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A collection M of monotonic maps from the positive reals to the positive reals is defined.
Each map is linearly bounded, has non-negative Schwarzian and is either concave increasing
or convex decreasing. It is shown thatM is a semigroup under composition that contains the
sub-semigroup of fractional linear maps and each function inM that is uni-linearly bounded
has a globally attracting exponentially asymptotically stable fixed point. Thus we obtain a
condition under which a periodic difference equation (mapping system) will have a periodic
solution having the same properties. Certain restricted algebraic operations are valid in M
and the structure ofM is explored together with conjectures regarding the interlacing of roots
of a rational function in M.
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1. Introduction

It is impossible to overestimate the importance of the semigroup in the study of
periodic difference equations, or as we prefer to call them,“periodic mapping sys-
tems”. It is understood that the semigroup operation is composition of maps. This
notion was explored in [4] where it was shown that the class of continuous concave
maps f : R+ → R

+ (and thus increasing) whose graph crosses the diagonal form a
semigroup and each map in the semigroup has a globally attracting exponentially
asymptotically stable fixed point. No differentiability was assumed. In applications
to rational difference equations, see Section 5, the narrow class of concave maps
proves to be too burdensome and one is forced to admit convex decreasing maps X
as well. These maps do not form a semigroup but taken together with the concave
maps V plus a condition on the Schwarzian, S(f) ≥ 0 one does obtain a semigroup
M = V ∪ X , Section 3. The semigroup M is also invariant under the formation
of the reciprocal provided it is defined and each of V and X is invariant under
addition and positive scalar multiplication.

In Section 2 we study the special class of fractional linear maps F ⊂ M where
the Schwarzian need not be considered at all. In fact, in the general case the
importance of the Schwarzian was not realized until certain counterexamples to
proposed theorems were discovered, see (18). In the study of maps of an interval
one often sees the Schwarzian used as an arbiter to settle the stability question
at a non-hyperbolic fixed point [3] and in the case of Singer’s Theorem [8], [1],
to predict the maximum number of stable fixed points for a map with multiple
critical points. In both cases it is the negative Schwarzian that implies stability. It
is thus counterintuitive, at least to the author, that the non-negative Schwarzian
plays such an important role in the present work.
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In Subsection 3.2 we explore the structure ofM and give several examples and a
conjecture that a rational function is inM if, and only if the roots of the numerator
and denominator are interlaced. Examples suggest that all the roots must be real.

2. Fractional Linear Maps

Throughout this work, R+ = [0,∞) and R
+
0 = (0,∞).

We begin with a study of properties of a certain subclass F of fractional linear
maps

F = {f : R+ → R
+ | f(x) =

ax+ b

x+ d
, a, b ≥ 0, a+ b > 0, d > 0 }, (1)

and the subset

F0 = {f ∈ F | b > 0 }. (2)

Lemma 2.1:

(1) F and F0 are semigroups under composition,
(2) if f ∈ F and g ∈ F0 then f ◦ g and g ◦ f ∈ F0,
(3) f ∈ F =⇒ f is bounded,
(4) f ∈ F =⇒ f is
a) strictly concave and strictly increasing ⇐⇒ ad− b > 0 or
b) strictly convex and strictly decreasing ⇐⇒ ad− b < 0 or
c) constant 6= 0 when ad− b = 0.

Proof: Let

f(x) =
ax+ b

x+ d
, and g(x) =

αx+ β

x+ δ
.

Then (1) and (2) follow from

f ◦ g(x) =
(aα+ b)x+ (aβ + bδ)
(α+ d)x+ (β + dδ)

=
Ax+B

x+D
(3)

upon division of numerator and denominator by (α+ d) and the inequalities in (1)
and (2). Item (3) follows from the fact that the coefficient of x in the denominator
is positive. Item (4) uses the fact that f is defined on all of R+ → R

+ and is a
trivial calculus exercise. Note that a+ b > 0 excludes the identically zero function.
�

Corollary 2.2: If at least one of the maps {f0, f1, . . . , fn} ⊂ F satisfies fj(0) > 0,
then the composite fn ◦ fn−1 ◦ · · · ◦ f0(0) > 0. This follows from (2) of Lemma 2.1.

