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A discrete-time population model in which individuals are distributed over a discrete
phenotypic trait-space is studied. It is shown that, for an irreducible mutation matrix G,
if mutation is small, then an interior equilibrium exists, that is globally asymptotically
stable in Rn

þnf0}, while for arbitrary large mutation, each trait persists uniformly. For
the model reduced to only two traits, conditions for the global stability of the interior
equilibrium are provided. When structure is introduced in the model, namely when
mutation matrix G has block-diagonal form, with each diagonal block being
irreducible, competitive exclusion among traits is analysed and sufficient conditions
are given for one trait to drive all the other traits to extinction.

Keywords: selection–mutation; robust uniform persistence; coexistence; competitive
exclusion

1. Introduction

In recent years, researchers have focused their attention on studying selection–mutation

models, also referred to as replicator-mutator equations or distributed rate population

models [2–5,8–10,12–14,17–20]. These are equations in which individuals are

distributed according to a (discrete [3,5,17] or continuous [2,4,9,10,14,19]) phenotypic

trait space. Here, selection means that individuals with a particular trait produce

individuals of that trait only (faithful reproduction). While mutation means that

individuals carrying a particular trait are able to produce individuals with other traits

(unfaithful reproduction).

In [4], the following pure selection model was considered

dxðt; qÞ
dt

¼ xðt; qÞ q1 2 q2

ð
Q

xðt; qÞ dq
� �

; ð1:1Þ

where individuals are distributed over the continuous 2D compact trait space Q ¼
fðq1; q2Þ [ intðR2

þÞ : q1 # q1 # q1; q2 # q2 # q2} with q1 and q2 describing the growth

rate and the mortality rate of individuals carrying trait q, respectively (as usual, we denote

by R the set of real numbers, by Rn the set fðx1; . . . ; xnÞ j xi [ R for all i ¼ 1; . . . ; n},
by Rn

þ the non-negative cone in Rn, namely the set fx ¼ ðx1; . . . ; xnÞ [ Rn j xi $
0 for all i ¼ 1; . . . ; n} and by intðRn

þÞ the interior of Rn
þ, namely the set

fx ¼ ðx1; . . . ; xnÞ [ Rn j xi . 0 for all i ¼ 1; . . . ; n}). Therein, the authors prove that

the density xðt; qÞ converges (in the weak-star topology) to a weighted Dirac measure

centred at the point of highest growth to mortality ratio given by q* ¼ q1=q2 (i.e.,
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xðt; qÞ! cdq * in weak-star topology as t!1). This result can be described in the context

of competitive exclusion where the individuals carrying the fittest trait q* win the

competition and all other traits go to extinction. In [2], the authors formulated a general

selection model on the space of measures (appropriate for such models) and extended the

competitive exclusion result in [4] to this model. In [9,10], the authors consider selection–

mutation models with continuous trait space (albeit 1D) and establish similar competitive

exclusion result when the probability of mutation becomes extremely small.

In [3], a selection–mutation model was formulated on a discrete trait space. An

equivalent formulation to the discrete selection–mutation model in [3] takes the form

dxi

dt
¼
X
j¼1

gijajxj 2 bixi
X
j¼1

xj; i ¼ 1; 2; . . . ; n: ð1:2Þ

Here, the total population is given by
Pn

j¼1 xj, and the ith subpopulation is identified by the

two-dimensional discrete trait ðai; biÞ [ R2
þ, where ai is the per-capita growth rate and bi is

the per-capita mortality rate. The parameter gij denotes the fraction of offspring of an

individual in the jth subpopulation which belongs to the ith subpopulation, 0 # gij # 1

and
Pn

i¼1 gij ¼ 1. For convenience, we will denote by G ¼ ðgijÞ the selection–mutation

matrix whose ði; jÞ entry is given by gij. Clearly G is a column stochastic matrix since each

of the column sums of G is equal to one. Note that if G is the identity matrix then the model

(1.2) reduces to the following pure selection model which is the discrete trait space

analogue of the model (1.1):

dxi

dt
¼ xi ai 2 bi

X
j¼1

xj

" #
; i ¼ 1; 2; . . . ; n: ð1:3Þ

The goal of this article it to develop and study a selection–mutation model which is

discrete not only in the trait space but in time as well. To our knowledge, this is the first

study of a selection–mutation model which is discrete in trait space and time. We mention

that discrete time selection-only models (that is, without mutation) have been used to

describe the dynamics of multiple pathogen strains [7]. Accounting for mutation allows us

to accurately model the dynamics of many pathogens including the flu virus. The model

studied here generalizes the pure selection model studied in [1]. Therein, the authors used

a non-standard finite difference approximation [15] to develop the following discrete time

analogue of the selection model (1.3):

xiðt þ 1Þ ¼ ðai þ 1ÞxiðtÞ
1þ bi

Pn
j¼1 xjðtÞ

; i ¼ 1; . . . ; n: ð1:4Þ

In [1], the authors show that, provided there is a unique trait with maximum carrying

capacity ai/bi, the equilibrium ð0; . . . ; 0; ai=bi; 0; . . . ; 0Þ describing the competitive

exclusion between the n traits, with i being the fittest trait, is locally asymptotically stable.

For the special case n ¼ 2, they were able to prove that this equilibrium is globally

asymptotically stable. Recently, in [11] the authors were able to extend the results in [1]

and prove that ð0; . . . ; 0; ai=bi; 0; . . . ; 0Þ is globally asymptotically stable for a general n

provided there is a unique species having a maximum carrying capacity ai/bi. They also

show that if more than one trait have the same (maximum) carrying capacity then all

subpopulations with the largest carrying capacity coexist and in this case, the system has a

linear stable manifold.

A.S. Ackleh et al.2
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In this work, we present a more general model which allows for selection and

mutation. For completeness, we include the competitive exclusion result obtained in [11]

for the model without mutation, but we offer a new (and much shorter) proof. For the

model with mutation, which represents the focus of our analysis, we investigate both

possibilities of coexistence and competitive exclusion. In regard to coexistence, we show

that when the mutation matrix G is irreducible, then the model is (robustly) uniformly

persistent, that is, roughly speaking, all traits survive above a certain threshold that is

independent of the non-zero initial conditions (and of small changes in parameters). If, in

addition to being irreducible, G is also ‘small’, then there is a globally asymptotically

stable interior equilibrium. For G that is not necessarily small, but satisfying some

additional conditions, we show that all interior solutions are attracted to a (possibly

degenerated) ‘box’ with ‘faces’ parallel to the boundary hyperplanes and which intersects

every nullcline only at points situated on its boundary. Using these properties of the

attracting box, we give a set of explicit conditions under which we have a globally

asymptotically stable interior equilibrium for the case when n ¼ 2. In regard to

competitive exclusion, we show that if there is a trait i such that all the other traits have

negative relative exponential rate of increase (negative fitness) with respect to trait i (see

Section 2.2 for a precise definition of this concept), then trait i drives all the other traits to

extinction.

The article is organized as follows. In Section 2, we present the general model. In

Section 3,we study themodel in the pure selection case (nomutation is assumed). In Section

4, we study the model with mutation. Concluding remarks are made in Section 5. Section 6

contains some preliminary material that we use to establish needed persistence results.

2. The model

Consider the following selection–mutation model:

xiðt þ 1Þ ¼ ðgiiai þ 1ÞxiðtÞ þ
P

j–i gijajxjðtÞ
1þ bi

P
j xjðtÞ

; i ¼ 1; . . . ; n; ð2:1Þ

where ai . 0, bi . 0 and G ¼ ðgijÞ1#i; j#n is a non-negative matrix.

This model accounts for competition among individuals having one of n possible traits.

Here, xi is the number of individuals carrying trait i with per-capita birth and mortality

rates given by ai and bi, respectively. The parameter gij represents the fraction of offspring
of an individual with trait j that belongs to trait i.

The assumption that
Pn

i¼1 gij ¼ 1; j ¼ 1; . . . ; n (made in [3]) is not needed for

establishing the mathematical results, yet we make it in here due to biological reasons, as

the fractions of all newborns that belong to one individual is equal to 1. Note that when G is

the identity matrix, model (2.1) reduces to the selection model (1.4).

For convenience, for an x ¼ ðx1; . . . ; xnÞ [ Rn
þ, we will hereafter denote x1 þ · · ·þ xn

by jxj.

