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Abstract. The λ-Ricker equation has, for certain values of the parameters,

an unstable fixed point giving rise to the Allee effect, and an attracting fixed
point, the carrying capacity. The k-periodic λ-Ricker equation is studied and

parameter intervals are determined for which there exist a k-periodic Allee

state and a k-periodic attracting state.

1. Introduction. The λ-Ricker equation (1) was introduced in [13] and later stud-
ied in [24]. It is a modification of the well known Ricker equation that produces
a zero slope to the graph at the origin and for certain values of the parameters
gives rise to an unstable fixed point, the Allee threshold as well as a stable one,
the carrying capacity. This same effect was also achieved in the Sigmoid Beverton
Holt equation [18] and later in [17] where periodic equations were considered and a
periodic Allee state and a periodic attracting state were shown to exist. While the
Sigmoid Beverton Holt equation exhibits a depensatory effect, the λ-Ricker equa-
tion has one added feature that complicates the study, namely over-depensation
that causes very large populations to collapse to levels below the Allee threshold
and thus go extinct.

Understanding the Allee effect is of paramount importance in the management
of fisheries and establishment of safeguards against overfishing [2], [25]. In [29],
Stephens and Sutherland described several scenarios that cause the Allee effect in
animals. For example, cod and many freshwater fish species have high juvenile
mortality when there are fewer adults. Fewer red sea urchin give rise to worsening
feeding conditions of their young and less protection from predation. In some mast
flowering trees, such as smooth cordgrass, Spartina alterniflora, low population
density results in lower probability of seed production and germination, [7].

For an in-depth review of the various occurrences of the Allee effect, see [31]. A
mapping having essentialy the same graph as the λ-Ricker map was studied in [28]
and later in [23].
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See [13] for a discussion of some new examples of models exhibiting the Allee effect
and, similar to the Beverton-Holt model, having important biological quantities as
parameters, e.g. intrinsic growth rate, carrying capacity, Allee threshold and a new
parameter, the shock recovery parameter. Partial results were derived in each case.
For the λ-Ricker equation the threshold beyond which period doubling occurred
was explored and a condition was given guaranteeing asymptotic stability of the
carrying capacity fixed point.This condition will be re-derived in Section 5 using an
equivalent mapping that allows us to simultaneously consider the Allee effect. This
new equation is particularly useful in considering the composition of these maps by
explicitly exhibiting the carrying capacity as one of the parameters in the mapping
while the Allee threshold appears as the symmetric point of a parabola-like graph,
Figure 1. The topic of period doubling and chaos are not explored here. Further
references pertaining to the Allee effect can be found in [1], [24], [3], [4], [8], [23],
[30], [19], [28], [32], [34], [14], [15], [16] and for references to the general theory of
Difference Equations, see [9] and [26].

In this work we consider the λ-Ricker equation for fixed parameter λ,

xn+1 = Rρ(xn) x0 ∈ R+, (1)

where

Rρ(x) = xλeρ−x, λ > 1, ρ > 0. (2)

We allow ρ to vary periodically within certain bounds and show there exist a
periodic unstable Allee state and a periodic asymptotically stable attracting state,
both with the same period as ρ and both contained respectively within the envelopes
of the Allee thresholds and carrying capacities of the individual maps in the periodic
sequence.

2. A mapping equivalent to the λ−Ricker map. For ρ very small the origin
is the only fixed point of (2) and it attracts all solutions of (1) having x0 ≥ 0. As
ρ increases a saddle-node bifurcation takes place and two new fixed points emerge.
One of them is unstable and it represents the Allee threshold and the other fixed
point is asymptotically stable and represents the carrying capacity of the population
governed by the model (1). Since we wish to consider periodic environmental fluc-
tuations of the carrying capacity, we shall assume this bifurcation has taken place
and rewrite the equation in a form in which the carrying capacity is a parameter in
the model. Thus we consider the following modified λ-Ricker Equation for x ∈ R+,

xn+1 =
xλn
pλ−1

ep−xn = xλne
p−(λ−1)log(p)−xn , n = 0, 1, · · · , (3)

where λ > 1, xn, p ∈ R+. The results obtained will be interpreted for (2) in Section
6.

Define

Rp(x) = xλep−(λ−1)log(p)−x, x, p ∈ R+, λ > 1. (4)

By simple computation, we obtain

Rp(p) = p (5)

and
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R′p(x) = (λ− x)xλ−1ep−(λ−1) log (p)−x = (λ− x)(
x

p
)λ−1ep−x. (6)

It is clear that any positive fixed point of Rp(x) is a solution of the following
equation:

x− (λ− 1)log(x) = p− (λ− 1)log(p). (7)

Define the function u : R+ → R+, see Figure 1,

u(x) = x− (λ− 1)log(x). (8)

Thus (7) can be rewritten as

u(x) = u(p). (9)

The proofs of Lemmas 2.1 and 2.2 follow from

u′(p) = 1− λ− 1

p
, (10)

see Figure 1.

Lemma 2.1. If 1 < λ < e+ 1, then u(x) > 0 for x > 0.

Note. In the following statements, we always assume that 1 < λ < e+ 1.

Lemma 2.2. p is a fixed point of Rp(x). Morever, if p = λ− 1, then p is a unique
fixed point of Rp(x).