The following Lemma is an elementary exercise.

Lemma 2.3: Referring to (3), one has

AD −B =
(ad− b)(αδ − β)

(α+ d)2
.
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Definition 2.4: Define, for f ∈ F

x− = inf{x ∈ R+ : |f ′(x)| < 1}.

Lemma 2.5: For f ∈ F

(1) |f ′(t)| < 1 ∀t > x− and f has a unique fixed point xf ,
(2) For the case ad− b ≤ 0, one has 0 ≤ x− < xf ,
(3) For the case ad− b > 0, if b > 0 or a/d > 1, one has 0 ≤ x− < xf .

Proof: (1): In either case ad−b ≤ 0 or > 0 it is easily shown that |f ′(t)| is either
identically zero or a strictly decreasing function.

(2): If ad−b = 0 then f ≡ k > 0 and the conclusion follows with 0 = x− < xf = k.
For the case ad− b < 0, if x− = 0 we are done since we must have b > 0 and thus
f(0) > 0. This, together with Lemma 2.1, (4b) implies xf > 0. We are thus left
with the case x− > 0. Solving f ′(x−) = −1 for x− and f(xf ) = xf for xf we wish
to satisfy

x− =
√
b− ad− d <

a− d+
√

(a− d)2 + 4b
2

= xf .

By a reversible set of steps one arrives at

−4ad < 2a2 + 2d2 + 2(a+ d)
√

(a− d)2 + 4b,

which is trivially true.
(3): Solving f ′(x−) = 1 for x− one has

x− = −d+
√
ad− b .

The conditions b > 0 or a/d > 1 insures that the graph of f lies above the diag-
onal in some neighborhood (0, ε). Boundedness assures that the graph crosses the
diagonal and finally concavity assures that 0 < f ′(xf ) < 1 and thus 0 ≤ x− < xf .
�

Remark 1 : The case (3) was treated in [4] where it was shown that arbitrary
continuous concave maps f : R+ → R

+ that cross the diagonal y = x in the x, y
plane form a semigroup under composition and have a unique globally attracting
exponentially asymptotically stable fixed point.

Remark 2 : The requirement d > 0 in the definition of F is essential to the
argument in the convex case. For otherwise the map f(t) = b/t has x− = xf =

√
b.

We next consider the discrete dynamical system

xn+1 = f(xn), x0 ∈ R+ , f ∈ F . (4)

The next lemma applies to arbitrary continuous f and its proof is a simple exercise.

Lemma 2.6: Let X be a metric space and assume f : X → X is continuous.
Assume

(1) f has a unique fixed point xf and
(2) f ◦ fhas a globally asymptotically stable fixed point y.

Then y = xf is a globally asymptotically stable fixed point of f .

Theorem 2.7 : (Stability and Invariant Intervals)



September 16, 2008 10:17 Journal of Difference Equations and Applications SemiGps

4 Semigroups of Maps

(1) The fixed point xf of (4) guaranteed by Lemma (2.5) is globally attracting
exponentially asymptotically stable with respect to R

+
0 ,

(2) (Concave case, ad − b > 0 with b > 0 or a/d > 1): Any interval [t1, t2]
containing xf is invariant under f .

(3) (Convex case, ad − b ≤ 0): For any τ ∈ (0, xf ) the interval I = [τ, f(τ)] ,
contains xf on its interior and is invariant under f .

Proof: We assume ad−b 6= 0 since otherwise all the statements are trivially true.
(1) The local exponential asymptotic stability is guaranteed by Lemma (2.5), (1).
It remains to establish globally attracting.

(2) Under application of f , points in (0, xf ) move monotonically to the right
and remain in (0, xf ) while points in (xf ,∞) move monotonically to the left and
remain in (xf ,∞). Uniqueness of xf implies globally attracting.