Proposition 2.1. The system (2.1) is dissipative:

jxðtÞj # ðagþ 1Þ
b

; ; t $ 1; ð2:2Þ

where a ¼ maxifai}, b ¼ minifbi} and g ¼ maxi;j gij.

Journal of Difference Equations and Applications 3
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The proof of Proposition 2.1 is straightforward; thus, we omit it.

2.1 The model without mutation

In this section, we study the pure selection case in which the matrix G is the identity. Here,

the model (2.1) reduces to

xiðt þ 1Þ ¼ ðai þ 1ÞxiðtÞ
1þ bi

P
j xjðtÞ

8 f iðxiðtÞÞ; i ¼ 1; . . . ; n: ð2:3Þ

We first show that for the model (2.3) there are either isolated fixed points on the bounding

hyperplanes of the positive cone Rn
þ, or a continuum of fixed points.

Theorem 2.2. If x̂ ¼ ðx̂1; x̂2; . . . ; x̂nÞ is a fixed point of (2.3), then

ai1
bi1

¼ ai2
bi2

¼ · · · ¼ aim
bim

¼
X
j

x̂j 8 k; ð2:4Þ

for all is such that x̂is – 0. Conversely, if

ai1
bi1

¼ ai2
bi2

¼ · · · ¼ aim
bim

8 k; ð2:5Þ

for a subset S8 fi1; i2; . . . ; im} , f1; 2; . . . ; n} that is maximal with respect to (2.5), then

all x̂ ¼ ðx̂1; x̂2; . . . ; x̂nÞ satisfying
P

jx̂j ¼ k and x̂j ¼ 0 for j � S are fixed points of (2.3).

Proof. Let x̂ be a fixed point, define S ¼ fijx̂i – 0} and let k be defined as in (2.4). Then,

for each i [ S

x̂i ¼ ðai þ 1Þx̂i
1þ bi

P
j x̂j

) k ¼ ai

bi
:

To prove the converse, let (2.5) hold where k is defined to be the common value of the

ratios. Define the simplex

Hk 8 fx ¼ ðx1; x2; . . . ; xnÞ [ Rn
þ j jxj ¼ k}; ð2:6Þ

where, as before, we use the notation jxj ¼ x1 þ · · ·þ xn. Then, for all xðtÞ [ Hk, (2.3)

takes the form

xiðt þ 1Þ ¼ ðai þ 1ÞxiðtÞ
1þ ðai=kÞ

P
j xjðtÞ

¼ xiðtÞ:

A

Remark 2.3. Note that if rj 8 aj=bj constitute n distinct numbers, then applying the

converse assertion serially for j ¼ 1; 2; . . . ; n, we find that the only fixed points that exist

are on the coordinate axes with xj ¼ rj.

The following result states that the species that is capable of living alone (in the

absence of all the other species) at a carrying capacity that is the largest, compared to the

carrying capacities of all the other species, wins the competition by driving all the other

A.S. Ackleh et al.4
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species to extinction. The same result can be found in [11] (but the proof is tedious and

requires many preliminary lemmas).

Theorem 2.4. Assume that a1=b1 ¼ a2=b2 ¼ · · · ¼ ak=bk . akþ1=bkþ1 $ · · · $ an=bn,
for some k [ f1; . . . ; n}. Then, xðtÞ! �x and xiðtÞ! 0 as t!1, for all i ¼ k þ 1; . . . ; n,
for every solution xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ of (2.3) with x1ð0Þ þ · · ·þ xkð0Þ . 0, where

�x ¼ �xðxð0ÞÞ is an equilibrium with j�xj ¼ a1=b1.

Proof. Let f ¼ ðf 1; . . . ; f nÞ, where each f i is as in (2.3). LetHc ¼ fx [ Rn
þ j jxj ¼ c . 0}

and assume c # a1=b1. Then, for x [ Hc, we have

j f ðxÞj ¼
Xn
i¼1

ai þ 1

1þ bic
xi: ð2:7Þ

Hence, the maximum of j f ðxÞj, for x [ Hc, is attained at a point x ¼ ð0; . . . ; 0; c; 0; . . . ; 0Þ:

max
x[Hc

j f ðxÞj ¼ ai þ 1

1þ bic
c; for some i [ f1; . . . ; n}: ð2:8Þ

But

ai þ 1

1þ bic
c .

a1

b1
, cðaib1 2 a1bi þ b1Þ . a1: ð2:9Þ

If cðaib1 2 a1bi þ b1Þ . a1 is true then, since a1=b1 $ ai=bi, we have cb1 . a1, which

represents a contradiction. Hence, cðaib1 2 a1bi þ b1Þ # a1 and, from (2.9),

cðai þ 1Þ=ð1þ bicÞ # a1=b1. This implies that S :¼ fx [ Rn
þ j jxj # a1=b1} is positively

invariant for (2.3).

Now, let ~x [ Rn
þ such that ~x1 þ · · ·þ ~xk . 0 and consider the solution xðtÞ of (2.3)

with xð0Þ ¼ ~x. Without loss of generality, we consider ~xi . 0 for all i ¼ 1; . . . ; k.
Case 1: ~x [ S. Then, xðtÞ [ S for all t $ 0, which implies that xiðt þ 1Þ $ xiðtÞ,

i ¼ 1; . . . ; k, for all t $ 0. Hence xiðtÞ is convergent to an �xi . 0, i ¼ 1; . . . ; k, as t!1.

Then, from the equation for x1 in (2.3), it follows that jxðtÞj! a1=b1. This implies that

limt!1 xiðt þ 1Þ=xiðtÞ ¼ ðai þ 1Þ=ð1þ a1bi=b1Þ , 1, for all i ¼ k þ 1; . . . ; n, hence

xiðtÞ! 0, i ¼ k þ 1; . . . ; n. Thus, xðtÞ! �x ¼ ð�x1; . . . ; �xk; 0; . . . ; 0Þ, where �x must be an

equilibrium with j�xj ¼ a1=b1.
Case 2: ~x � S. If xðtÞ � S for all t $ 0 then

xiðt þ 1Þ , ai þ 1

1þ biða1=b1Þ xiðtÞ; ;t $ 0; i ¼ 1; . . . ; n: ð2:10Þ

If i � f1; . . . ; k}, then (2.10) implies that xiðtÞ! 0 as t!1, because a1=b1 . ai=bi.
If i [ f1; . . . ; k}, then (2.10) implies that xiðt þ 1Þ , xiðtÞ for all t $ 0, hence xiðtÞ
converges to some �xi, as t!1. Then, from the equation for x1 in (2.3), it follows that

jxðtÞj! a1=b1. So again, xðtÞ! �x ¼ ð�x1; . . . ; �xk; 0; . . . ; 0Þ, where �xmust be an equilibrium

with j�xj ¼ a1=b1. If xðtÞ [ S for some t . 0, then, without loss of generality we can

consider that we are in Case 1 above. A

Journal of Difference Equations and Applications 5
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Corollary 2.5. When a1=b1 . ai=bi for all i ¼ 2; . . . ; n, the equilibrium ða1=b1;
0; . . . ; 0Þ is asymptotically stable and attracts all solutions xðtÞ of (2.3) with x1ð0Þ . 0.

The proof of this corollary follows in a straightforward manner from the proof of

Theorem 2.4 and we omit it.

2.2 The full model with mutation

2.2.1 Coexistence and global convergence

In this section, we re-consider model (2.1) with G – I, with I denoting the n £ n identity

matrix. For i1; . . . ; ik [ f1; . . . ; n}, i1 , i2 , · · · , ik, let Gi1; ... ;ik be the matrix ~G ¼
ð ~glmÞ1#l;m#k defined by ~glm ¼ gilim .

Theorem 2.6. Assume that there exist 1 # k # n and i1; . . . ; ik [ f1; . . . ; n} with

i1 , i2 , · · · , ik, such thatGi1; ... ;ik is irreducible. Then, there exists1 ¼ 1ðGÞ . 0 such that

lim inf
t!1 jxðtÞj . 1; ð2:11Þ

for every non-zero solution of (2.1).