Proof. Its follows from (10) that u is 2-to-1 on (1, e+ 1) except at p = λ− 1.

For x 6= λ− 1 (see Figure 1), define Sx 6= x to be the second solution of

u(Sx) = u(x). (11)

Lemma 2.3. For all p ∈ R+, p 6= λ−1, there exists a unique solution Sp of Eq.(9)
which is distinct from p. In other words, Sp is a unique fixed point of Rp(x) which
is distinct from p. Moreover,
(1) if p > λ− 1, then Sp < λ− 1.
(2) If p < λ− 1, then Sp > λ− 1.

Proof. Clearly, p and Sp are the fixed points of Rp(x) which follows from (5) and
(7). By (8), we have

lim
x→0+

u(x) = lim
x→+∞

u(x) = +∞. (12)

Notice that

u′(x) = 1− λ− 1

x
x, (13)

from which follows that u(x) has a unique critical point λ−1 such that u′(λ−1) = 0.
In addition, u′(x) < 0 for x < λ − 1, u′(x) > 0 for x > λ − 1 which means that

u(x) is decreasing for x < λ− 1 and increasing for x > λ− 1. Then u(x) attains its
minimum u(λ− 1) when x = λ− 1. If p > λ− 1, by the above argument, we have
Sp /∈ [λ− 1,+∞). As p 6= λ− 1, we obtain

u(λ− 1) < u(p) < +∞. (14)
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Figure 1. Shows the relation between the fixed points of Rp(x).
When x = p > λ−1 then p is the stable fixed point or carrying ca-
pacity and Sp < λ−1 is the unstable fixed point or Allee threshold.
Figure shown with p = λ+ 1.

Combining (12) and (14) with continuity and monotonicity of u(x), there exists a
unique solution Sp ∈ (0, λ− 1) of Eq.(9).

By a similar argument, if p < λ−1, there exists a unique solution Sp ∈ (λ−1,+∞)
and the lemma is proved.

Recall that Sλ and Sλ+1 satisfy

u(Sλ) = u(λ) (15)

u(Sλ+1) = u(λ+ 1), (16)

and from Lemma 2.3 it follows that Sλ < λ− 1 and Sλ+1 < λ− 1.
The next theorem identifies p and Sp as the Carrying Capacity-Allee Threshold

pair.

Theorem 2.4. The fixed point 0 of Rp(x) is always asymptotically stable. If the
fixed point p ∈ (λ − 1, λ + 1), then p is asymptotically stable, while the other fixed
point Sp ∈ (Sλ+1, λ− 1) of Rp(x) is unstable.
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Proof. The first statement follows from R′p(0) = 0. Notice that |R′p(p)| < 1 for
λ− 1 < p < λ+ 1 which implies p is asymptotically stable. By Lemma 2.3, we get
Sp < λ − 1 for p > λ − 1. We next show Sp > Sλ+1. If not, assume Sp ≤ Sλ+1.
Since u(x) is decreasing for x < λ − 1, we have u(Sp) ≥ u(λ + 1). By Lemma 2.3
(exchange Sp with p), p ≥ λ + 1. This contradicts the assumption that p < λ + 1
which implies

Sλ+1 < Sp < λ− 1. (17)

By (6) and (7),we have

R′p(Sp) = (λ− Sp)(
Sp
p

)λ−1ep−Sp , (18)

and

p− Sp = (λ− 1)(log(p)− log(Sp)). (19)

Combining (18) with (19), we obtain

R′p(Sp) = λ− Sp. (20)

This plus (17) leads to that

R′p(Sp) > 1.

Hence Sp is unstable.

Theorem 2.5. If p = λ− 1, then the unique fixed point p of Rp(x) is semi-stable.
More precisely, p is stable from the right and unstable from the left.

The proof consists of verifying that

R′λ−1(λ− 1) = 1 and R′′λ−1(λ− 1) = 1− λ < 0,

and is omitted.
By interchanging the roles of p and Sp in Theorem 2.4, we obtain the following

Theorem 2.6. If p ∈ (Sλ+1, λ−1), one fixed point p of Rp(x) is unstable, the other
fixed point Sp ∈ (λ− 1, λ+ 1) of Rp(x) is asymptotically stable.

Definition 2.7. Let I = [0, b] ⊂ R+. A continuous function f : I → I is called an
Allee map if the following hold:
(a) f(0) = 0.
(b) There are positive points Af and Kf such that

f(x) < x for x ∈ (0, Af )
⋃

(Kf , b) and f(x) > x for x ∈ (Af ,Kf ).

Note. b can be equal to +∞.
In addition, if the map is unimodal, then it is called a unimodal Allee map.

Explicitly, unimodal is defined as follows:

Definition 2.8. A unimodal map is a continuous function f : R+ → R+ for which
there exists c ∈ R+ such that f is strictly increasing on [0, c] and strictly decreasing
on [c,+∞]. Moreover, we require that f(0) = 0.

It then follows that

lim
x→+∞

f(x) = M where M ∈ [0, f(c)).

Theorem 2.9. If p ∈ (Sλ+1, λ−1)
⋃

(λ−1, λ+1), then Rp(x) is a unimodal Allee
map.
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Proof. First, we will show Rp(x) is a unimodal Allee map for p ∈ J .
= (Sλ+1, λ−1).