(3) From Lemma 2.3, f ◦ f ∈ F is a concave map and by (2) has a fixed point
s0 that is globally attracting exponentially asymptotically stable with respect to
R

+
0 . Since f has a unique fixed point, Lemma 2.6 gives xf = s0. To obtain the

invariance note that f maps [τ, xf ) one-to-one onto (xf , f(τ)]. Thus, for points
t ∈ (xf , f(τ)], f(t) = f ◦ f(s) for some s ∈ [τ, xf ) and thus by (2), f(t) ∈ [τ, xf ). �

As a corollary to the above, one has

Theorem 2.8 : Let {f0, f1, . . . , fp−1} be a p-periodic system of Fractional Linear
Maps

fj(x) =
ajx+ bj
x+ dj

, aj , bj ≥ 0, aj + bj > 0, dj > 0,

and assume at least one of the bj > 0. Then there exists a p-periodic orbit,

{x̂0, x̂1, . . . , x̂p−1}, x̂n+1 mod p = fn(x̂n)

which is exponentially asymptotically stable and globally attracting on (0,∞).

3. General Convex or Concave Functions

From this point on we assume all maps f ∈ C3(R+,R+).
In Section 2 we treated a very narrow class F of Fractional Linear mappings

and saw that members of F were concave or convex in addition to bounded. From
the very form of the mappings it was easily shown that F is a semigroup under
composition and this, in turn, led to a smooth treatment of p-periodic difference
equations

xn+1 = fn(xn), fn+p = fn, fn ∈ F .

In this section we will extend the results of Section 2 to the much wider class of
maps. By f increasing( ↗) we mean f ′(x) > 0 ∀ x ∈ R+ and by concave we mean
f ′′(x) ≤ 0 ∀ x ∈ R+ and similarly for decreasing(↘) and convex. By R

∗ we mean
the extended reals {−∞} ∪ R ∪ {∞}.

Central to our investigation is the Schwarzian, [5, Ch. 10] of a C3 function f ,

S(f) .=
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2.



September 16, 2008 10:17 Journal of Difference Equations and Applications SemiGps

Periodic Difference Equations 5

Since only the sign of S concerns us, we define the modified Schwarzian,

Ŝ(f) .= (f ′)2 S(f) = f ′f ′′′ − 3
2

(f ′′)2 (5)

which is much easier to deal with. From the Chain Rule for S, [2],

S(f ◦ g)(x) = S(f)(g(x)) [g′(x)]2 + S(g)(x),

we obtain the Chain Rule for the modified Schwarzian,

Ŝ(f ◦ g)(x) = Ŝ(f)(g(x)) [g′(x)]4 + Ŝ(g)(x) [f ′(g(x))]2. (6)

It is easy to verify that if f is Fractional Linear then Ŝ(f) ≡ 0.
In subsection 3.1 we define a special sub-class of monotonic functions M which

contains the fractional linear maps F and investigate some of its properties. In
subsection 3.2 we give several examples which, together with Lemmas of subsection
3.1, give us methods for examining the structure of M.

3.1. Definitions and Properties

Definition 3.1: f : R+ → R
+ is called linearly bounded if there exist a, b ∈ R+

such that

f(x) ≤ ax+ b for all x ∈ R+,

and f is called uni-linearly bounded if in addition, a < 1.

Lemma 3.2: Let f ∈ C3(R+,R+) and assume that for all x ∈ R+,

(1) |f ′(x)| > 0,
(2) f ′(x)f ′′′(x) ≥ 0 and
(3) f is linearly bounded.

Then f is either concave increasing or convex decreasing on all of R+ and in either
case limx→∞ f

′′(x) = 0.

Proof: First consider the case f ′(x) > 0 ∀x. Then from (2), f ′′′(x) ≥ 0 and thus
f ′′(x) is increasing. Let limx→∞ f

′′(x) = c ∈ R∗.
If c < 0 then

f ′(x) = f ′(0) +
∫ x

0
f ′′(s)ds < f ′(0) + cx→ −∞

as x→∞, contradicting f ′(x) > 0.
If c > 0 then there exists x0 > 0 such that x ≥ x0 =⇒ f ′′(x) > c/2 and thus

integrating as above from x0 to x, one obtains f ′(x) > f ′(x0) + c(x−x0)/2. There-
fore given any M > 0 there is an x1 such that f ′(x) > M ∀x > x1 contradicting
(3).

Thus f ′′(x) is increasing with limit 0 and is therefore f ′′(x) ≤ 0 and f is concave
and increasing.

