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We improve a previous result for the 2D Ricker equation by reducing an infinite
number of topological conditions to a finite number. We also give sufficient conditions
in terms of the parameters where many of these topological conditions are satisfied.
We also discuss the various pathologies that occur for other parameter choices.
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1. Introduction

The scalar equation has been studied for a long time. W. E. Ricker proposed the equation
in 1954 to model fishery stocks. One approach is to fit the Ricker model to data gathered
over a long period of time and then use this model to gain insight into future stocks. For
example the best Ricker’s model for the Skeena sockeye salmon population from 1908 to
1952 is done in the book by Mahaffy and Chavez-Ross [9] based on data collected by
Shepard and Withler [15],

Pnþ1 ¼ 1:535Pne
20:000783Pn :

It is easy to show the Ricker map in the form

xnþ1 ¼ xne
p2xn ; ð1Þ

exhibits global asymptotic stability of the fixed point p provided 0 , p , 2 and this can be
extended to p ¼ 2 using the Schwartzian derivative Elaydi [4, p. 52]. When p in (1) is
periodic with period k then there is a globally asymptotically stable k-periodic solution
provided 0 , pn , 2, Sacker [11]. Much attention has been given to 1D maps, Cull [2],
Devaney [3], Elaydi [5], Liz [8] and Sharkovsky et al. [14] while 2D maps have
understandably been given much less attention, Smith [16], Sacker [12].

Coupled Ricker equations occur in studying the behaviour of populations of
genetically altered mosquitoes versus the wild types Li [7], Sacker and Von Bremen [13]
where the Ricker functions are multiplied by a Ricatti functions to form a hybrid model.
For further results and references to coupled Ricker maps see the book of Mira et al. [10].
See also Bartha, et. al. [17] where global asymptotic stability is proved for a narrow class
of 2D maps obtained from a Ricker map with one unit time delay.

In this short paper we revisit the basic question, ‘Under what conditions does local
asymptotic stability of a fixed point of two coupled Ricker maps imply global attraction of
the fixed point’. In a groundbreaking paper by Balreira et al. [1] a first attempt at solving
this problem was carried out and it was that paper that inspired this work.
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This basic question could arise for two population species each governed by a Ricker
model but exhibiting interspecies competition. Since the Columbia River salmon and the
steelhead trout share the same environment it is not inconceivable that the coupled Ricker
equations may one day be worthy of attention by marine biologists.

2. Summary of prior work and improvements

The 2D Ricker Map consists of two 1D Ricker Maps coupled together. That is, we will
consider the map T : ½0;1Þ £ ½0;1Þ! ½0;1Þ £ ½0;1Þ given by Tðx; yÞ ¼ ðf ðx; yÞ; gðx; yÞÞ;
where

f ðx; yÞ ¼ xep2x2ay; gðx; yÞ ¼ yeq2y2bx; ð2Þ

with four parameters a; b; p; q, and throughout we will refer to this map as the ‘Ricker
Map’ without explicitly mentioning the dimension. In this paper, we focus on the case
where the couplings are small, namely a; b [ ð0; 1Þ. We will also assume that the carrying
capacities satisfy p; q [ ð1; 2Þ so that the map behaves the same as the 1D Ricker Map
when uncoupled. This map has three fixed points on the coordinate axes at ð0; 0Þ, ðp; 0Þ,
and ð0; qÞ. It is easy to see that under the above constraints that the origin is always
repelling and the other two fixed points are saddle points.

In addition, one has a coexistence fixed point when the two isoclines

Lp ¼ fðx; yÞ j p2 x2 ay ¼ 0};

and

Lq ¼ fðx; yÞ j q2 y2 bx ¼ 0};

intersect in the first quadrant. Intersections elsewhere are biologically meaningless and are
not considered. A calculation shows that the intersection is

ðx*; y*Þ ¼ p2 aq

12 ab
;
q2 bp

12 ab

! "
;

so a necessary and sufficient condition for the existence of a fourth fixed point is p . aq
and q . bp (Note that 12 ab is always positive). A necessary and sufficient condition that
ðx*; y*Þ is (locally) asymptotically stable is given by [4],

trDTðx*; y*Þ
## ## , detDTðx*; y*Þ þ 1 , 2:

In [1] they study images of a critical curve to show attraction to the coexistence fixed
point. To understand the idea, it is helpful to first consider the 1D Ricker Map T : ½0;1Þ :
!½0;1Þ given by TrðxÞ ¼ xer2x when 1 , r , 2. This map has two fixed points, x ¼ 0
and x ¼ r, the former being unstable and the latter being stable. The map also has a single
critical point at x ¼ 1.