It is clear from (6) that Rp(x) is a unimodal map. By Theorem 2.6, if p ∈
(Sλ+1, λ − 1), then the companion fixed point Sp lies in (λ − 1, λ + 1). From (8)
and (9), when 0 < x < p and p ∈ J , we have

u(p) < u(x) ⇒ p− (λ− 1)log(p) < x− (λ− 1)log(x)

⇒ log(Rp(x)) < log(x)⇒ Rp(x) < x. (21)

Using a similar argument,

Rp(x) > x for p < x < Sp and Rp(x) < x for x > Sp. (22)

Combining (21) and (22) with Definition 2.7, we obtain Rp(x) is the unimodal Allee
map for p ∈ J .

Following the same reasoning one can show that Rp(x) is the unimodal Allee
map for λ− 1 < p < λ+ 1.

Theorem 2.10. Assume Sλ < p < λ, then the following statements are true:

(i) 0 < Rp(x) < λ. (ii) min
Sλ<p<λ

max
x∈R+

Rp(x) > λ− 1.

Proof. First we will establish (i). From (4), Rp(x) > 0.
It is easy to verify that Rp(x) attains its maximum when x = λ.
Thus,

max
x∈R+

Rp(x) = Rp(λ) = λλep−(λ−1)log(p)−λ
.
= h(p). (23)

Taking the derivative of the function h(p),

h′(p) = λλep−(λ−1)log(p)−λ(1− λ− 1

p
). (24)

Consider the function h(p) for Sλ < p < λ− 1.
By (24), h(p) is decreasing for 0 < p < λ− 1 and we obtain

sup
Sλ<p<λ−1

h(p) = h(Sλ) = λλeSλ−(λ−1)log(Sλ)−λ = λλeu(λ)−λ, (25)

where u is defined in (8). By (15), we have

h(Sλ) = h(λ) = λλeλ−(λ−1)log(λ)−λ = λ. (26)

From (23), (25) and (26), we obtain

Rp(x) < λ for Sλ < p < λ− 1. (27)

In a similar fashion we obtain,

Rp(x) < λ for λ− 1 ≤ p < λ. (28)

From (27) and (28), we have

Rp(x) < λ for Sλ < p < λ,

and from (23) and (24), we obtain

min
Sλ<p<λ

max
x∈R+

Rp(x) = h(λ− 1) =
λ

e
(

λ

λ− 1
)λ−1. (29)

Next we will compare λ
e ( λ
λ−1 )λ−1 with λ− 1. Observe that

log(
λ

e
(

λ

λ− 1
)λ−1)− log(λ− 1) = λ

[
log(

λ

λ− 1
)− 1

λ

]
. (30)
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Let

f(x) = log
x

x− 1
and g(x) =

1

x
.

Differentiating f − g, we obtain

(f(x)− g(x))′ = − 1

x(x− 1)
+

1

x2
< 0 for x > 1, (31)

which implies that f − g is decreasing for x > 1. By a simple computation, we have

lim
x→+∞

(f(x)− g(x)) = 0. (32)

This plus (31) lead to

f(x) > g(x) for 1 < x < +∞. (33)

From (29), (30) and (33), we have

min
Sλ<p<λ

max
x∈R+

Rp(x) > λ− 1,

and the proof is complete.

3. The composition λ-Ricker map for constant λ. In this section we study
the k-periodic λ-Ricker map,

xn+1 = Rpn(xn) = xλne
pn−(λ−1)log(pn)−xn n = 0, 1, · · · , (34)

where λ > 1, xn, pn ∈ R+ and pn is a k-periodic sequence {p0, p1, · · · , pk−1}, i.e.
pi+k = pi, for all i ≥ 0.

We will find that only for very restrictive intervals of p is it possible that the
composition of unimodal λ-Ricker maps is again of that type. These values are
tabulated later, but only after we interpret the results for the original mapping (2).

Henceforth, “increasing” and “decreasing” shall always mean strictly increasing
and strictly decreasing respectively.

The second derivative of Rp(x) is

R′′p(x) = ((x− λ)2 − λ)xλ−2ep−(λ−1)log(p)−x. (35)

Thus Rp(x) has only two inflection points, λ−
√
λ and λ+

√
λ for x > 0.

Also recall the definition of Sx in (11) and the fact that Sλ−
√
λ satisfies

u(Sλ−
√
λ) = u(λ−

√
λ). (36)

Lemma 3.1. Sλ < λ −
√
λ and λ − 1 < Sλ−

√
λ < λ for 1 < λ < λ0 ≈ 3.08439

where Sλ and Sλ−
√
λ are defined by (15) and (36) respectively.

Proof. Clearly, Sλ < λ− 1 and λ−
√
λ < λ− 1 for λ > 1. Since u(x) is decreasing

for 0 < x < λ− 1, we have

Sλ < λ−
√
λ ⇐⇒ u(Sλ) = u(λ) > u(λ−

√
λ).

