic case for an arbitrary

positive integer. In Appendix C (C1), the 4-periodic case is stated. Let

f 0ðxÞ ¼
u0K0x

K0 þ ðu0 2 1Þx
; f 1ðxÞ ¼

u1K1x

K1 þ ðu1 2 1Þx
; . . . ; f n21ðxÞ ¼

un21Kn21x

Kn21 þ ðun21 2 1Þx
;

and let {�x0; �x1; . . . ; �xn21} be a positive globally asymptotically stable n-periodic solution

of (4). Thus, we have

�xk ¼ f k21 + f k22 + · · · +f 0 + f n21 + f n22 + · · · + f kð�xkÞ; k ¼ 0; 1; . . . ; n2 1: ð14Þ

–1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

u j

K j

Period = 7

av (x) = 4.5519, av (K) = 4.1429

Figure 1. An extreme example showing the jumps need not take place in unison.

Table 2. Resonances from 1:5 £ 108 random 4-periodic sequences.a

Jump ¼ 1 Jump ¼ 2 Jump ¼ 3

% Resonances ! 100 100 100

u0 1.138078 1.191784 1.116634
u1 3.981959 1.161365 1.165238
u2 3.910999 3.908413 1.120819
u3 3.913553 3.918662 3.963425

Notes: The Kj (not shown) are increasing. Jumps are made at various times.
a uj [ ð1:1; 1:2Þ< ð3:9; 4Þ, Kj [ ð3; 5Þ.
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We first consider the case n ¼ 2 and re-derive (5) in a form suitable for generalization.

From (14), we get

�x0 ¼
ðu0u1 2 1ÞK0K1

K1ðu0 2 1Þ þ u0K0ðu1 2 1Þ

¼
1

ð1=K0Þðu0 2 1Þ=ðu0u1 2 1Þ þ ð1=K1Þðu0ðu1 2 1ÞÞ=ðu0u1 2 1Þ
;

and

�x1 ¼
ðu0u1 2 1ÞK0K1

K0ðu1 2 1Þ þ u1K1ðu0 2 1Þ

¼
1

ð1=K1Þðu1 2 1Þ=ðu0u1 2 1Þ þ ð1=K0Þðu1ðu0 2 1ÞÞ=ðu0u1 2 1Þ
:

Defining

r0
0 ¼

u0 2 1

u0u1 2 1
; r0

1 ¼
u0ðu1 2 1Þ

u0u1 2 1
r1

0 ¼
u1 2 1

u0u1 2 1
; r1

1 ¼
u1ðu0 2 1Þ

u0u1 2 1
; ð15Þ

this simplifies to

�x0 ¼
1

r0
0=K0

� �
þ r0

1=K1

� � and �x1 ¼
1

r1
0=K1

� �
þ r1

1=K0

� � : ð16Þ

Obviously,

ri0 þ ri1 ¼ 1; i ¼ 0; 1: ð17Þ

By (16) and (17) we have

�x0 ¼ r0
0K0 þ r0

1K1 þ
1 2 r0

0

� �2
2 r0

1

� �2
2r0

0r
0
1ððK0=K1Þ þ ðK1=K0ÞÞ

r0
0=K0

� �
þ r0

1=K1

� �
¼ r0

0K0 þ r0
1K1 þ

1 2 r0
0 þ r0

1

� �2
2r0

0r
0
1ððK0=K1Þ þ ðK1=K0Þ2 2Þ

r0
0=K0

� �
þ r0

1=K1

� �
¼ r0

0K0 þ r0
1K1 2

r0
0r

0
1ððK0=K1Þ þ ðK1=K0Þ2 2Þ

r0
0=K0

� �
þ r0

1=K1

� � :

ð18Þ

In a similar fashion we have

�x1 ¼ r1
1K0 þ r1

0K1 2
r1

0r
1
1ððK1=K0Þ þ ðK0=K1Þ2 2Þ

r1
0=K1

� �
þ r1

1=K0

� � : ð19Þ

Define

D0 ¼
r0

0r
0
1ððK0=K1Þ þ ðK1=K0Þ2 2Þ

r0
0=K0

� �
þ r0

1=K1

� � and D1 ¼
r1

0r
1
1ððK1=K0Þ þ ðK0=K1Þ2 2Þ

r1
0=K1

� �
þ r1

1=K0

� � : ð20Þ

Journal of Difference Equations and Applications 1181
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Therefore, if K0 – K1 we obtain