What follows will be an informal description of the dynamics. It is easy to see that for
x , 1, T always maps points forward, and eventually there must be an integer m such that
T mðxÞ . 1. For points larger than 1, something quite different happens. Points now
oscillate around the fixed point, with their images alternating between being below r and
then above r, eventually converging to the fixed point. That is, we have global attraction to
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the fixed point; points smaller than 1 march forward, while points larger than 1 ‘dance’
around the fixed point, getting closer on each iterate (see Figure 1).

The main idea of the prior work [1] is to generalize the argument given above for the
1D Ricker Map to two dimensions. Instead of a critical point, there is now a critical curve
C that comprises the lower branch of a hyperbola; this hyperbola is where the Jacobian of
the map has determinant zero. They then consider the sequence of curves given by C,
TðCÞ, T 2ðCÞ, T 3ðCÞ, and show that, under certain topological and algebraic conditions,
these curves ‘dance’ around an invariant curve which they argue is comprised of the two
unstable manifolds of the saddle points on the x and y axis (see Figure 2).

We will now switch to a more rigorous framework. To state their Theorem precisely,
we need to compare the relative position of the curves C, TðCÞ, T 2ðCÞ, Informally, the
notation C , TðCÞ means that the curve C lies to the lower left of TðCÞ (see Figure 2); we
can make this precise by noting this implies C is inside the domain bounded by TðCÞ and
the coordinate axes.

Definition 2.1. By a Jordan curve joining the axes we mean a simple Jordan curve
g : ½0; 1&! R2 with gð0Þ ¼ ð0; yÞ, gð1Þ ¼ ðx; 0Þ, and gðtÞ [ ð0;1Þ £ ð0;1Þ for 0 , t , 1.
Define the segments gx ¼ f½0; x& £ f0}} and gy ¼ ff0} £ ½0; y&} and let S denote the
interior of the set whose boundary is:

›S ¼ fg< gx < gy};

where g is a Jordan curve joining the axes. We say a set A # g if A , !S and A , g if
A , S. We also say A $ g if A , SC and A . g if A , !SC where complements are relative
to ½0;1Þ £ ½0;1Þ.

Thus given two Jordan curves joining the axes g1 , g2, the set U,

g1 # U # g2;

is well defined to be the closure of the region between the two bounding curves.
The critical curve C is defined by

C ¼ ðx; yÞ [ ½0; 1& £ ½0; 1& j xþ y2 12 ð12 abÞxy ¼ 0f g:

We now state their Theorem, using the notation of this paper.

Theorem 2.2. [1]
Let T be the Ricker competition model with p; q [ ð1; 2Þ and ab , 1. Suppose that the

coexistence fixed point ðx*; y*Þ is localy asymptotically stable. Assume the following
conditions:

1. The critical curve C satisfies C , Lp and C , Lq.
2. For all m – n, T nðCÞ> T mðCÞ ¼ B.

Figure 1. The dynamics of the 1D Ricker Map for x0 . 1 and 1 , p , 2. Points oscillate around
the globally attracting fixed point, getting closer on each iteration.
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Then ðx*; y*Þ is globally asymptotically stable with respect to the interior of the first
quadrant.

Note: The assumption ab , 1 is actually stated earlier in their paper.