Writing this out, we obtain

−(λ− 1) log λ+
√
λ+ (λ− 1) log (λ−

√
λ) > 0,

or, noting that λ− 1 > 0, we need the following to be true,

ϕ(λ)
.
=

√
λ

λ− 1
− log

√
λ+ λ

λ− 1
> 0. (37)
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It is easy to see that for 0 < ε << 1 and λ ∈ (1, 1 + ε), ϕ(λ) > 0. After a lengthy
computation, one sees that

ϕ′(λ) = −3− λ+
√
λ− 1/

√
λ

2(λ+
√
λ)(λ− 1)2

.

It is easy to see that ϕ′(λ) < 0 at least on (1, 4]. Producing a graph in Matlab
bears this out and the graph is seen to decrease and cross the axis near 3. Again,
using Matlab’s “zero” finder fsolve in double precision with an initial guess 3, we
find ϕ(λ0) = 0 where λ0 ≈ 3.08439 .

Hence if 1 < λ < λ0, (37) holds and Sλ < λ−
√
λ. From the definition of S∗ and

noting that Sλ < λ −
√
λ < λ − 1, it is easy seen from Figure 1 that Sλ−

√
λ < λ.

Finally, Sλ−
√
λ > λ− 1 follows from Lemma 2.3.

Note. By Lemma 2.1, the allowable λ interval is (1, e+ 1) where e+ 1 ≈ 3.71828.
So the λ restriction on the interval (1, λ0) does not seem too restrictive.

As previously discussed, pn and Spn are the fixed points of Rpn(x) for n ∈
{0, 1, · · · k − 1}.

Let

P = {pi|i ∈ {0, 1, · · · , k − 1} and pi 6= λ− 1} = U ∪ V, (38)

where

U = P ∩ (0, λ− 1) and V = P ∩ (λ− 1,∞). (39)

Next define Ap and Kp as follows:

p ∈ U→ Ap = p and Kp = Sp (40)

p ∈ V→ Ap = Sp and Kp = p.

By what has been shown earlier, Ap is the Allee threshold and Kp is the carrying
capacity for the mapping Rp(x).

Define

Amin = min
p∈P
{Ap}, Amax = max

p∈P
{Ap};

and

Kmin = min
p∈P
{Kp}, Kmax = max

p∈P
{Kp}.

Then we have the following

Theorem 3.2. Assume 1 < λ < λ0 ≈ 3.08439 and pn satisfies either all pn ∈
(Sλ, λ−

√
λ) ∪ (Sλ−

√
λ, λ) or all pn ∈ [λ−

√
λ, Sλ−

√
λ]\{λ− 1} for n = 0, 1, · · · k −

1. Then the Allee-Ricker equation (34) has two positive k-periodic orbits: one
unstable orbit α = {α0, α1, · · · , αk−1} ⊂ [Amin, Amax] the other stable orbit β =
{β0, β1, · · · , βk−1} ⊂ [Kmin,Kmax].

The proof will be given in Section 4.2.

4. A general theorem. The following comes from [17, Section 3] and deals with
functions that are concave and increasing on an interval containing infinity.

Definition 4.1. Given r ≥ 0, define Fr as the set of all continuous functions
f : R+ → R+ that have the following properties:
(i) f : [r,∞)→ [r,∞).
(ii) There exists a number B ≥ r such that f(B) > B and f is increasing and
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concave on (B,∞).
(iii) There exists a number x∗ > B such that f(x∗) < x∗.

For f ∈ Fr define Bf = inf{B}, where the infimum is taken over all B satisfying
(ii). Notice that Bf ≥ r, f(Bf ) ≥ Bf , and f is increasing and concave on (Bf ,∞).

Lemma 4.2. [17, Lemma 3.1] For each function f ∈ Fr the iterated mapping given
by

xn+1 = f(xn)

has a unique fixed point Lf on the interval (Bf ,∞). This point is asymptotically
stable and attracts all orbits starting at x ∈ (Bf ,∞).

For any function f ∈ Fr, it follows from (ii) of Definition 4.1 that x < f(x) < Lf
for x ∈ (Bf , Lf ) and Lf < f(x) < x for x ∈ (Lf ,∞). Given r ≥ 0 and ` ∈ [r,∞)
we define the class

Ur,`
.
= {f ∈ Fr|Bf ≤ ` < Lf}.

Theorem 4.3. [17, Theorem 3.2] Ur,` is a semigroup under the operation of com-
position of maps. Moreover, for any f, g ∈ Ur,`, Bf◦g ≤ max{Bf , Bg} and if
Lf 6= Lg, Lf◦g lies on the open interval with endpoints Lf and Lg. Otherwise,
Lf = Lg = Lf◦g.

Note. From Lemma 4.2, Lf◦g is a unique fixed point of f ◦ g for x > Bf◦g.
It is this semigroup property that is key to studying periodic equations. In this

next section we will set forth conditions that guarantee that the unimodal Allee
maps form a semigroup with respect to composition.

4.1. A new class of mappings. We next define the class G to be all functions
which satisfy
(A1) f ∈ C1 is a unimodal Allee map (Definitions 2.7 and 2.8),
(A2) All f ∈ G have the same critical point γ ∈ (0,∞) at which a maximum takes
place so that f is increasing for x < γ and f is decreasing for x > γ.
(A3)

sup
f∈G
{Kf} < γ.

(A4)
sup
f∈G
{Af} < inf

f∈G
{Kf}.

Define
If = {x ∈ (0, γ) | x is an inflection point of f}.