D0 þ D1 . 0: ð21Þ

From (18)–(20), we have

avð�xÞ ¼
1

2
r0

0 þ r1
1

� �
K0 þ

1

2
r0

1 þ r1
0

� �
K1 2

1

2
ðD0 þ D1Þ: ð22Þ

By (15), we get

r0
0 þ r1

1 ¼ 1 þ
u0 2 u1

u0u1 2 1
and r0

1 þ r1
0 ¼ 1 þ

u1 2 u0

u0u1 2 1
: ð23Þ

From (22) and (23), we finally obtain the desired period 2 formula,

avð�xÞ2 avðKÞ ¼
1

2

u0 2 u1

u0u1 2 1

� �
K0 þ

1

2

u1 2 u0

u0u1 2 1

� �
K1 2

1

2
ðD0 þ D1Þ

¼
1

2

u0 2 u1

u0u1 2 1

� �
ðK0 2 K1Þ2

1

2
ðD0 þ D1Þ:

ð24Þ

Using (21) and either hypothesis (H1) or (H2), we get avð�xÞ , avðKÞ.

In a computation similar to the case n ¼ 2, equation (14) implies

�xk ¼
1Pn21

i¼0 rki =Kiþk

� � ; k ¼ 0; 1; . . . ; n2 1; ð25Þ

where

rij ¼

ui 2 1

u0u1· · ·un21 2 1
; for j ¼ 0; i [ {0; 1; . . . ; n2 1};

ðuiþj 2 1Þ
Qiþj21

k¼i uk

u0u1· · ·un21 2 1
; for j – 0; i; j [ {0; 1; . . . ; n2 1}:

8>>>><
>>>>:

ð26Þ

Clearly,

ri0 þ ri1 þ · · · þ rin21 ¼ 1; i ¼ 0; 1; . . . ; n2 1: ð27Þ

From (25) and (27) we obtain

�xk ¼
Xn21

j¼0

rkj Kjþk þ
1 2

Pn21
j¼0 ðrkj Þ

2 2
Pn22

i¼0

Pn21
j¼iþ1

�
ðKiþk=KjþkÞ þ ðKjþk=KiþkÞ

�
rki r

k
jPn21

j¼0 rkj =Kjþk

� �

¼
Xn21

j¼0

rkj Kjþk 2

Pn22
i¼0

Pn21
j¼iþ1

�
ðKiþk=KjþkÞ þ ðKjþk=KiþkÞ2 2

�
rki r

k
jPn21

j¼0 rkj =Kjþk

� � ;

ð28Þ

where k ¼ 0; 1; . . . ; n2 1:
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Define

Dk ¼

Pn22
i¼0

Pn21
j¼iþ1 ðKiþk=KjþkÞ þ ðKjþk=KiþkÞ2 2

� �
rki r

k
jPn21

j¼0 rkj =Kjþk

� � ; k ¼ 0; 1; . . . ; n2 1: ð29Þ

Therefore, if Ks – Ksþ1 for at least one s [ {0; 1; . . . ; n2 2}, we get

1

n

Xn21

i¼0

Di . 0: ð30Þ

3.1 Calculation of av(�x)

From (28) and (29), we have

avð�xÞ ¼
Xn21

k¼0

Xn21

i¼0

riðnþk2iÞmodðnÞ

 !
Kk

n
2

1

n

Xn21

i¼0

Di: ð31Þ

By comparing (27) with (31), we see immediately that

avð�xÞ2 avðKÞ ¼
Xn21

k¼0

Xn21

i¼0

riðnþk2iÞmodðnÞ 2 rðkþ1ÞmodðnÞ
ðnþk2iÞmodðnÞ

� �Kk

n
2

1

n

Xn21

i¼0

Di: ð32Þ

To keep notation manageable we shall not repeat the ‘modðnÞ’ below. Define

m ¼
1

u0u1· · ·un21 2 1
: ð33Þ

Clearly, m . 0 and by (26) and (32) we obtain

avð�xÞ2 avðKÞ ¼
Xn21

k¼0

uk þ ðuk 2 1Þ
Xn22

j¼1

Yj
i¼1

unþk2i 2
Yn21

i¼1

unþk2i

 !
m
Kk

n
2

1

n

Xn21

i¼0

Di

¼
Xn21

k¼0

Xn22

j¼0

Yj
i¼0

unþk2i

 !
m
Kk 2 Kkþ1

n
2

1

n

Xn21

i¼0

Di:

ð34Þ

Clearly,

Kn21 2 K0 ¼ 2
Xn22

i¼0

ðKk 2 Kkþ1Þ:

This plus (34) leads to the desired formula:

avð�xÞ2 avðKÞ ¼
Xn22

k¼0

Xn22

j¼0

Yj
i¼0

unþk2i 2
Yj
i¼0

un212i

 !
m
Kk 2 Kkþ1

n
2

1

n

Xn21

i¼0

Di: ð35Þ
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Writing out the first few terms, we have
avð�xÞ2 avðKÞ

¼

�
ðu0 2 un21Þ þ ðu0 2 un22Þun21 þ ðu0 2 un23Þun22un21 þ · · ·

þ ðu0 2 u1Þ
Yn21

i¼2

uim

�
K0 2 K1

n

þ

�
ðu1 2 un21Þ þ ðu0u1 2 un22un21Þ þ ðu0u1 2 un23un22Þun21 þ · · ·

þ ðu0 2 u2Þu1

Yn21

i¼3

uim

�
K1 2 K2

n

..

.

ð36Þ

From (30), it follows that if one of conditions (H1) and (H2) is satisfied,

avð�xÞ , avðKÞ;

and the proof of Theorem 2.2 is completed.

4. Conclusion

For the Beverton–Holt difference equation

xtþ1 ¼
utKtxt

Kt þ ðut 2 1Þxt
; t ¼ 0; 1; . . .

with both parameters ut and Kt periodic with arbitrary period n, we prove a theorem

guaranteeing attenuation and also provide numerical evidence guaranteeing resonance for

period n ¼ 4. We show attenuance, if u ¼ {u1; u2; . . . ; un21} is an increasing sequence

while K ¼ {K1;K2; . . . ;Kn21} is decreasing (or u decreasing and K increasing) and

Ki – Kj for some pair.

For resonance the story is more complicated. We chose 1:5 £ 108 random (uniform)

sequences u [ ½1:1; 4� and K [ ½3; 5�. If the sequences u and K are both increasing or both

decreasing, without further restriction, then <92:3% of the pairs yielded resonance. The

percentage of resonances increased as we required uj to be more and more disbursed on

½1:1; 4� as measured by the standard deviation of the samples. When the standard deviation

exceeded 80% of its theoretical maximum, all 1:5 £ 108 samples yielded resonance. Since

this theoretical maximum is achieved when the uj are evenly divided between the

endpoints of the interval ½1:1; 4�, it was apparent that the resonance was caused when uj
jump from a small neighbourhood of the left endpoint to a small neighbourhood of the

right endpoint. Further explorations determined that the jump was the determining factor

rather than the even distribution of uj near the endpoints. A period 7 example using a step

function with jumps at differing times is also seen to produce resonance.

All this seems to indicate that in a steadily improving environment (Kj increasing), a

sudden increase in the growth rates uj is more effective in creating a resonant outcome than

a steadily increasing sequence.
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Appendix A: A variance lemma

Lemma A.1. (Cymra Haskell).

Consider the function V that is defined on Rn where n $ 2 and is given by

Vðx1; x2; . . . ; xnÞ ¼
1

n

Xn
i¼1

x2
i 2

1

n

Xn
i¼1

xi

 !2

: ðA1Þ

On the set U ¼ {ðx1; . . . ; xnÞ : 0 # xi # 1; 1 # i # n}, V attains a maximum Vmax that is

equal to

Vmax ¼

1

4
; n ¼ 2k is even;

k

n

� �
1 2

k

n

� �
; n ¼ 2k þ 1 is odd:

8>>><
>>>:

Moreover, when n ¼ 2k is even this maximum is attained when k of the xi’s are equal to 0

and the other k are equal to 1, and when n ¼ 2k þ 1 is odd this maximum is attained when

k þ 1 of the xi’s are equal to 0 and the other k are equal to 1 (or when k of them are equal

to 0 and the other k þ 1 are equal to 1).