Next consider the case f ′(x) < 0 ∀x. Then we must have f ′′′(x) ≤ 0. Thus f ′′(x)
is decreasing and therefore limx→∞ f

′′(x) = c ∈ R∗. If c < 0 then arguing as above
we obtain f(x) → −∞ as x → ∞ contradicting the fact that f ≥ 0 ∀x ≥ 0. If
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c > 0 then arguing as before, f ′′(x) > c/2 for x > x0 and thus f ′ →∞ ultimately
contradicting (3).

Thus f ′′(x) is decreasing with limit 0 and is therefore f ′′(x) ≥ 0 and f is convex
and decreasing. �

Remark 1 : Lemma 3.2 says that the first three derivatives have constant signs
and they alternate:

sign{f ′, f ′′, f ′′′} = {+,−,+}, or

sign{f ′, f ′′, f ′′′} = {−,+,−}.

We next define a class of functions

Σ = {f : R+ → R
+ | f ∈ C3, Ŝ(f) ≥ 0 and f is linearly bounded},

and the two subsets

V = Σ ∩ {f ′(x) ≡ 0 or f ′(x) > 0 ∀ x} (7)

X = Σ ∩ {f ′(x) ≡ 0 or f ′(x) < 0 ∀ x}.

By Lemma 3.2, V consists of functions that are constant or strictly increasing and
“concaVe” while X consists of functions that are constant or strictly decreasing
and “conveX”.

Finally we define the class that is the sought after enlargement of the class F
discussed in Section 2,

M = V ∪ X ,

a sub-class of monotonic maps.

Theorem 3.3 : M is a semi-group under the operation of composition. More
precisely, if f, g ∈ V or f, g ∈ X then f ◦ g ∈ V and if f ∈ V and g ∈ X then
f ◦ g ∈ X and g ◦ f ∈ X .

Proof: Let f, g ∈ M. If either of f or g is constant then f ◦ g is constant and
we are done. From (6) it follows that Ŝ(f ◦ g) ≥ 0. The linear boundedness is
immediate. Thus f ◦ g ∈ Σ. To determine whether f ◦ g ∈ V or X one need only
look at the sign of

[f ◦ g]′(x) = f ′(g(x)) g′(x).

�
The next lemma tells us that V, X andM are each closed under certain algebraic

operations.

Lemma 3.4: Assume α ≥ 0. Then

f, g ∈ X =⇒ f + g and αf ∈ X

f, g ∈ V =⇒ f + g and αf ∈ V

and in each case Ŝ(f + g) ≥ Ŝ(f) + Ŝ(g).

Further, if g ∈M and
1
g

is defined and linearly bounded then
1
g
∈M.
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Proof: Multiplication by α follows since it leaves all the membership properties
of classes V and X unchanged. Linearly bounded is immediate. Let f and g be in
the same class. Then from Remark 1,

f ′′g′′ ≥ 0 and (8)

f ′, f ′′′, g′, g′′′ are all ≥ 0 or all ≤ 0 (9)

from which it is clear that the sum of two convex’s is convex and likewise for concave
maps. We next prove the positivity condition on the Schwarzian. Suppressing the
arguments of the individual functions,

Ŝ(f + g) = (f ′ + g′)(f ′′′ + g′′′)− 3
2

(f ′′ + g′′)2 (10)

= Ŝ(f) + Ŝ(g) +R, where (11)

R = f ′g′′′ + f ′′′g′ − 3f ′′g′′. (12)

Since Ŝ(f) ≥ 0 and Ŝ(g) ≥ 0 one has

f ′f ′′′ ≥ 3
2

(f ′′)2 ≥ 0 and (13)

g′g′′′ ≥ 3
2

(g′′)2 ≥ 0. (14)

Multiplying these we obtain

f ′f ′′′g′g′′′ ≥ (
3
2

)2(f ′′g′′)2

and taking the square root

3f ′′g′′ ≤ 2
√
f ′g′′′

√
f ′′′g′

or equivalently,

−3f ′′g′′ ≥ −2
√
f ′g′′′

√
f ′′′g′.

Substituting this in R,

R ≥ f ′g′′′ + f ′′′g′ − 2
√
f ′g′′′

√
f ′′′g′ = (

√
f ′g′′′ −

√
f ′′′g′)2 ≥ 0.