(A5) Either

sup
f∈G
{Af} ≤ inf

f∈G
inf If ≤ sup

f∈G
sup If ≤ inf

f∈G
{Kf} (A5-1)

or
sup
f∈G

sup If ≤ inf
f∈G
{Af}. (A5-2)

Note that due to A4 there must be at least one strict inequality in (A5-1).

Theorem 4.4. Let f, g ∈ G,

(a) The class of functions G is a semigroup under the operation of composition of
maps, i.e. f ◦ g ∈ G,

(b) If Af 6= Ag then Af◦g lies on the open interval with endpoints Af and Ag.
Otherwise Af◦g = Af = Ag.
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(c) If Kf 6= Kg then Kf◦g lies on the open interval with endpoints Kf and Kg.
Otherwise Kf◦g = Kf = Kg.

Proof. Let f, g ∈ G be given.

Claim 1. The composition f ◦ g is a unimodal map and satisfies condition (A2)
and (A3) in the definition of the class G.

Since both f and g satisfy conditions (A1) and (A2) of the class G, it follows that

f ′(γ) = g′(γ) = 0, (41)

and thus f and g attain its maximum when x = γ.
From condition (A3), γ > Kf and γ > Kg which implies f(γ) < γ, g(γ) < γ.
Hence

f(x) < γ and g(x) < γ for x > 0. (42)

Taking the derivative of f ◦ g(x),

[f ◦ g(x)]′ = f ′(g(x))g′(x), (43)

and from (42), f ′(g(x)) > 0 for all x > 0.
From (41) and (43), γ is the critical point of f ◦ g. Since f and g are increasing

for x < γ and decreasing for x > γ and (43), f ◦ g is a unimodal map that increases
for x < γ and decreases for x > γ. Thus f ◦ g attains its maximum when x = γ.
This establishes (A2).

For all x < max{Kf ,Kg} < γ, we have

f ◦ g(x) < f ◦ g(γ) = f(g(γ)) < f(γ) < γ.

which implies that

Kf◦g < γ. (44)

Hence f ◦ g satisfies condition (A3) and Claim 1 is established.

Claim 2. (b) is true.

Since f and g are Allee maps, by Definition 2.7 and monotonicity of f and g on
[0, γ], if Ag < Af , then

f(g(Ag)) = f(Ag) < Ag. (45)

Combining with condition (A4),we have,

Ag < Af < Kg =⇒ g(Af ) > Af .

This plus (42) lead to

f(g(Af )) > f(Af ) = Af . (46)

Similarly if Ag > Af , we get

f(g(Ag)) = f(Ag) > Ag, (47)

and

g(Af ) < Af =⇒ f(g(Af )) < f(Af ) = Af . (48)

From (45) through (48), there exists a fixed point Af◦g of f ◦ g such that Af◦g lies
strictly between Af and Ag, thus establishing (b). Since f ◦ g is increasing, Af◦g is
indeed an Allee fixed point.

The case Ag = Af is trivial since a common fixed point is also a fixed point of
the composition. Thus Claim 2 is established.
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Claim 3. (c) is true.

If Kg < Kf , by condition (A4) and monotonicity of f and g, we get

max{Af , Ag} < Kg < Kf =⇒ f(g(Kg)) = f(Kg) ≥ Kg, (49)

and

g(Kf ) < Kf =⇒ f(g(Kf )) < f(Kf ) = Kf . (50)

Similarly if Kg > Kf , we have

f(g(Kg)) < Kg and f(g(Kf )) > Kf . (51)

From (49) through (51), there exists a fixed point Kf◦g of f ◦ g such that Kf◦g lies
strictly between Kf and Kg.

The case Kf = Kg is treated as in Claim 2. Thus Claim 3 is established.

Claim 4. (A4) is true.

Since it is true for each map,

Af◦g < max{Af , Ag} < min{Kf ,Kg} < Kf◦g,

and therefore it is true for the composition, thus establishing Claim 4.

Claim 5. The composition f ◦ g is an Allee map and (A1) and (A5) are satisfied.

We first lay some groundwork before considering the cases (A5-1) and (A5-2).
Let

I = sup(If ∪ Ig) and I = inf(If ∪ Ig).

Define the extensions,

F−(x) =

{
f(x), x ∈ [0, I]
f(I) + f ′(I)(x− I), x ∈ (I,∞)

and

G−(x) =

{
g(x), x ∈ [0, I]
g(I) + g′(I)(x− I), x ∈ (I,∞).

These are increasing convex functions on R+. Clearly F−1− , G−1− ∈ U0,0 where F−1−
and G−1− represent the inverse function of F− and G− respectively and are increasing
concave functions on R+. Recall that U0,0 is a semigroup under composition. By
Lemma 4.2 and Theorem 4.3, the following statements are true (recall the definition
of B in Definition 4.1):
(B1) G−1− ◦ F−1− ∈ U0,0.
(B2) BG−1

− ◦F
−1
−
≤ max{BF−1

−
, BG−1

−
} = 0 =⇒ BG−1

− ◦F
−1
−

= 0.