Remark. The value of V is, of course, the variance of the data x1; x2; . . . ; xn. The function

V also attains a minimum on U though this is of less interest. The minimum is 0 and is

attained on the hyperplane {ðx1; . . . ; xnÞ [ U : x1 ¼ x2 ¼ · · · ¼ xn}. It is well known and

not hard to see that V can also be written as

Vðx1; x2; . . . ; xnÞ ¼
1

n

Xn
i¼1

xi 2
1

n

Xn
i¼1

xi

 !2

:

By scaling and shifting, the lemma can be stated on the interval ½a; b� as follows.

Corollary A.2. The maximum of the function V in (A1) on the set {ðx1; x2; . . . ; xmÞ :

a # x;# b; 1 # b # m} is

Vmax ¼

ðb2 aÞ2

4
; n ¼ 2k is even;

k

n
1 2

k

n

� �
ðb2 aÞ2 ¼

n2 2 1

4n2
ðb2 aÞ2; n ¼ 2k þ 1 is odd:

8>>>><
>>>>:

The maximum is attained for n ¼ 2k when there are k points at each endpoint and for

n ¼ 2k þ 1 when there are k points at one endpoint and k þ 1 at the other.

Proof. Before embarking on the proof we make the following observation which is well

known to probabilists and statisticians. Let X ¼ ðx1; x2; . . . ; xnÞ be the data and let Y ¼

{I; J} be any partition of the indices {1; 2; . . . ; n} into two subsets I and J. Let nI be the

number of elements in the set I and let nJ be the number in J. Of course, nI þ nJ ¼ n.

Let EðXjYÞ ¼ ðMI ;MJÞ be the average of all those xi’s for which i [ I and the average of

all those for which i [ J, respectively. In other words

MI ¼
1

nI

X
i[I

xi
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and

MJ ¼
1

nJ

X
i[J

xi:

Similarly, let VarðXjYÞ ¼ ðVI ;VJÞ be the variance of all those xi’s for which i [ I and the

variance of all those for which i [ J, respectively. In other words

VI ¼
1

nI

X
i[I

x2
i 2

1

nI

X
i[I

xi

 !2

¼
1

nI

X
i[I

ðxi 2MIÞ
2

and

VJ ¼
1

nJ

X
i[J

x2
i 2

1

nJ

X
i[J

xi

 !2

¼
1

nJ

X
i[J

ðxi 2MJÞ
2:

If nI ¼ 0, then we define MI ¼ VI ¼ 0. Similarly if nJ ¼ 0. Now define

EðEðXjYÞÞ ¼
nI

n

� �
MI þ

nJ

n

� �
MJ ;

EðVarðXjYÞÞ ¼
nI

n

� �
VI þ

nJ

n

� �
VJ

and

VarðEðXjYÞÞ ¼
nI

n

� �
M2

I þ
nJ

n

� �
M2

J

� �
2

nI

n

� �
MI þ

nJ

n

� �
MJ

� �2

¼
nI

n

� �
ðMI 2 EðEðXjYÞÞÞ2 þ

nJ

n

� �
ðMJ 2 EðEðXjYÞÞÞ2:

The important observation is the following [16, p. 348]:

EðVarðXjYÞÞ þ VarðEðXjYÞÞ

¼
1

n

Xn
i¼1

x2
i 2

1

nnI

X
i[I

xi

 !2

2
1

nnJ

X
i[J

xi

 !2
0
@

1
A

þ
1

nnI

X
i[I

xi

 !2

þ
1

nnJ

X
i[J

xi

 !2
0
@

1
A2

1

n

Xn
i¼1

xi

 !2

¼ Vðx1; . . . ; xnÞ:

To prove the lemma, notice first that V is continuous and U is compact, so V attains a

maximum on U. Let ðx1; . . . ; xnÞ [ U be given. Let

I ¼ {i : xi ¼ 0 or xi ¼ 1};

J ¼ {i : 1 # i # n and i � I}:

Suppose that J – Y. In this case we shall construct X * ¼ ðx*
1; x

*
2; . . . ; x

*
nÞ [ U such that

Vðx*
1; . . . ; x

*
nÞ . Vðx1; . . . ; xnÞ. Let x*

i ¼ xi for all i [ I. Let

a ¼ min
i[J

xi
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and

b ¼ max
i[J

xi:

Notice that 0 , a # b , 1. Suppose first that a , b. In this case a , MJ , b. To

construct the x*
i ’s we take all the xi’s with i [ J and stretch them about their mean MJ as

far as we can without letting them leave the interval ½0; 1�. In particular, let

g ¼ min
MJ

MJ 2 a
;
1 2MJ

b2MJ

	 

:

Notice that g . 1. For i [ J define

x*
i ¼ MJ þ gðxi 2MJÞ:

Notice that x*
i $ MJ þ gða2MJÞ ¼ MJ 2 gðMJ 2 aÞ $ 0 and x*

i # MJ þ

g ðb2MJÞ # 1. Moreover,

M*
I ¼

1

nI

X
i[J

x*
i ¼ MI ;

V*
I ¼

1

nI

X
i[I

x*
i 2M*

I

� �2
¼ VI ;

M*
J ¼

1

nJ

X
i[J

x*
i ¼

1

nJ

X
i[J

ðMJ þ gðxi 2MJÞÞ ¼ MJ þ
g

nJ

X
i[J

xi 2 gMJ ¼ MJ

and

V*
J ¼

1

nJ

X
i[J

x*
i 2M*

J

� �2
¼ g2 1

nJ

X
i[J

ðxi 2MJÞ
2 ¼ g2VJ . VJ :

It follows that
EðVarðX *jYÞÞ . EðVarðXjYÞÞ

and
VarðEðX *jYÞÞ ¼ VarðEðXjYÞÞ;

so

V x*
1; . . . ; x

*
n

� �
. Vðx1; . . . ; xnÞ:

Now suppose that a ¼ b. Then xi ¼ a for all i [ J, so MJ ¼ a and VJ ¼ 0. To construct

the x*
i ’s we move all the xi’s for i [ J so that they are as far away from MI as possible. In

particular, for i [ J we define

x*
i ¼

1; if MI #
1
2
;

0; if MI .
1
2
:

8<
:

Now V*
I ¼ VI and V*

J ¼ 0 ¼ VJ so EðVarðX *jYÞÞ ¼ EðVarðXjYÞÞ. Moreover, M*
I ¼ MI

and if MI # 1=2 then M*
J ¼ 1 and if MI . 1=2 then M*

J ¼ 0. In particular, since

0 , a , 1, jMI 2 aj , jMI 2M*
J j. Thus, the conditional distribution EðX *jYÞ ¼

ðMI ;M*
JÞ is more spread out than the original conditional distribution EðXjYÞ ¼ ðMI ;aÞ.
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Without any calculation, it is easy to see that

VarðEðX *jYÞÞ ¼
MI 2M*

J

MI 2 a

� �2

VarðEðXjYÞÞ . VarðEðXjYÞÞ:

(If MI ¼ a, then VarðEðXjYÞÞ ¼ 0 and VarðEðX *jYÞÞ . 0, so the inequality still holds.) It

follows that

V x*
1; . . . ; x

*
n

� �
¼ EðVarðX *jYÞÞ þ VarðEðX *jYÞÞ

. EðVarðXjYÞÞ þ VarðEðXjYÞÞ ¼ Vðx1; . . . ; xnÞ:

Thus, the maximum of V must occur at a point ðx1; . . . ; xnÞ where J ¼ Y. Now it is a simple

calculation to get the result. Let ðx1; . . . ; xnÞ be such a point and let p be the number of xi’s

that are equal to 1. Then

Vðx1; . . . ; xnÞ ¼
p

n
2

p2

n2
¼

p

n
1 2

p

n

� �
:

The quadratic function f ðxÞ ¼ xð1 2 xÞ is symmetric about x ¼ 1=2 and increases from

x ¼ 0 to x ¼ 1=2 and decreases from x ¼ 1=2 to x ¼ 0. It follows that the maximum of f

along x ¼ 0; 1=n; 2=n; . . . ; 1 is equal to 1=4 and is attained at x ¼ 1=2 when n is even and

is equal to ðk=nÞð1 2 k=nÞ and is attained at p ¼ k or p ¼ k þ 1 when n ¼ 2k þ 1 is

odd. A

Appendix B: Period 3 formula

In this appendix we write formula (36) for the 3-periodic case.