Thus Ŝ(f + g) ≥ Ŝ(f) + Ŝ(g).

Finally, let g ∈M. Although f(x) =
1
x
/∈M, it is fractional linear in the general

sense and therefore the Schwarzian Ŝ(f) ≡ 0. Thus f ◦ g ∈ M provided f ◦ g is
linearly bounded. �

3.2. Examples and Techniques for Examining the Structure of M

Recall that

M = V ∪ X ,
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where V, the concave increasing and X , the convex decreasing functions are defined
in (7). We now give some examples:

(1) f(x) = log (α+ x) with α ≥ 1. Then Ŝ(f)(x) =
1

2(α+ x)4
and f ∈ V.

(2) If f(x) = (x + α)β with α > 0 and |β| < 1, then Ŝ(f)(x) =
1
2
β2(1 − β2)

and f ∈M.
(3) If f ∈M then for c ∈ R+, fc ∈M where fc(x) = f(c+ x).

(4) f(x) =
ax2 + bx

x+ c
where a > 0, b > c > 0 and b > ac. Then

f ′(x) =
2ax2 + 2acx+ bc

(x+ c)2
> 0 and Ŝ(x) =

6ac(b− ac)
(x+ c)4

> 0.

Thus, f ∈ V.
(5) This example illustrates a method of building members of M from other
simpler functions in M as well as verifying whether or not a given function
belongs to M. Let

f(x) =
x2 + 6x+ 7

(x+ 1)(x+ 2)
= 1 +

2
x+ 1

+
1

x+ 2
.

One may compute, using f ,

f ′ = − 3x2 + 10x+ 9
(x+ 1)2(x+ 2)2

and (15)

Ŝ(f) =
12

(x+ 1)4(x+ 2)4
. (16)

From Ŝ(f) > 0 we see that (2) of Lemma 3.2 holds. Then (1) of Lemma 3.2
follows from (15) and we conclude f ∈ X .

Or one may conclude directly from the partial fraction decomposition that
f is the sum of three functions in X and apply Lemma 3.4.

(6) In a given partial fraction decomposition one may have to re-distribute
the positive constant (assuming one occurs) so that the terms all represent
functions with values in R

+, e.g.

4− 1
x+ 1

− 2
x+ 4

= 2 + (1− 1
x+ 1

) + (1− 2
x+ 4

),

the sum of three functions in V.

(7) The occurrence of double, non-removable roots can be fatal, e.g.

f(x) =
ax2 + bx+ c

(x+ d)2
, a, b, c ≥ 0, a+ b+ c > 0, d > 0, gives us

Ŝ(f)(x) =
−6(ad2 − bd+ c)2

(x+ d)8
.

But, if c > 0 and a+ b > 0,
1
f

is defined and linearly bounded so that Lemma
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3.4 tells us
1
f
/∈ M. Thus, fractional quadratics with double roots in (−∞, 0)

in the numerator or denominator never occur in M.
(8) We next consider the fractional quadratic

f(x) =
(x+ a)(x+ b)
(x+ c)(x+ d)

, a, b, c, d > 0.

The following is based solely on numerical experimentation. It is curious to
note that when a < c < b < d, i.e. the roots of the numerator and denominator
appear in alternate fashion, then Ŝ(f) > 0, but whenever both roots of the
numerator are between the roots of the denominator, i.e. c < a < b < d, then
Ŝ(f) < 0.
(9) Complex roots can also be troublesome. Let

f(x) =
(x2 + αx+ 1)(x+ 1)(x+ 3)
(x2 + βx+ 2)(x+ 2)(x+ 4)

.

When α = β = 0, Ŝ(f) changes sign in R
+and when α = β = 1, Ŝ(f) < 0.

Based on Examples (7), (8) and (9) we make the following

Definition 3.5: Let A,B ⊂ R be subsets. We say A isolates B,

A < B,

if given any two points inB, say b1 < b2 there is a point a ∈ A such that b1 < a < b2.
We also say A and B are interlaced if A < B and B < A.

Conjecture 1 Given a rational function f(x) =
P (x)
Q(x)

: R+ → R
+, assume the

roots of P , RP and the roots of Q, RQ are all in R−. Then RP and RQ are interlaced
if, and only if Ŝ(f) ≥ 0.