(B3) There exists at most one fixed point of f ◦ g for 0 < x < I.
By the condition (A5) and (B1), if max{Af , Ag} ≤ I, then

max{Af , Ag} ≤ I ≤ inf If◦g. (52)

Recall that γ is the common critical point at which f and g attain their maximums
and define

F+(x) =

{
f(x), x ∈ [I, γ − ε]
f(γ − ε) + f ′(γ − ε)(x− γ + ε), x ∈ (γ − ε,∞)

and

G+(x) =

{
g(x), x ∈ [I, γ − ε]
g(γ − ε) + g′(γ − ε)(x− γ + ε), x ∈ (γ − ε,∞)

where ε is a sufficiently small positive real number so that max{Kf ,Kg} < γ − ε.
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Similarly we have F+, G+ ∈ U I,`. By Lemma 4.2 and Theorem 4.3 , the following
statements are true:
(C1) F+ ◦G+ ∈ U I,`.
(C2) BF+◦G+ ≤ max{BF+ , BG+}.
(C3) There exists a unique fixed point Kf◦g on the closed interval with endpoints
Kf and Kg.

By condition (A5) and (C1), if I ≤ min{Kf ,Kg}, then

sup If◦g ≤ I ≤ min{Kf ,Kg}. (53)

If I ≤ min{Af , Ag}, then

sup If◦g ≤ I ≤ min{Af , Ag}. (54)

From (52)− (54), f ◦ g satisfies condition (A5).
We next prove that the composition f ◦ g is an Allee map. Since we know by

Claim 2 and Claim 3 that there exists two fixed points Af◦g and Kf◦g of f ◦ g that
lie on the two closed intervals with endpoints Af and Ag, Kf and Kg respectively,
we first show the uniqueness of Af◦g and Kf◦g. There are two cases.

Case (A5-1). max{Af , Ag} ≤ I ≤ I ≤ min{Kf ,Kg}.
In this case f(x) > x and g(x) > x for I ≤ x < min{Kf ,Kg}. Since f and g are

increasing for 0 < x < γ, we get

f ◦ g(x) > f(x) > x for I ≤ x < min{Kf ,Kg}. (55)

Hence BF+◦G+ = I. This plus condition (C3) and (55) imply Kf◦g is the unique
fixed point of f ◦ g for x ∈ [I, γ). Furthermore f ◦ g(x) > x for I ≤ x < Kf◦g
and f ◦ g(x) < x for Kf◦g < x < γ. If 0 < x < min{Af , Ag}, then f(x) < x and
g(x) < x. Similarly we have

f ◦ g(x) < f(x) < x for 0 < x < min{Af , Ag}. (56)

From (55) and (56) and (B3), there exists the unique fixed point Af◦g of f ◦ g
for x ∈ (0, I]. In addition f ◦ g(x) < x for 0 < x < Af◦g and f ◦ g(x) > x for
Af◦g < x ≤ I.

Case (A5-2). I ≤ min{Af , Ag}.
In this case, by (56) we have

f ◦ g(x) < x for 0 < x < I (57)

Combing Lemma 4.2 and Theorem 4.3, we obtain exactly two fixed points Af◦g and
Kf◦g of f ◦g. Furthermore f ◦g(x) < x for x ∈ (0, Af◦g)

⋃
(Kf◦g, γ) and f ◦g(x) > x

for x ∈ (Af◦g,Kf◦g).
As previously discussed, we have f ◦ g(x) < x for x ∈ (0, Af◦g)

⋃
(Kf◦g, γ) and

f ◦ g(x) > x for x ∈ (Af◦g,Kf◦g). Since γ > max{Kf ,Kg}, f(x) < x, g(x) < x for
x > γ. Thus f ◦ g(x) = f(g(x)) < f(x) < x for x > γ which follows since f and g
are decreasing for x > γ. Thus f ◦ g is an Allee map and Claim 5 is established.

From Claim 1 and Claim 5, f ◦ g satisfies condition (A1). Thus the composition
f ◦ g satisfies conditions (A1) − (A5) which establishes (a) and the Theorem is
proved.
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4.2. Proof of theorem 3.2.

Proof. Assume 1 < λ < λ0 and pn ∈ (Sλ, λ−
√
λ)
⋃

(Sλ−
√
λ, λ) for n = 0, 1, · · · k −

1. Thus for each Ri(x) where i ∈ P , defined in (38), we obtain the following
conclusions:
(D1) Rp(x) is a unimodal Allee map and there exist only two nonzero fixed points
Ap and Kp which follows from Theorem 2.9.
(D2) All Rp(x) have the same critical point γ and Rp(x) is increasing for x < γ and
decreasing for x > γ. Moreover, it follows from Theorem 2.10 that Kp < γ.
(D3) From (38), (39) and (40) it follows that

max
p∈P
{Ap} < min

p∈P
{Kp}.