Proof. Without loss of generality assume ij ¼ j for all j ¼ 1; . . . ; k. Let

x ð1ÞðtÞ ¼ ðx1ðtÞ; . . . ; xkðtÞÞ, for all t $ 0. Let AG1; ... ;k
ðxÞ ¼ ðaijðxÞÞ1#i; j#k, where aijðxÞ ¼

gijaj=ð1þ bijxjÞ if i – j, and aiiðxÞ ¼ ðgiiai þ 1Þ=ð1þ bijxjÞ. Then, x ð1Þðt þ 1Þ $
AG1; ... ;k

ðxðtÞÞx ð1ÞðtÞ for all t $ 0. Let

Pðt; x0Þ :¼ AG1; ... ;k
ðxðt2 1ÞÞ· . . . ·AG1; ... ;k

ðxð0ÞÞ; ð2:12Þ

where xð0Þ ¼ x0. G1; ... ;k being irreducible, for all j ¼ 1; . . . ; k there exists i ¼ 1; . . . ; k
such that gij . 0. Hence,

Pk
i¼1 aijð0Þ . 1 for all j ¼ 1; . . . ; k. This implies that the

spectral radius of AG1; ... ;k
ð0Þ is greater than 1. Also, Pð1; 0Þ is primitive, because it is

irreducible (since G1; ... ;k is irreducible) and all the entries on its main diagonal are positive.

It is straightforward to check that (H1) and (H2) from Section 4 hold with B ¼ fx [
Rn

þ j jxðtÞj # ðagþ 1Þ=b} (see Proposition 2.1) and X ¼ f0}. Also, regarding the origin

as a periodic orbit with period T ¼ 1, Corollary 4.7 in [21] implies (via Proposition 4.1 in

[21]) that (A.7) holds. Thus, Theorem 4.1 in the Appendix implies (2.11). A

Thus, in ‘biological terms’, Theorem 2.6 says that if there is a subpopulation consisting

only of certain infection traits, such that individuals belonging to a certain trait in that

subpopulation are capable of producing (not necessarily directly) individuals belonging to

all the traits in the subpopulation, then the total population is guaranteed to survive above a

certain level that is independent of the initial, non-zero total population. When the total

population has the above mentioned property, the result can be improved (as we show

later) in that all traits survive above such a fixed, positive level.

Lemma 2.7. (Uniform Persistence). If G is irreducible then there exists 1 ¼ 1ðGÞ . 0

such that

lim inf
t!1 min

i
fxiðtÞ} . 1; ð2:13Þ

A.S. Ackleh et al.6
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for every non-zero solution of (2.1). In particular, there exists a unique interior

equilibrium (that is, an equilibrium with all coordinates positive). Moreover, when

b1 ¼ · · · ¼ bn, all non-zero solutions are attracted to this interior equilibrium.

Proof. The model (2.1) can be written in the form

xðt þ 1Þ ¼ AGðxðtÞÞxðtÞ; ð2:14Þ

where AGðxÞ ¼ ðaijðxÞÞ1#i; j#n, aijðxÞ ¼ gijaj=ð1þ bijxjÞ if i – j and aiiðxÞ ¼ ðgiiai þ 1Þ=
ð1þ bijxjÞ.

G being irreducible, for all j ¼ 1; . . . ; n there exists i – j such that gij . 0. Hence,Pn
i¼1 aijð0Þ . 1 for all j ¼ 1; . . . ; n. This implies that the spectral radius of AG1; ... ;k

ð0Þ is
greater than one.

Since AGð0Þ is irreducible and aiið0Þ . 0 for all i ¼ 1; . . . ; n, AGð0Þ is also primitive.

Now again, as explained in the proof of Theorem 2.6, from Corollary 4.7 in [21] and

Theorem 4.1, it follows that there exists 11 . 0 such that

lim inf
t!1 jxðtÞj . 11; ð2:15Þ

for every non-zero solution of (2.1).

Proposition 2.1 together with (2.15) implies that there exists a compact set B ,
Rn

þnf0} that attracts all initial data in Rn
þnf0}.

Again, since G is irreducible, we have that AGðxÞ is irreducible for all x in Rn
þ. And,

since aiiðxÞ . 0, we have that AGðxÞ is primitive. In fact, AGðxÞ has the same primitive

incidence matrix for all x [ Rn
þ. Hence, there exists a positive integer p such that

Aðy1Þ·· · ··AðypÞ @ 0, for all y1; . . . ; yp [ Rn
þ (see the Appendix for notation). Define

~AðxÞ ¼ Aðxðnþ p2 1ÞÞ·· · ··AðxðnÞÞ, when xðnÞ ¼ x. Therefore, ~AðxÞx @ 0 for all x [ B.

Now, (2.13) follows from Proposition 3.4 in [21].

Now, we prove the existence of a unique interior equilibrium. First, the existence part

comes from (2.13), by applying ([27], Theorem 1.3.6.). Let �x @ 0 be an equilibrium. Then,

�x is an eigenvector of Að�xÞ corresponding to the eigenvalue l ¼ 1. Since Að�xÞ is irreducible
(because G is so), again from Theorem A.4 in [25] we have that the spectral radius of Að�xÞ,
rðAð�xÞÞ, is equal to one. If x̂ @ 0 is another equilibrium, then again x̂ is an eigenvector of

Aðx̂Þ corresponding to rðAðx̂ÞÞ ¼ 1. Hence, rðAð�xÞÞ ¼ rðAðx̂ÞÞ which again, by applying

[25], Theorem A.4, implies j�xj ¼ jx̂j. Therefore, Að�xÞ ¼ Aðx̂Þ. Also, from the same

theorem, x̂must be a positive multiple of �x, hence x̂ ¼ a�x, for some a . 0. However, since

j�xj ¼ jx̂j, a must equal one, and so x̂ ¼ �x.

For the last assertion, it suffices to show that every non-zero solution converges to an

equilibrium. Thus, assume that b1 ¼ · · · ¼ bn ¼ b . 0. Then, (2.14) becomes

xðt þ 1Þ ¼ 1

1þ bjxðtÞjAxðtÞ; ð2:16Þ

where A ¼ AGð0Þ. It is known (see, for example, [26], Theorem A.49.) that r2tA tx0 tends to

a constant vector uðx0Þ @ 0, where r ¼ rðAÞ and x0 ¼ xð0Þ – 0. From (2.16) we obtain

xðtÞ ¼ 1

1þ bjxðt2 1Þj ·· · ··
1

1þ bjxð0ÞjA
txð0Þ: ð2:17Þ
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Let gðt; x0Þ ¼ r t=ðð1þ bjxðt2 1ÞjÞ·· · ··ðð1þ bjx0jÞ. Then, (2.17) becomes

xðtÞ ¼ gðt; x0Þr2tA tx0: ð2:18Þ

Substituting xðtÞ from (2.18) into (2.16), we obtain

gðt þ 1; x0Þr21Aðr2tA tx0Þ ¼ gðt; x0Þ
1þ bgðt; x0Þjr2tA tx0jAðr

2tA tx0Þ: ð2:19Þ

Regarding (2.19) as an equation for the scalar function gðt; x0Þ, the corresponding

‘limiting equation’ is

~gðt þ 1; x0Þr21Auðx0Þ ¼ ~gðt; x0Þ
1þ b~gðt; x0Þjuðx0ÞjAuðx0Þ: ð2:20Þ

Since Auðx0Þ . 0, (2.20) implies that

~gðt þ 1; x0Þ ¼ r ~gðt; x0Þ
1þ b~gðt; x0Þjuðx0Þj : ð2:21Þ

The above represents the well-known Beverton–Holt equation, hence ~x :¼
r 2 1=ðbjuðx0ÞjÞ is asymptotically stable and

~gðt; x0Þ! ~x; as t!1: ð2:22Þ

From the theory of asymptotically autonomous systems (see, for example, Theorem 1.8 in

[16]), it follows then that (2.22) holds also for g. Hence, from (2.18) we have that

xðtÞ! ~xuðx0Þ as t!1. This means that ~xuðx0Þ is an equilibrium point, which completes

the proof. A

Remark 2.8. Based on (2.2), it is a simple exercise to verify that assumptions (H3) and (H4)

in Section 4 are satisfied in regard to our model (2.1). Thus, the persistence results given in

Theorem 2.6 and Lemma 2.7 are, in fact, robust.

As shown in Theorem 2.4 (see also [11]), when a1=b1 . ai=bi for all i ¼ 2; . . . ; n, and
G ¼ I, all initial data in fx [ Rn

þ j x1 . 0} are attracted to E1 ¼ ða1=b1; 0; . . . ; 0Þ,
whichis also locally asymptotically stable (see [1]). Then, as our next result shows, when

small mutations take place, the model exhibits an interior equilibrium (in some

neighbourhood of E1) that attracts all initial data in Rn
þnf0}.