avð�xÞ2 avðKÞ ¼
1

3ðu0u1u2 2 1Þ
ðu2ðu0 2 u1Þ þ ðu0 2 u2ÞÞðK0 2 K1Þ

þ
1

3ðu0u1u2 2 1Þ
ðu1ðu0 2 u2Þ þ ðu1 2 u2ÞÞðK1 2 K2Þ

2
1

3
ðD0 þ D1 þ D2Þ;

ðB1Þ

where

D0 ¼

r0
0r

0
1ððK0=K1Þ þ ðK1=K0Þ2 2Þ þ r0

0r
0
2ððK0=K2Þ þ ðK2=K0Þ2 2Þ þ r0

1r
0
2ððK1=K2Þ þ ðK2=K1Þ2 2Þ

r0
0=K0

� �
þ r0

1=K1

� �
þ r0

2=K2

� � ;

D1 ¼

r1
0r

1
1ððK1=K2Þ þ ðK2=K1Þ2 2Þ þ r1

0r
1
2ððK1=K0Þ þ ðK0=K1Þ2 2Þ þ r1

1r
1
2ððK2=K0Þ þ ðK0=K2Þ2 2Þ

r1
0=K1

� �
þ r1

1=K2

� �
þ r1

2=K0

� � ;

D2 ¼

r2
0r

2
1ððK2=K0Þ þ ðK0=K2Þ2 2Þ þ r2

0r
2
2ððK2=K1Þ þ ðK1=K2Þ2 2Þ þ r2

1r
2
2ððK0=K1Þ þ ðK1=K0Þ2 2Þ

r2
0=K2

� �
þ r2

1=K0

� �
þ r2

2=K1

� �
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and

r0
0 ¼

u0 2 1

u2u1u0 2 1
; r0

1 ¼
u0ðu1 2 1Þ

u2u1u0 2 1
; r0

2 ¼
u0u1ðu2 2 1Þ

u2u1u0 2 1
;

r1
0 ¼

u1 2 1

u2u1u0 2 1
; r1

1 ¼
u1ðu2 2 1Þ

u2u1u0 2 1
; r1

2 ¼
u1u2ðu0 2 1Þ

u2u1u0 2 1
;

r2
0 ¼

u2 2 1

u2u1u0 2 1
; r2

1 ¼
u2ðu0 2 1Þ

u2u1u0 2 1
; r2

2 ¼
u0u2ðu1 2 1Þ

u2u1u0 2 1
:

Note that if Ki – Kiþ1 for at least i [ {0; 1}, we have

D0 þ D1 þ D2 . 0:

Appendix C: Period 4 formula

In this appendix we write formula (36) for the 4-periodic case.

avð�xÞ2 av �K
� �

¼
1

4ðu0u1u2u3 2 1Þ
ððu0 2 u3Þ þ ðu0u3 2 u2u3Þ þ ðu0 2 u1Þu2u3ÞðK0 2 K1Þ

þ
1

4ðu0u1u2u3 2 1Þ
ððu1 2 u3Þ þ ðu0u1 2 u2u3Þ þ ðu0 2 u2Þu1u3ÞðK1 2 K2Þ

þ
1

4ðu0u1u2u3 2 1Þ
ððu2 2 u3Þ þ ðu1u2 2 u2u3Þ þ ðu0 2 u3Þu1u2ÞðK2 2 K3Þ

2
1

4
ðD0 þ D1 þ D2 þ D3Þ;

ðC1Þ

where

D0 ¼
ððK0=K1Þ þ ðK1=K0Þ2 2Þr0

0r
0
1 þ ððK0=K2Þ þ ðK2=K0Þ2 2Þr0

0r
0
2 þ ððK0=K3Þ þ ðK3=K0Þ2 2Þr0

0r
0
3

r0
0=K0

� �
þ r0

1=K1

� �
þ r0

2=K2

� �
þ r0

3=K3

� �
þ

ððK1=K2Þ þ ðK2=K1Þ2 2Þr0
1r

0
2 þ ððK1=K3Þ þ ðK3=K1Þ2 2Þr0

1r
0
3 þ ððK2=K3Þ þ ðK3=K2Þ2 2Þr0

2r
0
3

r0
0=K0

� �
þ r0

1=K1

� �
þ r0

2=K2

� �
þ r0

3=K3

� � ;