(D4) From the discussion following (35), each Rp has a unique inflection point IRp
in the interval 0 < x < γ. Moreover,

max
p∈P
{Ap} ≤ min

p∈P
{IRp} ≤ max

p∈P
{IRp} ≤ min

p∈P
{Kp},

where at least one of the inequalities is strict.
Recall the definition of G, and notice that Ri(x) ∈ G for i ∈ P , where P is defined

in (38). It follows by Theorem 4.4 that F0 = Rpk−1
◦ Rpk−2

◦ · · · ◦ Rp0 ∈ G which
implies that F0 is an Allee map and has only two nonzero fixed points AF0 and
KF0

. Moreover, AF0
is unstable and KF0

is asymptotically stable. To show AF0

and KF0
lie in (Amin, Amax) and (Kmin,Kmax) respectively, we use induction in the

case where at least one pair of maps are unequal. From Theorem 4.4,

min{Ap0 , Ap1} < ARp1◦Rp0 < max{Ap0 , Ap1},
and

min{Kp0 ,Kp1} < KRp1◦Rp0 < max{Kp0 ,Kp1}.
Assume as an induction hypothesis,

min
0≤i≤m

{Api} < ARpm◦···◦Rp0 < max
0≤i≤m

{Api},

and
min

0≤i≤m
{Kpi} < KRpm◦···◦Rp0 < max

0≤i≤m
{Kpi}.

Applying Theorem 4.4 to Rpm+1
and Rpm ◦ · · · ◦Rp0 we get

min{Apm+1 , ARpm◦···◦Rp0 } < ARpm+1
◦···◦Rp0 < max{Apm+1 , ARpm◦···◦Rp0 },

and

min{Kpm+1
,KRpm◦···◦Rp0 } < KRpm+1

◦···◦Rp0 < max{Kpm+1
,KRpm◦···◦Rp0}.

From the induction hypothesis it follows that

min
0≤i≤m+1

{Api} < ARpm+1
◦···◦Rp0 < max

0≤i≤m+1
{Api},

and
min

0≤i≤m+1
{Kpi} < KRpm+1

◦···◦Rp0 < max
0≤i≤m+1

{Kpi}.

This shows that AF0 = ARpk−1
◦Rpk−2

◦···◦Rp0 ∈ (Amin, Amax) and KF0 =

KRpk−1
◦Rpk−2

◦···◦Rp0 ∈ (Kmin,Kmax) which implies KF0
< λ. To show that the two

entire periodic orbits lie in (Amin, Amax) and (Kmin,Kmax) respectively, notice that
AFi = ARpi−1

◦···Rp0◦Rpk−1
◦···◦Rpi+1

◦Rpi and KFi = KRpi−1
◦···Rp0◦Rpk−1

◦···◦Rpi+1
◦Rpi

and apply a similar argument.
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The remaining case in which all the mappings are the same follows since they all
share the same fixed points.

This proves Theorem 3.2 in the case where all the pn ∈ (Sλ, λ−
√
λ)∪(Sλ−

√
λ, λ).

A similar argument establishes the result when all the pn ∈ [λ−
√
λ, Sλ−

√
λ]\{λ−

1}.

5. Attenuation and resonance. We wish to determine whether periodic fluctu-
ations in the parameters in a dynamical system produce attenuation or resonance
which we now define. Let {x̄} = {x̄0, x̄1, · · · , x̄k−1} be an asymptotically stable
k-periodic solution of (34) and K = {K0,K1, · · · ,Kk−1} be the carrying capacities
of the individual maps Rpn , n = 0, 1, · · · , k − 1.

Definition 5.1. A periodic solution {x̄} of equation (34) is said to be attenuant
or resonant if

av(x̄) < av(K) or av(x̄) > av(K),

respectively, where “av” represent the average of any n-periodic sequence t =
{t0, t1, · · · , tn−1},

av(t) =
1

n

n−1∑
i=0

ti.

The interpretation, at least in population biology, is quite straightforward. At-
tenuation means the periodic environmental fluctuations have a deleterious effect
on the average population whereas resonance has the exact opposite enhancing ef-
fect. In [5] they considered the 2-periodic Beverton-Holt equation and proved there
exists a globally attracting asymptotic stable periodic solution that exhibited atten-
uation. They further conjectured [6] the same would be true for higher periods. In
2003 a complete solution was announced [10] and later appeared in [11]. Thereafter
followed solutions using different techniques [20], [21, 22]. In [12] the resonance
question was solved in the 2-periodic case where a pair of parameters, the intrinsic
growth rate and the carrying capacities, were allowed to vary periodically. In fact
a formula was derived giving an exact expression for the difference,

av(K̄)− av(a).

The expression was rather involved for such a simple situation and the second
author even commented “the calculations, even for period 4, seem daunting at
best.” In 2011 the first author took up the challenge and there resulted [33] where
the expression was derived for arbitrary period. In addition an informal conjecture
as to the root cause of resonance was proven to be wrong.

In [27] the periodic Ricker maps fi = xepi−x, pi ∈ (0, 2), i = 0, 1, · · · , k − 1
was studied and it was shown that the periodic difference equation xn+1 = fn(xn)
always has a periodic solution x̄ = {x̄0, x̄1, · · · , x̄k−1} that globally attracts all
solutions with x0 > 0 and there is neither attenuation nor resonance.