Here condition (1) ensures that points inside the region bounded by C eventually map
outside this region; they proved this condition is equivalent to

p [
aþ 12 2a

ffiffiffi
b

p

12 ab
;
aþ 1þ 2a

ffiffiffi
b

p

12 ab

! "
and q [

bþ 12 2b
ffiffiffi
a

p

12 ab
;
bþ 1þ 2b

ffiffiffi
a

p

12 ab

! "
:

Condition (2), combined with the fact that the dynamics on the axes are known, ensures
that the curves T mðCÞ are nested as in Figure 2. In fact, there is a third condition implicitly
used in their proof, namely that the T mðCÞ are simple Jordan arcs.

Note that, with this Theorem, given a fixed a; b; p; q, one cannot determine if it applies,
for one has to check that for any m – n one has that T nðCÞ> T mðCÞ ¼ B, which requires
checking an infinite number of intersections. Our aim is to replace this statement with a
finite number of conditions in the cases 0 , a; b , 1. As a first step we will need the
following lemma whose proof is in Section 5,

Lemma 2.3. The curves C and TðCÞ are simple Jordan arcs that can be represented as
functions that are monotonically decreasing in x and concave.

The next key element will depend on the outer branch of the singular hyperbola that is
shown in Figures 7 and 8. We denote this outer branch by Cþ where

Cþ ¼ ðx; yÞ [ 1

12 ab
;1

! "
£ 1

12 ab
;1

! "####xþ y2 12 ð12 abÞx ¼ 0

% &
:

We will prove the following Theorem

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2
T(C)

T2(C)

C

Figure 2. Example plot of the curves TðCÞ>Cþ ¼ B for m ¼ 0; 1; . . . ; 4. The bottom curve is C,
the top is TðCÞ, and they continue to oscillate around the invariant curve in a nested fashion, just as in
the 1D case. The invariant curve is shown as the union of the unstable manifolds of the boundary
fixed points that terminates on the interior fixed point.
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Theorem 2.4. Let (1) C , T 2ðCÞ , TðCÞ and (2) TðCÞ>Cþ ¼ B. Then
T nðCÞ> T mðCÞ ¼ B for all positive integers m – n and each T mðCÞ is a simple
Jordan arc.

Sufficient conditions guaranteeing condition (2) are given in Theorem 5.3. Before
giving the proof of the Theorem, we will show some examples to illustrate the inherent
difficulties in analysing this map.

3. Examples

In this section, we show some numerically computed plots of the first few images of the
critical curve C. As a prelimary example, we show why one might not expect to always
have the nice alternating behaviour that is present in the 1D Ricker Map.

Consider the parameters a ¼ 0:3, b ¼ 0:7, p ¼ 1:6, and q ¼ 1:9. A plot of the first
several images of C are shown in Figure 3. We observe that here, as before, the curves do
oscillate around the fixed point, getting closer on each iteration, and do not intersect.
However, only C and T Cð Þ are monotone and concave. The other curves bend, and it is not
inconceivable that they could, for other parameters, intersect other curves or even
themselves. In fact, we will give examples to show both are possible and that the dynamics
of this map are not to be taken lightly.

One way to have the critical curves intersect each other is to take small carrying
capacities p; q. Even for modest values of the coupling parameters a; b, one observes
intersections when p; q are small. For instance, consider p ¼ 1:1, q ¼ 1:05, a ¼ 0:2,
b ¼ 0:9 (see Figure 4). Note that C > TðCÞ – B and that it appears future iterates will
also always intersect the critical curve C.

This picture can be exaggerated by pulling the couplings further apart. Doing so
widens the range of ‘bad’ p; q. See Figure 5 where p ¼ 1:25, q ¼ 1:35, a ¼ 0:0001,
b ¼ 0:99. Indeed, even outside C, higher iterates intersect each other in this example.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

C

T(C)

T2(C)

Figure 3. Example plot of the curves T mðCÞ for m ¼ 0; 1; . . . ; 5 for the parameters a ¼ 0:3,
b ¼ 0:7, p ¼ 1:6, q ¼ 1:9. The curves oscillate around the fixed point and do not intersect in this
example. However, T mðCÞ for m $ 2 are not monotone or concave.
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It is also not hard to find examples where self intersections occur. Consider, for
instance, p ¼ 1:6, q ¼ 1:9, a ¼ 0:2, b ¼ 0:4. A plot is shown in Figure 6. Here the second
iterate T 2ðCÞ has a ‘loop’ where it self intersects. In addition, it also intersects T 4ðCÞ.
However, one does have that the first few iterates are separated (that is,
C , T 2ðCÞ , TðCÞÞ. This shows that one is unlikely to rule out non intersections with
any kind of induction argument on the first few C iterates alone.