Theorem 2.9. Assume that a1=b1 . ai=bi for all i ¼ 2; . . . ; n. Then, for every 1 . 0 there

exists d . 0 such that, for every G irreducible and satisfying kG2 Ik , d, there exists an
equilibrium EG with all coordinates positive, satisfying kEGj2 a1=b1j , 1, that attracts
all solutions of (2.1) that start in Rn

þnf0}.
Proof. We apply Theorem 2.1 in [24]. For this, we first show that the species x1 is robustly

uniformly persistent for (2.3): there exist ~d; ~1 . 0 such that lim inft!1 x1ðtÞ . ~1, for all
solutions of (2.1) with x1ð0Þ . 0 that correspond to G satisfying kG2 Ik , ~d. Thus, let
X ¼ fx [ Rn

þ j x1 ¼ 0} (note that both X and Rn
þnX are positively invariant for (2.3)).

From Theorem 2.4, any solution of (2.3) with xð0Þ [ Xnf0} converges to an equilibrium

�x ¼ �xðxð0ÞÞ such that j�xj [ fa2=b2; . . . ; an=bn}.

A.S. Ackleh et al.8
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Let Pðt; x0Þ be defined as in (2.12) where we take i ¼ 1 and g11 ¼ 1. Then, for every

�x as above, Pð1; �xÞ . 1. Also, Pð1; 0Þ ¼ a1 þ 1 . 1. Then, from Theorem 3.2 (via

Proposition 4.1 and Corollary 4.7) in [21], we have that x1 is robustly uniformly persistent

for (2.3).

We have that the Jacobian of (2.3) evaluated at E1 ¼ ða1=b1; 0; . . . ; 0Þ has all

eigenvalues smaller than one (see [1]). Then, using Theorem 2.4, we can apply Theorem

2.1 in [24] (with L ¼ fG j kG2 Ik , ~d}, U :¼ fx [ Rn
þ j x1 . 0} and

Bl ¼ U > fx [ Rn
þ j jxj # ðaþ 1Þ=b}, where a and b are as in Proposition 2.1), to

obtain that for every 1 . 0 there exists d . 0 such that for every G satisfying kG2 Ik , d
there exist an equilibrium EG satisfying kEGj2 a1=b1j , 1, that attracts all solutions of
(2.1) that start in U. Now G being irreducible, every non-zero solution of (2.1)

corresponding to such a G, including EG, has eventually all coordinates positive, hence it

enters U. A

If we allow for arbitrary mutations, then the interior attractor might not consist just of

the interior equilibrium. Let li be the curve defined by the equation

xi ¼ hiðx1; . . . ; xi21; xiþ1; . . . ; xnÞ

¼
2
P

j–ibixj 2 giiai

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j–i bixj 2 giiai

� �2þ4bi
P

j–i gijajxj

r
2bi

:

ð2:23Þ

That is, li ¼ fx ¼ ðx1; . . . ; xnÞ [ Rn
þ j xi ¼ hiðx1; . . . ; xi21; xiþ1; . . . ; xnÞ}.

Theorem 2.10. Assume the following

(i) giiai þ 1 $ gijaj, for all j – i and every i [ f1; . . . ; n};
(ii) ; i [ f1; . . . ; n} ’ j such that gijaj – giiai.

Then, every solution of (2.1) originating in the interior of Rn
þ is attracted to a

positively invariant box B ¼ >n
i¼1Bi, where Bi ¼ fx [ Rn

þ j mi # xi # Mi; for

some mi; Mi $ 0}, having the property that ðli > f mi Þ , fx [ Rn
þ j xj ¼ mj;

for some j – i}, ðli > f Mi Þ , fx [ Rn
þ j xj ¼ Mj; for some j – i} and both li > f mi

and li > f Mi contain at least one vertex of B, where f mi ¼ fx [ B j xi ¼ mi} and

fMi ¼ fx [ B j xi ¼ Mi}.

Proof. First, we prove the theorem assuming that gij . 0, for all i; j ¼ 1; . . . ; n. To this

end, denote the right hand side of (2.1) by f ¼ ðf 1; . . . ; f nÞ. Then giiai þ 1 $ gijaj, for
j – i, implies that ›f i=›xi . 0, hence each f i is increasing in xi.

Now let xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ be a non-zero solution and denote the vector

ðx1; . . . ; xi21; xiþ1; . . . ; xnÞ by xci . Then, f i being increasing in xi, we have that

xiðtÞ, hi x
c
i ðtÞ

� �) xiðtþ 1Þ ¼ f iðx1ðtÞ; . . . ; xnðtÞÞ
, f iðx1ðtÞ; . . . ; xi21ðtÞ;hi xci ðtÞ

� �
; xiþ1ðtÞ; . . . ; xnðtÞÞ

¼ hi x
c
i ðtÞ

� �
:

ð2:24Þ

Similarly,

xiðtÞ . hi x
c
i ðtÞ

� �) xiðt þ 1Þ . hi x
c
i ðtÞ

� �
: ð2:25Þ
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Also, from (2.23), it follows that points are mapped towards the nullclines. That is,

0 , xiðtÞ , hi x
c
i ðtÞ

� �) xiðt þ 1Þ . xiðtÞ; ð2:26Þ

and

xiðtÞ . hi x
c
i ðtÞ

� �) xiðt þ 1Þ , xiðtÞ: ð2:27Þ

Next, we claim that hi does not have critical points in intðRn21
þ Þ. Since the equations for

hi’s are symmetric, we prove this only for h1. Thus, suppose h1 has a critical point x in

intðRn21
þ Þ. Then,

›h1
›xj

ðxÞ ¼ 0; for all j ¼ 2; . . . ; n: ð2:28Þ

Let k [ f1; . . . ; n} such that g1kak # g1jaj for all j ¼ 1; . . . ; n.
Case 1: k – 1. We have

›h1
›xk

ðxÞ ¼ 0 , g1kakðg1kak 2 g11a1Þ þ
X
j–1;k

b1xjðg1kak 2 g1jajÞ ¼ 0: ð2:29Þ

Hence, since g1k . 0, ›h1=›xkðxÞ ¼ 0 if and only if g1kak ¼ g1jaj for all j ¼ 1; . . . ; n.
However, this contradicts (ii).

Case 2: k ¼ 1. Let l [ f2; . . . ; n} such that g1jaj # g1lal for all j ¼ 2; . . . ; n. We have

›h1
›xl

ðxÞ ¼ 0 , g1lalðg1lal 2 g11a1Þ þ
X
j–1;l

b1xjðg1lal 2 g1jajÞ ¼ 0: ð2:30Þ

Hence, since g1l . 0, ›h1=›xl ¼ 0 if and only if g1lal ¼ g1jaj for all j ¼ 1; . . . ; n. But
again, this contradicts (ii). Hence, the claim holds.

From (2.23) it follows that each hi is bounded above on Rn21
þ . Thus, for each i [

f1; . . . ; n} there exist numbers rm0

i ¼ 0 and rM0

i . 0 such that

li , B0
i :¼ fx [ Rn

þ j rm0

i # xi # rM0

i }, where rM0

i . 0 are such that rM0

i =2 $ xi, for all

x [ li. Let B0 ¼ >n
i¼1B

0
i . Note that B0 is compact. Also, from (2.24)–(2.27), B0 is

positively invariant and attracts all orbits of (2.1). Now for each i [ f1; . . . ; n}, rm1

i :¼
minfxi j x [ li > B0} and rM1

i :¼ maxfxi j x [ li > B0} satisfy

rm0

i , rm1

i , rM1

i , rM0

i : ð2:31Þ
We briefly argue in support of (2.31). Notice that weak inequalities hold by definition. If

0 ¼ rm0

i ¼ rm1

i , then there exists x [ B0 such that 0 ¼ hiðxci Þ. By direct calculation, this

implies that
P

j–i bixj 2 giiai $ 0 and
P

j–i gijajxj ¼ 0, which represents a contradiction,

since gij; aj . 0, for all j. If rm1

i ¼ rM1

i then hiðxci Þ is constant. Then again, by direct

calculation it follows that gi1a1 ¼ · · · ¼ ginan, which contradicts (ii). Finally, using that

rM0

i =2 $ xi for all x [ li > B0, we obtain that rM0

i $ 2rM1

i $ rM1

i . Thus, if rM1

i ¼ rM0

i , then

rM1

i ¼ 0, which implies that hiðxci Þ ¼ 0 for all x [ li > B0, which again represents a

contradiction.