D1 ¼
ððK1=K2Þ þ ðK2=K1Þ2 2Þr1

0r
1
1 þ ððK1=K3Þ þ ðK3=K1Þ2 2Þr1

0r
1
2 þ ððK1=K0Þ þ ðK0=K1Þ2 2Þr1

0r
1
3

r1
0=K1

� �
þ r1

1=K2

� �
þ r1

2=K3

� �
þ r1

3=K0

� �
þ

ððK2=K3Þ þ ðK3=K2Þ2 2Þr1
1r

1
2 þ ððK2=K0Þ þ ðK0=K2Þ2 2Þr1

1r
1
3 þ ððK3=K0Þ þ ðK0=K3Þ2 2Þr1

2r
1
3

r1
0=K1

� �
þ r1

1=K2

� �
þ r1

2=K3

� �
þ r1

3=K0

� � ;

D2 ¼
ððK2=K3Þ þ ðK3=K2Þ2 2Þr2

0r
2
1 þ ððK2=K0Þ þ ðK0=K2Þ2 2Þr2

0r
2
2 þ ððK2=K1Þ þ ðK1=K2Þ2 2Þr2

0r
2
3

r2
0=K2

� �
þ r2

1=K3

� �
þ r2

2=K0

� �
þ r2

3=K1

� �
þ

ððK3=K0Þ þ ðK0=K3Þ2 2Þr2
1r

2
2 þ ððK3=K1Þ þ ðK1=K3Þ2 2Þr2

1r
2
3 þ ððK0=K1Þ þ ðK1=K0Þ2 2Þr2

2r
2
3

r2
0=K2

� �
þ r2

1=K3

� �
þ r2

2=K0

� �
þ r2

3=K1

� � ;

D3 ¼
ððK3=K0Þ þ ðK0=K3Þ2 2Þr3

0r
3
1 þ ððK3=K1Þ þ ðK1=K3Þ2 2Þr3

0r
3
2 þ ððK3=K2Þ þ ðK2=K3Þ2 2Þr3

0r
3
3

r3
0=K3

� �
þ r3

1=K0

� �
þ r3

2=K1

� �
þ r3

3=K2

� �
þ

ððK0=K1Þ þ ðK1=K0Þ2 2Þr3
1r

3
2 þ ððK0=K2Þ þ ðK2=K0Þ2 2Þr3

1r
3
3 þ ððK1=K2Þ þ ðK2=K1Þ2 2Þr3

2r
3
3

r3
0=K3

� �
þ r3

1=K0

� �
þ r3

2=K1

� �
þ r3

3=K2

� � :

ðC2Þ
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and

r0
0 ¼

u0 2 1

u0u1u2u3 2 1
; r0

1 ¼
ðu1 2 1Þu0

u0u1u2u3 2 1
; r0

2 ¼
ðu2 2 1Þu0u1

u0u1u2u3 2 1
; r0

3 ¼
ðu3 2 1Þu0u1u2

u0u1u2u3 2 1
;

r1
0 ¼

u1 2 1

u0u1u2u3 2 1
; r1

1 ¼
ðu2 2 1Þu1

u0u1u2u3 2 1
; r1

2 ¼
ðu3 2 1Þu1u2

u0u1u2u3 2 1
; r1

3 ¼
ðu0 2 1Þu1u2u3

u0u1u2u3 2 1
;

r2
0 ¼

u2 2 1

u0u1u2u3 2 1
; r2

1 ¼
ðu3 2 1Þu2

u0u1u2u3 2 1
; r2

2 ¼
ðu0 2 1Þu3u2

u0u1u2u3 2 1
; r2

3 ¼
ðu1 2 1Þu0u3u2

u0u1u2u3 2 1
;

r3
0 ¼

u3 2 1

u0u1u2u3 2 1
; r3

1 ¼
ðu0 2 1Þu3

u0u1u2u3 2 1
; r3

2 ¼
ðu1 2 1Þu0u3

u0u1u2u3 2 1
; r3

3 ¼
ðu2 2 1Þu1u0u3

u0u1u2u3 2 1
:
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