Next observe that for each Allee-Ricker map defined by (34),

xi+1

xi
= xλ−1i epi−(λ−1) log(pi)−xi , i = 0, 1, · · · k − 1,

and if {xi} is a periodic orbit then xk = x0 and therefore,

k−1∏
i=0

xi+1

xi
=

k−1∏
i=0

xλ−1i epi−(λ−1) log(pi)−xi =
xk
x0

= 1.
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Thus, the natural logarithm of the second product must be zero, from which it
follows that

av(x̄)− av(p) = (λ− 1)
1

k

k−1∑
i=0

(log(xi)− log(pi)). (58)

According to the discussion in Section 2, pi are not alway equal to Ki, but we still
wish to compute,

av(x̄)− av(K) = (λ− 1)
1

k

k−1∑
i=0

(log(xi)− log(Kpi)). (59)

Two cases occur here. First if all the carrying capacities Ki are known a priori
and satisfy the conditions of Theorem 3.2, then one simply chooses pi = Ki in (58).
The second case is more interesting when we suppose for certain values of the index
i, say

i ∈ U ⊂ {0, 1, 2, . . . , k − 1},

the Allee threshold is the only fixed point of

Rpi(x) = xλepi−(λ−1)log(pi)−x,

that can be measured (aside from 0).Then for i ∈ U, pi = Ai < λ − 1. In order
to compute Ki, let σ = pi and form a = u(σ), see Figure 1. Then find Sσ, the
other solution of u(Sσ) = a. Then Ki = Sσ. We know from Theorem 3.2 that
Sσ ∈ (λ − 1, λ). This requires a solver that won’t stray from that interval, e.g.
simple bisection method.

6. Interpretation of results for the original λ-Ricker equation. We began
this study of the λ-Ricker equation (1)-(2) which we repeat here

xn+1 = Rρ(xn), where Rρ(x) = xλeρ−x, λ > 1, ρ > 0. (60)

Theorem 3.2 tells us that if 1 < λ < λ0 ≈ 3.08439 and exactly one of the following
conditions (C1,C2) hold, then there is an unstable periodic Allee state and a periodic
attracting state each lying within the envelopes of the Allee thresholds and carrying
capacities respectively of the individual maps, Rρn(xn):

C1: All pn ∈ (Sλ, λ−
√
λ) ∪ (Sλ−

√
λ, λ) n = 0, 1, . . . , k − 1,

C2: All pn ∈ [λ−
√
λ, Sλ−

√
λ]\{λ− 1} n = 0, 1, . . . , k − 1.

The relation between the pn and the ρn comes from (4) and (8) and is given by

ρ = uλ(p) = p− (λ− 1) log (p),

where we have now indicated by a subscript the dependence on λ to avoid confusion
in interpreting Table 6.

But the function uλ(p), for p 6= λ− 1, is 2-to-1 (see Figure 1) and Sp was defined
so that uλ(Sp) = uλ(p) whenever p 6= λ− 1. Thus each interval in C1 gives rise to
the same interval of ρ values. Likewise the ρ values determined by C2 are completely
determined by either of the two p-intervals [λ −

√
λ, λ − 1) or (λ − 1, Sλ−

√
λ], see

Table 1.
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Table 1: For various admissible values of λ, 1 < λ < λ0 ≈ 3.08439,
the boundaries of the intervals of validity of Theorem 3.2 are
shown. The valid ρ values are found using the last three columns
and the fact that uλ(∗) = uλ(S∗), e.g. for λ = 2, all ρ val-

ues must be in (uλ(λ − 1), uλ(λ −
√
λ)] = (1.0, 1.12059] or all

ρ values must be in (uλ(λ −
√
λ), uλ(λ)) = (1.12059, 1.30865).

λ λ−
√
λ Sλ Sλ−

√
λ uλ(λ) uλ(λ−

√
λ) uλ(λ− 1)

1.05 0.025301 a 0.08712 1.04756 0.20914 0.19979
1.1 0.05119 a 0.17291 1.09047 0.34841 0.33026
1.2 0.10455 0.00302 0.34097 1.16354 0.55616 0.52189
1.3 0.15982 0.01812 0.50492 1.22129 0.70992 0.66119
1.4 0.21678 0.04762 0.66535 1.26541 0.82832 0.76652
1.5 0.27526 0.08928 0.82270 1.29727 0.92028 0.84657
1.6 0.33509 0.14051 0.97737 1.31799 0.99110 0.90650
1.7 0.39616 0.19922 1.12965 1.32856 1.04432 0.94967
1.8 0.45836 0.26384 1.27981 1.32977 1.08244 0.97851
1.9 0.52160 0.33319 1.42805 1.32233 1.10737 0.99482
2.0 0.58579 0.40638 1.57457 1.30865 1.12059 1.00000
2.1 0.65086 0.48272 1.71951 1.28387 1.12327 0.99516
2.2 0.71676 0.56169 1.86301 1.25385 1.11638 0.98121
2.3 0.78342 0.64288 2.00519 1.21722 1.10073 0.95893
2.4 0.85081 0.72594 2.14615 1.17434 1.07701 0.92894
2.5 0.91886 0.81061 2.28599 1.12556 1.04579 0.89180
2.6 0.98755 0.89667 2.42478 1.07118 1.00760 0.84799
2.7 1.05683 0.98393 2.56260 1.01147 0.96286 0.79793
2.8 1.12668 1.07225 2.69951 0.94669 0.91198 0.74198
2.9 1.19706 1.16150 2.83557 0.87705 0.85531 0.68048
3.0 1.26795 1.25157 2.97083 0.80278 0.79315 0.61370
3.08 1.32501 1.32415 3.07849 0.74015 0.73966 0.55667

a values not reliable
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