Now, define B1
i :¼ fx [ Rn

þ j rm1

i # xi # rM1

i } and B1 ¼ >n
i¼1B

1
i . Then, B

1 is strictly

contained in B0 (w), in the sense that B1 , B0 and ›B1 > ›B0 ¼ Y. Similarly, let now

rm2

i :¼ minfxi j x [ li > B1} and rM2

i :¼ maxfxi j x [ li > B1}. Using the claim from

A.S. Ackleh et al.10
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above, we have that both rm2

i and rM2

i are attained at points only on ›B1. Also, since

B1 , B0, we have rm1

i # rm2

i and rM2

i # rM1

i . If rm1

i ¼ rm2

i , then from (w) we would have

that there would be a point y on ›B1 such that rm1

i ¼ yi ¼ hiðyci Þ. Then, yci would be a local
minimum point of hi. Hence, again from (w), yci [ intðRn21

þ Þ would be a critical point of

hi, which would contradict the claim. Hence, rm1

i , rm2

i . By similar arguments, we obtain

that rM2

i , rM1

i . Thus, defining the box B2 in an analogous manner to B1, we have that

B2 , B1 and ›B1 > ›B2 ¼ Y. By repeating this algorithm we obtain a sequence ðBkÞk$1

of compact boxes, Bkþ1 , Bk for all k $ 1, and ›Bk > ›Bkþ1 ¼ Y. Also, based on (2.24)–
(2.27), each Bk (P1): is positively invariant and (P2): it attracts all orbits of (2.1). Now

suppose there exists �x [ intðf mk

i Þ> li, where f mk

i :¼ fx [ Bk j xi ¼ rmk

i }. That is �x [
f mk

i > li and �xj [ ðrmk

j ; rMk

j Þ for all j – i. Then, this means that hi has a local minimum

point at �xci [ intðRn21Þ, which contradicts our previous claim. Thus, we obtained that (P3):

each li intersects f
mk

i (i ¼ 1; . . . ; n, k $ 1) only at points situated on the boundary of f mk

i .

Let ~x [ f mk

i > li. Then, we have that ~xi ¼ rmk

i ¼ hið~xci Þ, which is equivalent toX
j–i

ðbirmk

i 2 gijajÞ~xj ¼ rmk

i ðgiiai 2 bir
mk

i Þ: ð2:32Þ

Now, suppose there are two disjoint sets S1 and S2 such that S1 < S2 ¼ f1; . . . ; i2 1; iþ
1; . . . ; n} and j [ S2 if and only if ~xj [ ðrmk

j ; rMk

j Þ. If S2 ¼ Y then ~x is a vertex of Bk. If

S2 – Y and bir
mk

i 2 gijaj ¼ 0 for all j [ S2, then Equation (2.32) is also satisfied by a

vertex of Bk. If S2 – Y and birmk

i 2 gijaj – 0 for some j ¼ p [ S2 then we can write (2.32)

in the formX
j[S1

bir
mk

i 2 gijaj
� �

~xj þ
X

j[S2nfp}
bir

mk

i 2 gijaj
� �

~xj þ bir
mk

i 2 gipap
� �

~xp ¼ rmk

i giiai 2 bir
mk

i

� �
:

ð2:33Þ
X
j[S1

bir
mk

i 2 gijaj
� �ð~xj þ sjdÞ þ

X
j[S2nfp}

bir
mk

i 2 gijaj
� �

~xj þ bir
mk

i 2 gipap
� � ~xp þ uðdÞ

bir
mk

i 2 gipap

� 	

¼ rmk

i ðgiiai 2 bir
mk

i Þ;
ð2:34Þ

where uðdÞ ¼Pj[S1
ðbirmk

i 2 gijajÞsjd and, for all j [ S1, sj ¼ 1 if xj ¼ rmk

i , while sj ¼ 21

if xj ¼ rMk

i . Let �xj ¼ ~xj þ sjd for j [ S1, �xj ¼ ~xj for j [ S2, �xi ¼ rmk

i , and let

�xðdÞ ¼ ð�x1; . . . ; �xnÞ. Then, from (2.34), it follows that there exists d . 0 such that �xðdÞ [
intðf mk

i Þ> li which, as shown earlier, represents a contradiction. We can repeat the

reasoning above with f mk

i replaced by f Mk

i :¼ fx [ Bk j xi ¼ rMk

i }. Hence we established

that (P4): for every i ¼ 1; . . . ; n and every k $ 1, both f mk

i > li and f
Mk

i > li contain at least

one vertex of Bk.

The sequence ðBkÞk$1 converges to a box B (that is, rmk

i ! rmi , r
Mk

i ! rMi , as k!1, for

all i ¼ 1; . . . ; n). Then, B has also the properties (P1)–(P4) above, where f mi and f Mi
are defined analogously to f mk

i and f Mk

i , namely f mi :¼ fx [ B j xi ¼ rmi } and

f Mi :¼ fx [ B j xi ¼ rMi }.

Now for G not necessarily having all entries positive, let G1 be the matrix obtained

from G by replacing all off-diagonal zero entries of G (if any) by 1. Let B1 be the box

corresponding to G1 (for each 1we will assume the notation defined above). Hence each B1

has the properties (P1)–(P4). Next, we show that r
p
i ð1Þ! r

p
i ð0Þ as 1! 0, p ¼ m;M, from

which it should be clear that B :¼ B0 has the claimed properties. Thus, let i [ f1; . . . ; n}
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be fixed and suppose that r
p
i ð1Þ K r

p
i ð0Þ as 1! 0. Then

’ d1 . 0; ; d2 . 0; ’ 1 [ ð0; d2Þ such that jrpi ð1Þ2 r
p
i ð0Þj $ d1: ð2:35Þ

Since r
pk
i ð1Þ! r

p
i ð1Þ and r

pk
i ð0Þ! r

p
i ð0Þ as k!1, from the triangle inequality we have

that, for every 1 as in (2.35),

’ N ¼ Nð1Þ $ 0 such that jrpki ð1Þ2 r
pk
i ð0Þj $ d1=2; ; k $ N: ð2:36Þ

In addition, from the definitions of r
pk
i and the fact that hi is continuous at 1 ¼ 0, uniformly

in x belonging to a compact set, it should be clear that

’ d3 . 0 such that jrpNi ð1Þ2 r
pN
i ð0Þj , d1=2; ; 1 [ ð0; d3Þ; ð2:37Þ

which contradicts (2.36). Hence r
p
i ð1Þ! r

p
i ð0Þ as 1! 0. A

Thus, according to the above-mentioned theorem, if we are able to prove that such a

box (as in the statement of the theorem) cannot exist, unless it is a point (that is, a

degenerate box with each side being reduced to a point), then that point must be a globally

asymptotically stable equilibrium. For the planar version of (2.1), we discuss this scenario

in the following corollary, although we do not consider the pure selection case (that is,

g12 ¼ g21), as this case was covered in Theorem 2.4.

Corollary 2.11. Assume n ¼ 2 in (2.1) and the hypotheses of Theorem 2.10 are satisfied.

Then, the following hold:

(a) if there exists an interior equilibrium �x ¼ ð�x1; �x2Þ of (2.1), and ðh2+h1Þ2 has no fixed
points different from �x2, then �x is globally asymptotically stable in intðR2

þÞ;
(b) if (2.1) does not have an interior equilibrium and g12 ¼ 0 , g21, then ð0; g22=b2Þ

is globally asymptotically stable in R2
þnf0}, while if g21 ¼ 0 , g12 then

ðg11=b1; 0Þ is globally asymptotically stable in R2
þnf0}.

Proof. Let B be a box as in Theorem 2.10. There exist numbers ~x1; ~x2; x̂1; x̂2 such that

ð~x1; x̂2Þ; ðx̂1; ~x2Þ [ l1 > B and ð~x1; ~x2Þ; ðx̂1; x̂2Þ [ l2 > B and ~x1 ¼ h1ðx̂2Þ, x̂1 ¼ h1ð~x2Þ,
~x2 ¼ h2ð~x1Þ and x̂2 ¼ h2ðx̂1Þ. This implies that ðh2+h1Þ2ð~x2Þ ¼ ~x2 and ðh2+h1Þ2ðx̂2Þ ¼ x̂2; so

~x2 and x̂2 are fixed points of ðh2+h1Þ2. Therefore, we have ~x2 ¼ x̂2 ¼ �x2. This further

implies ~x1 ¼ x̂1 ¼ �x1. Hence, B ¼ ð�x1; �x2Þ, which, by Theorem 2.10, means that �x is

globally asymptotically stable in intðR2
þÞ.