Example (9) shows requiring the real roots to be interlaced is not enough to
guarantee Ŝ(f) ≥ 0. Thus we make

Conjecture 2 Given a rational function f(x) =
P (x)
Q(x)

: R+ → R
+, assume

Ŝ(f) ≥ 0. Then the roots of P , RP and the roots of Q, RQ are all real and
interlaced.

If the conjectures are true then for every rational function in M the roots must
be real and the degrees of the numerator and denominator differ by no more than

1. Then for every rational function f ∈M,
1
f
∈M provided only that

1
f

is defined

since linearly bounded is automatic..

4. Existence and Global Stability of Periodic Points

The existence of a p-periodic solution P = {x̂p−1, . . . , x̂1, x̂0} of the p-periodic
difference equation

xn+1 = fn(xn), fn+p = fn, fn ∈M. (17)
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is equivalent to the problem of finding a fixed point x̂0 of the composite map

F (x) .= fp−1 ◦ fp−2 ◦ · · · ◦ f1 ◦ f0(x).

Likewise, P is globally asymptotically stable (GAS) if, and only if, x̂0 is GAS as a
fixed point of F .

Lemma 4.1: Define

Vu = {f ∈ V | f is uni-linearly bounded (Definition 3.1) }.

Then Vu is a semigroup under composition and f ∈ Vu has a globally asymptotically
stable, and hence unique, fixed point, xf . If f(0) > 0 or f ′(0) > 1 then xf > 0.

Proof: If f(x) ≤ afx+ bf and g(x) ≤ agx+ bg, then f ◦g(x) ≤ afagx+afbg + bf
and the first statement follows. Uni-linearly bounded implies that the graph of f
crosses the diagonal at say, xf and f ↗ implies 0 ≤ f ′(xf ) < 1. Global attraction
of xf follows from the concavity. �

The positivity condition on the Schwarzian plays a subtle role in showing stability
in the convex case as the following example shows. We construct f as follows:

f(x) = 5− 2x, 0 ≤ x ≤ 2

and continue f to (2,∞) as a C3, decreasing, convex function with asymptotic
value 0 at ∞. Clearly f ′(xf ) = −2 and thus xf is unstable. The graph must turn
rapidly to avoid colliding with the x-axis. Thus the second derivative goes from 0 at
0 to some large positive value in an interval to the right of x = 2, then approaches
0 as x→∞. Thus f ′′′ changes sign.

It is thus tempting to build the theory around the assumption that functions
satisfy either the sign distribution sign{f ′, f ′′, f ′′′} = {−,+,−} or {+,−,+}. The
following example should put an end to that thought.

Define

f(x) =
1

(2x+ 5)3
, and (18)

g(x) =
4

1 + arctan 5x
. (19)

Then sign{f ′, f ′′, f ′′′} = sign{g′, g′′, g′′′} = {−,+,−}, but h .= f ◦ g fails to satisfy
either one; sign{h′, h′′, h′′′} = {+, 0, 0} where “0” indicates the derivative changes
sign (computer recommended). Note that Ŝ(f) < 0 and Ŝ(g) < 0.

Lemma 4.2: Let f ∈ X . Then f has a unique fixed point xf , −1 < f ′(xf ) ≤ 0
and xf is globally attracting. If f(x) > 0 for some x then xf > 0.

Proof: If f ≡ constant then the statements are trivially true. The proof employs
Lemma 2.6. Note that f(0) > 0 since otherwise f ≡ 0. Also, f ↘ implies that the
graph of f crosses the diagonal at a unique point xf . By Theorem 3.3, f ◦ f ∈ V.
Since f is bounded f ◦ f ∈ Vu. Then by Lemma 4.1, f ◦ f has a globally attracting
exponentially asymptotically stable fixed point y. Then by Lemma 2.6, y = xf is
a globally asymptotically stable fixed point of f . �

Theorem 4.3 : Let {fn, n = 0, 1, . . . , p − 1} be a collection of functions in M,
and assume one of the following is true

(1) fn ∈ V and uni-linearly bounded for all n and fn(0) > 0 for some n
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(2) fn ∈ V, fn(0) = 0 and linearly bounded for all n
and f ′p−1(0) · · · f ′1(0)f ′0(0) > 1

(3) For some n, fn ∈ X and fn(x) > 0 for some x.