(a) In this case, since �x2 is a fixed point of ðh2+h1Þ2, we have that ~x2 ¼ �x2. If �x2 is also a

fixed point of ðh2+h1Þ, then E ¼ ðx̂1; �x2Þ is an equilibrium point of (2.1), which

further implies that B ¼ fE}. Thus, by Theorem 2.10, E attracts all solutions with

x1ð0Þ; x2ð0Þ . 0. Also, from the proof of Theorem 2.10 it follows that E is

asymptotically stable.

(b) We just treat the case when g21 ¼ 0 , g12, as the other case is analogous. Suppose
B is a non-degenerate box (that is, not a point). Then, every nullcline li (i ¼ 1; 2)
must contain two diagonal opposite vertices of B (this follows using that li
represents the graph of hi and hiðxÞ – 0 for all x . 0). But then B contains the

intersection point of l1 and l2 in its interior, which means that (2.1) has an interior

equilibrium, a contradiction. Hence, B is a point, which must belong to l1 > l2.

A.S. Ackleh et al.12
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However, l1 > l2 ¼ fðg11=b1; 0Þ}. Then, by Theorem 2.10, ðg11=b1; 0Þ is globally
asymptotically stable in R2

þnf0}. A

Note from the above corollary that competitive exclusion between two traits can occur

even for an upper or lower diagonal mutation matrix G, case not covered by Theorem 2.4.

In the following corollary, we elaborate more on the possibility of existence of a

globally asymptotically stable interior equilibrium.

Corollary 2.12. Assume n ¼ 2 in (2.1) and the hypotheses of Theorem 2.10 are satisfied.

In any of the following cases:

(i) g11a1 . g12a2 . 0 and g22a2 . g21a1 . 0;

(ii) g11a1 . g12a2 . 0 and g21a1=2 , g22a2 , g21a1;
(iii) g22a2 . g21a1 . 0 and g12a2=2 , g11a1 , g12a2;
(iv) g12 ¼ 0, g22a2 . g21a1 . 0 and g11a1=b1 . g22a2=b2;
(v) g21 ¼ 0, g11a1 . g12a2 . 0 and g22a2=b2 . g11a1=b1;
(vi) g12 ¼ 0, g21a1=2 , g22a2 , g21a1 and g11a1=b1 . g22a2=b2;
(vii) g21 ¼ 0, g12a2=2 , g11a1 , g12a2 and g22a2=b2 . g11a1=b1,

there exists an interior equilibrium that is asymptotically stable and attracts all

solutions with x1ð0Þ; x2ð0Þ . 0.

Proof. In cases ðiÞ2 ðiiiÞ, there exists a unique interior equilibrium (Lemma 2.7). Let B be

a box as given by Theorem 2.10.

(i) Direct calculation shows that h01ðxÞ , 0 and h02ðxÞ , 0 for all x . 0, hence both

h1 and h2 are decreasing. Then, clearly B must be the interior equilibrium, which

also must be asymptotically stable.

(ii) Using that g11a1 . g12a2 . 0, by straightforward calculation we obtain that

2 1 , h01ðxÞ , 0; ; x . 0: ð2:38Þ
g22a2 , g21a1 implies that h02ðxÞ . 0 for all x . 0. Next, we show that h02ðxÞ , 1

for all x . 0. This is equivalent to

QðxÞ :¼ 2b22x
2 þ 4b2ð2g21a1 2 g22a2Þxþ 2g222a

2
2 þ g21a1g22a2 2 g221a

2
1

� �
. 0; ; x. 0:

ð2:39Þ
QðxÞ has discriminant

D ¼ 8b22 9g221a
2
1 2 9g21a1g22a2

� �
. 0: ð2:40Þ

Thus, QðxÞ has two real roots u1 , u2. If u2 , 0 then again (2.39) holds.

However, u2 , 0 is equivalent to

2g222a
2
2 þ g21a1g22a2 2 g221a

2
1 . 0;

which holds, because g21a1=2 , g22a2. Therefore,

0 , h02ðxÞ , 1; ; x . 0: ð2:41Þ
Now, let gðxÞ ¼ ðh2+h1Þ2ðxÞ2 x. Then from (2.38) and (2.41), we have g0ðxÞ , 0
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for all x . 0. Hence, ðh2+h1Þ2 has at most one fixed point in ½0;1Þ (note that

x ¼ 0 is not a fixed point of g). Thus, the conclusion follows from Corollary 2.11

part (a).

(iii) Analogous to (ii).

(iv) The conditions g22a2 . g21a1 . 0 and g11a1=b1 . g22a2=b2 guarantee the

existence of an interior equilibrium. Again, both h1 and h2 are decreasing, hence

B must be the interior equilibrium, whichalso must be asymptotically stable.

(v) Analogous to (iv).

(vi) In this case, g22 . 0 and so 0 , g22a2 , g21a1 and g11a1=b1 . g22a2=b2 imply

the existence of a unique interior equilibrium.

First, we show that x1 is uniformly persistent:

’ 1 . 0 such that lim inf
t!1 x1ðtÞ . 1; whenever x1ð0Þ . 0: ð2:42Þ

Thus, let X ¼ fx ¼ ðx1; x2Þ [ R2
þ j x1 ¼ 0}. Notice that all non-zero solutions

with initial condition in X converge to fð0; g22=b2Þ}. Then, Pð1; ð0; 0ÞÞ ¼
g11 þ 1 . 0 and Pð1; ð0; g22=b2ÞÞ ¼ ðg11 þ 1Þ=ð1þ b1g22a2=b2Þ . 0, where

Pðt; xÞ is as in (2.12), with k ¼ 1. Then, from Theorem 2.3 and Corollary 1 in

[22] we obtain (2.42).

From here, we can use the same reasoning as in (ii), but restricted to

fx [ R2
þ j x1 . 1}, and using that l1 restricted to this set is

fx [ R2
þ j x2 [ ½0; g11a1=b1 2 1Þ and x1 ¼ h1ðx2Þ ¼ 2x2 þ g11a1=b1},

hence h01ðxÞ ¼ 21.

(vii) Analogous to (vi). A

Notice that (see case ðivÞ2 ðviiÞ in Corollary 2.12) the irreducibility of the mutation

matrix is not a necessary condition for coexistence of both traits. Thus, as long as the

‘stronger trait’ (that is, the trait with the larger per-capita birth rate versus death rate ratio

giiai=bi) mutates, through newborns, into the other trait, then both traits can coexist at an

interior equilibrium.

2.2.2 Competitive exclusion with block-diagonal mutation matrix

In this section, we look at the case when G is reducible, but of the form

G ¼

G1 0 0 0 0

0 G2 0 0 0

0 0 . .
.

0 0

..

. ..
.

. . . . .
.

0

0 0 0 0 Gl

0
BBBBBBBBB@

1
CCCCCCCCCA

ð2:43Þ

where each Gi ¼ ðgðiÞij Þ1#i;j#ni is an irreducible matrix (n1 þ · · ·þ nl ¼ n). Then AðxÞ has an
analogous form, and (2.1) can be written as

x ðiÞðt þ 1Þ ¼ AiðxðtÞÞx ðiÞðtÞ; i ¼ 1; . . . ; l; ð2:44Þ
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where

AiðxÞ ¼

gðiÞ11a
ðiÞ
1 þ 1

1þ bðiÞ1 jxj
gðiÞ12a

ðiÞ
2

1þ bðiÞ1 jxj . . .
gðiÞ1nia

ðiÞ
ni

1þ bðiÞ1 jxj
..
. ..

.
. . . ..

.

gðiÞni1a
ðiÞ
1

1þ bðiÞni jxj
gðiÞni2a

ðiÞ
2

1þ bðiÞni jxj
. . .

gðiÞninia
ðiÞ
ni

1þ bðiÞni jxj

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð2:45Þ

and x ¼ ðx ð1Þ; . . . ; x ðlÞÞ, a ¼ ða ð1Þ; . . . ; a ðlÞÞ, b ¼ ðb ð1Þ; . . . ; b ðlÞÞ, with x ðiÞ; a ðiÞ;
b ðiÞ [ Rni .

Let B be a compact and positively invariant set for (2.1) that absorbs all solutions.

For all i ¼ 1; . . . ; l define Ui :¼ fh [ Rniþ j jhj ¼ 1}. Let

Piðt; xÞ ¼ Aiðxðt2 1; xÞÞ·Aiðxðt2 2; xÞÞ·· · ··AiðxÞ; for t $ 1; ð2:46Þ
where Pið0; xÞ is the identity ni £ ni matrix, and xðt; xÞ is a solution of (2.44), with xð0Þ ¼ x.

For every x [ Rn
þ; h1 [ U1 andhi [ Ui, we define the relative exponential rate of

increase of species i with respect to species 1 as

xiðx;h1;hiÞ ¼ lim inf
t!1

1

t
ln

jPiðt; xÞhij
jP1ðt; xÞh1j ; i ¼ 2; . . . ; n: ð2:47Þ

Note that xi is well defined.

Lemma 2.13.

xiðx;h1;hiÞ ¼ lim inf
t!1

1

t
ln

kPiðt; xÞk
kP1ðt; xÞk ; i ¼ 2; . . . ; n: ð2:48Þ

Proof. Without loss of generality assume i ¼ 2. We follow an idea similar to that in the

proof of Lemma 8.46 in [23]. We first show that, if there exist constants a; b; c; d . 0 such

that ah1 # ~h1 # bh1 and ch2 # ~h2 # dh2, then

x2ðx; ~h1; ~h2Þ ¼ x2ðx;h1;h2Þ: ð2:49Þ
Note that, for j ¼ 1; 2,

uj; nj [ R
nj
þ and uj # nj ) Pjðt; xÞuj # Pjðt; xÞnj; ;t $ 0; x [ Rn

þ: ð2:50Þ
Thus, we have

x2ðx; ~h1; ~h2Þ ¼ lim inf
t!1

1

t
ln
jP2ðt; xÞ ~h2j
jP1ðt; xÞ ~h1j # lim inf

t!1
1

t
ln
jP2ðt; xÞðdh2Þj
jP1ðt; xÞðah1Þj

¼ lim inf
t!1

1

t
ln
jP2ðt; xÞh2j
jP1ðt; xÞh1j þ ln

d

a

� 	

¼ lim inf
t!1

1

t
ln
jP2ðt; xÞh2j
jP1ðt; xÞh1j ¼ x2ðx;h1;h2Þ:

ð2:51Þ

The other inequality can be proved analogously. Thus, (2.49) holds.
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Now G1 and G2 being irreducible, A1ðxÞ and A2ðxÞ have the same primitive incidence

matrix for all x [ Rn
þ (see (2.45)). Hence, there exists T $ 0 such that PiðT ; xÞ @ 0 and

P1ðT ; xÞ @ 0. Let 1̂nj ¼ ð1; 1; . . . ; 1Þ [ R
nj
þ, j ¼ 1; 2. For a matrix A, denote by

kAk1 ¼
P

i;j jaijj. Then, using (2.51), we have that for any h1 [ U1 and h2 [ U2,

x2ðx;h1;h2Þ ¼ lim inf
t!1

1

t
ln
jP2ðt; xÞh2j
jP1ðt; xÞh1j

¼ lim inf
t!1

1

t
ln
jP2ðt2 T; xðT; xÞÞP2ðT ; xÞh2j
jP1ðt2 T; xðT; xÞÞP1ðT ; xÞh1j

¼ lim inf
t!1

1

t
ln
jP2ðt2 T; xðT; xÞÞP2ðT ; xÞ1̂n2 j
jP1ðt2 T; xðT; xÞÞP1ðT ; xÞ1̂n1 j

¼ lim inf
t!1

1

t
ln
jP2ðt; xÞ1̂n2 j
jP1ðt; xÞ1̂n2 j

¼ lim inf
t!1

1

t
ln
kP2ðt; xÞk1
kP1ðt; xÞk1

¼ lim inf
t!1

1

t
ln
kP2ðt; xÞk
kP1ðt; xÞk ;

ð2:52Þ

since all matrix norms are equivalent. A

Thus, we denote xiðx;h1;hiÞ, in short, by xiðxÞ.

Lemma 2.14. Let i [ f2; . . . ; n}. The following statements are equivalent.

(i) xiðxÞ , 0 for all x [ B.

(ii) ’c [ ð0; 1Þ; T $ 1; ;x [ B; hi [ Ui; h1 [ U1; ’1 # t # T such that

jPiðt; xÞhij=jP1ðt; xÞh1j , c.

Proof. ðiÞ ) ðiiÞ. First, we show

;x [ B; hi [ Ui; h1 [ U1’0 , c , 1; T $ 1 such that
jPiðT ; xÞhij
jP1ðT ; xÞh1j , c: ð2:53Þ

Let x [ B. Then, from (i), there exists �c . 0 such that

lim inf
t!1

1

t
ln

jPiðt; xÞhij
jP1ðt; xÞh1j , 22�c: ð2:54Þ

Furthermore, (2.54) implies that there exists T $ 1 such that

kPiðT ; xÞk
kP1ðT; xÞk , c :¼ expð2�cTÞ: ð2:55Þ

Hence, (2.53) holds. Then (ii) follows using a standard compactness argument (as, for

example, in the proofs of Lemma 4.1 in [22], or Lemma 3.1 in [21]).

ðiiÞ ) ðiÞ. Let x [ B, h1 [ U1 and hi [ Ui. Then, there exists 1 # t1 # T such that

jPiðt1; xÞhij
jP1ðt1; xÞh1j , c: ð2:56Þ
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Now, let h1
i :¼ Piðt1; xÞhi=jPiðt1; xÞhij and h1

1 :¼ P1ðt1; xÞh1=jP1ðt1; xÞh1j. Then again,

there exists 1 # t2 # T such that

Piðt2; xðt1; xÞÞh1
i



 


P1ðt1; xðt1; xÞÞh1

1



 

 , c: ð2:57Þ

From (2.57) and (2.57), we obtain

jPiðt1 þ t2; xÞhij
jP1ðt1 þ t2; xÞh1j ¼

jPiðt2; xðt1; xÞÞPiðt1; xÞhij
jP1ðt1; xðt1; xÞÞP1ðt1; xÞh1j , c

jPiðt1; xÞhij
jP1ðt1; xÞh1j , c2: ð2:58Þ

Thus, inductively we find that there exists a sequence tn $ n (tn ¼ t1 þ · · ·þ tn) such

that

jPiðtn; xÞhij
jP1ðtn; xÞh1j , cn: ð2:59Þ

This implies

1

tn
ln

jPiðtn; xÞhij
jP1ðtn; xÞh1j ,

n

tn
ln c # ln c , 0: ð2:60Þ

Now, (i) follows from (2.60). A

We now have the following competitive exclusion result.

Theorem 2.15. If xiðxÞ , 0 for all x [ B, i ¼ 2; . . . ; n, then x ðiÞðtÞ! 0 as t!1, for all

i ¼ 2; . . . ; l, for all solutions xðtÞ of (2.44) with x ð1Þ . 0.

Proof. Let x [ B such that x ð1Þ . 0. Assume also, without loss of generality, that x ðiÞ . 0.

Then, from (2.59), applied with hi ¼ x ðiÞ=jx ðiÞj and h1 ¼ x ð1Þ=jx ð1Þj, we obtain that

jx ðiÞðtn; xÞj=jx ð1Þðtn; xÞj , cnjx ðiÞj=jx ð1Þj. Hence, jx ðiÞðtn; xÞj! 0 as n!1. Then, tnþ1 2
tn # T and continuity of xðt; xÞ in x further imply that jx ðiÞðt; xÞj! 0 as t!1. A

Let bM1 ¼ maxn1j¼1b
ð1Þ
j and bmi ¼ minnij¼1b

ðiÞ
j , i ¼ 2; . . . ; l. Let ~Aj, j ¼ 1; . . . ; n, be the

(constant) matrix obtained by multiplying row k of AjðxÞ by 1þ bkjxj. Denote the spectral
radius of ~Aj by rj.

Corollary 2.16. Assume that G is of the form (2.43), and that ðri=r1Þmaxf1; bM1 =bmi } , 1

for all i ¼ 2; . . . ; l. Then, x ðiÞðtÞ! 0, as t!1, for all i ¼ 2; . . . ; n, for all solutions xðtÞ of
(2.44) with x ð1Þ . 0.