Then (17) has a globally attracting exponentially asymptotically stable periodic so-
lution

{x̂0, x̂1, . . . , x̂p−1}, x̂n+1 mod p = fn(x̂n)

that is not the identically zero sequence.

Proof: Parts (1) and (2) are covered by Lemma 4.1: For (1), we apply Theorem
3.3 to obtain

F
.= fp−1 ◦ fp−2 ◦ · · · ◦ f1 ◦ f0 ∈ Vu.

Assume fk(0) > 0 and cyclically permute the functions so that fk is the last to
act. Then

F̂ (0) = fk ◦ fk−1 ◦ · · · ◦ fk+1(0) > 0

where all subscripts are understood “ mod p”. Then apply Lemma 4.1 to F̂ .
For (2), apply Lemma 4.1 directly to F .
For (3), assume fk ∈ X and fk(x) > 0 for some x. Since f ′k < 0, one must have

fk(0) > 0. Again cyclically permute to obtain F̂ ∈ M. If F̂ ∈ V then since fk is
bounded, F̂ ∈ Vu. Now apply Lemma 4.1. If F̂ ∈ X apply Lemma 4.2. �

Remark 1 : In Theorem 4.3 one could replace “uni-linearly bounded for all n”
by the weaker condition that the fn are just linearly bounded: fn(x) ≤ anx + bn
where α .= a0a1 · · · ap−1 < 1 since then the composite F of all the maps would then
satisfy F (x) ≤ α+ bF .

5. An application

Dynamic reduction was introduced in [7] where several examples of its applicability
were given. One was to Rational Difference Equations with periodic parameters.
In this section we will explore this application in greater detail and obtain some
new results which include, in the autonomous case, some of the results given in [6].
The starting point will be delay difference equations of the form

xn+1 =
α+

∑k
i=0 βixn−i

A+
∑k

i=0Bixn−i
, (20)

using the notation of [6]. We next allow the parameters to be periodic of period p
and separate out all the delayed terms

xn+1 =
αn + β0,nxn + g1,n(xn−1, . . . , xn−k)
An +B0,nxn + g2,n(xn−1, . . . , xn−k)

. (21)

In the process of dynamic reduction, as applied to periodic difference equations,
one then defines a class of periodic sequences Pλ where λ is an appropriate multiple
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of p. For each v ∈ Pλ one then solves the “reduced” equation,

xn+1 =
αn + β0,nxn + g1,n(vn−1, . . . , vn−k)
An +B0,nxn + g2,n(vn−1, . . . , vn−k)

(22)

=
α̂n + β0,nxn

Ân +B0,nxn
,

for an exponentially asymptotically stable λ-periodic solution v̂ ∈ Pλ. This estab-
lishes a mapping

T : Pλ → Pλ, v̂ = T (v). (23)

A fixed point of T then yields a periodic solution of (21) and hence of (20).
The question, how to define the “reduction” function g in any particular problem,

has to be guided by ones ability to solve the reduced equation (22) for a solution
having the specified properties. The choice made in (21) yields a periodic family of
Fractional Linear Maps whose properties were investigated in Section 2. In partic-
ular, Theorem 2.8 guarantees a exponentially asymptotically stable and globally
attracting λ-periodic solution of the reduced equation (22) thus establishing the
mapping (23). Then what remains to be done is to impose (a) conditions on the
range of the sequences in Pλ and (b) a smallness condition on the first derivatives
of the g’s in order to show T is a contraction. See [7] for details.

Remark 1 : The theorems of Section 3 allow us to extend this to “non-linear”
rational differential equations, i.e. ones in which the numerator and denominator
are non-linear. For example, borrowing from the examples of Subsection 3.2 one
could consider

xn+1 =
anx

2
n + bnxn + g1,n(delayed terms)
xn + cn + g2,n(delayed terms)

,

or

x2
n + 6xn + 7 + g1,n(delayed terms)

(xn + 1)(xn + 2) + g2,n(delayed terms)
.

This will be pursued in later publications.
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