Proof. We have that kPiðt; xÞk # ðQt21
k¼0 ð1=ð1þ bmi jxðk; xÞjÞÞÞ ~Ai, for all i ¼ 2; . . . ; n, and

kP1ðt; xÞk $ ðQt21
k¼0 ð1=ð1þ bM1 jxðk; xÞjÞÞÞ ~A1. Hence,

xiðxÞ ¼ lim inf
t!1

1

t
ln

kPiðt; xÞk
kP1ðt; xÞk # lim inf

t!1
1

t
ln

Yt21

k¼0

1þ bM1 jxðk; xÞj
1þ bmi jxðk; xÞj

 !
k ~At

tk
k ~At

1k

¼ lim inf
t!1

1

t
ln
Yt21

k¼0

ri

r1

1þ bM1 jxðk; xÞj
1þ bmi jxðk; xÞj

ð2:61Þ
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But

ri

r1

1þ bM1 jxj
1þ bmi jxj

#
ri

r1
max 1;

bM1
bmi

� �
; ;x $ 0: ð2:62Þ

Hence, from (2.61) and (2.61), we have

xiðxÞ # ln
ri

r1
max 1;

bM1
bmi

� �
, 0; ð2:63Þ

and further we can apply Theorem 2.15. A

Remark 2.17. With respect to the model without mutation (2.3), competitive exclusion can

also be obtained from Theorem 2.15, applied with the positively invariant set

B ¼ fx [ Rn
þ j ak=bk # jxj # a1=b1}, where ak=bk ¼ minfai=bi j i ¼ 2; . . . ; n},

assuming that a1=b1 . ai=bi, i ¼ 2; . . . ; n.

3. Conclusion

In this paper, we studied a discrete competition model among n species, where individuals

from species j could give birth, by mutation, to individuals belonging to another species i.

The model is an extension of the pure selection model considered in [1,11]. The dynamics

of the model is strongly related to the form of the mutation matrix G. Thus, for the model

without mutation, we proved that the species having the largest birth versus death ratio

survives at a positive equilibrium and drives all the other species to extinction; hence the

pure selection model predicts competitive exclusion. The proof is different from that in

[11], and it is much shorter. Based on this, and using a theorem from [24], we proved that,

when small mutation occurs, such that G is irreducible, then there is an interior equilibrium

that is globally asymptotically stable in Rn
þnf0} (Theorem 2.4). For arbitrarily large

mutations, in Theorem 2.10, we obtained a specific form of a positively invariant set that

attracts all non-zero solutions. With the help of this result, we were able to provide explicit

sufficient conditions for the existence of an interior globally asymptotically stable

equilibrium for the case when n ¼ 2. It is worth noting that, in the case of reducible G, the
interior dynamics can exhibit both coexistence, in the form of a globally asymptotically

stable equilibrium, and competitive exclusion, as shown in Corollaries 2.11 and 2.12. Also

for arbitrary mutation, we provided sufficient condition for uniform persistence of both

total population and of each individual trait. Finally, fora block-diagonal form of the

mutation matrix G, with each block consisting of an irreducible matrix, we provided a

sufficient condition for the relative exponential rates of increase of species iwith respect to

species 1 to be negative, which leads to the exclusion of species i from the competition.

The approach developed in this regard can also be applied to other discrete-time

competition models.
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Appendix

In this section, we present a generalization of Theorem 3.2 in [21], for the purpose of

applying it to our model (2.1), to obtain sufficient conditions for the total population to

persist uniformly and robustly.

Consider the following partial order relations on Rn:

a $ b , ai $ bi; ;i ¼ 1; . . . ; n;

a . b , ai $ bi; ;i ¼ 1; . . . ; n; and a – b;

a .. b , ai . bi; ;i ¼ 1; . . . ; n:

ðA:1Þ

Partial order relations for matrices can be defined in an analogous manner.

Consider the following system

xðt þ 1Þ ¼ f ðxðtÞ; yðtÞ; jÞ
yðt þ 1Þ ¼ gðxðtÞ; yðtÞ; jÞ; ðA:2Þ

with zðtÞ ¼ ðxðtÞ; yðtÞÞ [ Rp
þ £ Rq

þ for all t [ Zþ (where Zþ denotes the set of non-

negative integers), j [ J # Rl, whereJ is an open set. The maps f ; g : Rp
þ £ Rq

þ £ Rl are

assumed to be continuous. Writing yðtÞ ¼ ðy1ðtÞ; y2ðtÞÞ [ Rq1 £ Rq2 , assume that

y2ðt þ 1Þ $ AðzðtÞ; jÞy2ðtÞ; ; t $ 0; ðA:3Þ
where Aðz; jÞ is a non-negative continuous matrix for z [ Rpþq

þ , j [ Rl. Furthermore, let

j0 be a fixed parameter and assume that the set X ¼ fz ¼ ðx; yÞ [ Rp
þ £ Rq

þjy ¼ 0} is

positively invariant (with respect to j0), while

Rpþq
þ n z ¼ ðx; y1; y2Þj x [ Rþ; ðy1; y2Þ [ Rq

þ ¼ Rq1 £ Rq2 and y2 ¼ 0
 �

is positively invariant for all j.
Now, let Pðt; z; jÞ, Pð0; z; jÞ ¼ I, be the fundamental matrix solution for the (non-

utonomous) equation

uðnþ 1Þ ¼ AðzðtÞ; jÞuðnÞ; ðA:4Þ
where zðtÞ ¼ zðt; z; jÞ satisfies (A.2), with zð0Þ ¼ z ¼ ðx; y1; y2Þ. Therefore,

Pðt; z; jÞ ¼ Aðzðt2 1Þ; jÞ·Aðzðt2 2Þ; jÞ·· · ··Aðzð0Þ; jÞ: ðA:5Þ
Then, from (A.3) and (A.5) we have

y2ðt þ 1Þ $ Pðt; z; jÞy2; ; t $ 0: ðA:6Þ
Abusing notation, denote the norm jvj of a vector v ¼ ðv1; . . . ; vkÞ by jv1j þ . . . þ jvkj,

where jvij is the absolute value of vi, for all i ¼ 1; . . . ; k. Furthermore, we make the

following assumptions, among which the first two are in regard to the fixed parameter j0.

(H1): There exists a closed set B , Rp
þ £ Rq

þ such that for every z0 [ Rp
þ £ Rq

þ there

exists t0 ¼ t0ðz0Þ such that zðtÞ [ B for all t $ t0, where zð0Þ ¼ z0 (that is, B is an

absorbing set for (A.2)).

(H2): There exists r . 0 such that the set fz ¼ ðx; yÞ [ B j jyj # r} is bounded (hence
compact).

A.S. Ackleh et al.20
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(H3): For every V0 a neighbourhood of B there exists J0 a bounded neighborhood of j0
such that

;z [ Rp
þ £ Rq

þ; j [ J0; ’ tðz; jÞ [ Zþ such that zðt; z; jÞ [ V0;

; t $ tðz; jÞ:

(H4): For every d . 0 there exist V0 a neighbourhood of B and J0 a bounded

neighbourhood of j0 such that

inf
z[Vd

0;j[J0

jgðz; jÞj . 0;

where Vd
0 ¼ fz ¼ ðx; yÞ [ V0 j jyj $ d}.

Now, let B be as in (H1) and M ¼ X > B. Let U ¼ fh [ Rq2þh j jhj ¼ 1}. Then, in an

analogous manner, as compared to [21] (see also [22]), the above lead to the following

persistence result involving the y2 subvector of y.

Theorem 4.1. Assume that (H1)– (H4) hold and

;ðz;hÞ [ M £ U; ’ t ¼ tðz;hÞ [ Zþnf0} such that jPðt; z; j0Þhj . 1: ðA:7Þ
Then, there exists 1 . 0 such that

lim inf
t!1 jyðt; z; jÞj . 1; ;z [ ZnX; j [ J: ðA:8Þ

Remark 4.2. Similar considerations apply to the continuous time version of (A.2) (and, for

that matter, to its non-autonomous counterparts, both in continuous and discrete time; see

also [6], Remark 3.3). Although in the continuous time case (H4) is not needed, additional

assumptions need to be made in order to ensure that (A.6) holds (for example, if the matrix

Aðz; jÞ has all off diagonal entries non-negative; see [25]).

Assumptions (H3) and (H4) are used for the robustness of the persistence. If we

remove them, then Theorem 4.1 gives us only uniform persistence (that is, (A.8) without

the parameter j).
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