This example can also be exaggerated by reducing the coupling. A plot of p ¼ 1:6,
q ¼ 1:9, a ¼ 0:1, b ¼ 0:3 is shown in Figure 7. Here the second iterate T 2ðCÞ has multiple
self-intersections. The critical feature omitted in Figure 6 that explains why T Cð Þ can

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

C

T(C)

T2(C)

Figure 4. Example plot of the curves T mðCÞ for m ¼ 0; 1; 2 for the parameters a ¼ 0:2, b ¼ 0:9,
p ¼ 1:1, q ¼ 1:05. The curves TðCÞ and T 2ðCÞ both intersect C. T 2ðCÞ is shown dashed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

C

T(C)T2(C)

Figure 5. Example plot of the curves T mðCÞ> T nðCÞ ¼ B for m ¼ 0; 1; . . . ; 5 for the parameters
a ¼ 0:0001, b ¼ 0:99, p ¼ 1:25, q ¼ 1:35. The curves C and also intersect in the region to the right
of C. T 2ðCÞ is shown dashed.
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behave nicely but T 2ðCÞ does not, is the fact that the outer branch of the hyperbola Cþ

shown in Figure 7 intersects TðCÞ. This causes the ‘wrapping’ of T 2ðCÞ that forces it to
intersect itself due to loss of injectivity, Lemma 4.3.

Now the expression for Cþ only depends on a; b. Furthermore, for fixed a; b, larger
p; q moves TðCÞ further up and to the right. This shows that for fixed a; b, one should
expect an upper bound on p; q for which the behaviour of the curves is well behaved like

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

C

T(C)

T2(C)

Figure 6. Example plot of the curves T mðCÞ for m ¼ 0; 1; . . . ; 4 for the parameters a ¼ 0:2,
b ¼ 0:4, p ¼ 1:6, and q ¼ 1:9. The curve T 2ðCÞ intersects itself and T 4ðCÞ. In addition, higher
iterates also have self intersections.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

C

T(C)

T2(C)

C+

Figure 7. Example plot of the curves T mðCÞ for m ¼ 0; 1; . . . ; 4 for the parameters a ¼ 0:1,
b ¼ 0:3, p ¼ 1:6, and q ¼ 1:9. The curve T 2ðCÞ intersects itself and T 4ðCÞ. In addition, higher
iterates also have self intersections. The thick curve joining the upper to the right boundaries of the
figure is the outer branch of the singular curve Cþ whose intersection with TðCÞ is responsible for the
self intersections as Lemma 4.3 shows.
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the 1D map. In addition, the first two examples with the small p; q show that one should
also expect a lower bound for fixed a; b.

In the next section, we give a proof of the Theorem that shows one only needs to check
four curves ðC; TðCÞ; T 2ðCÞ;CþÞ to determine the non-intersection of the remaining
curves. Then we will give some sufficient conditions on the parameters for which some of
these are satisfied. Not surprisingly, these conditions will involve upper and lower bounds
on p and q in terms of a and b.

4. Proof of theorem

The main ingredient in passing from an infinite number of conditions to a finite number is
injectivity. This will come from the Lemma 4.3.

Definition 4.1. A mapping between topological space f : X ! Y is called proper if the
inverse image of each compact subset of Y is compact in X.

Theorem 4.2. ([6, p. 240]) Let X be pathwise connected and Y be simply connected
Hausdorff spaces. A local homeomorphism f : X ! Y is a global homeomorphism of X
onto Y if and only if f is proper.

Lemma 4.3. Let C , T 2ðCÞ , TðCÞ and define the set U (see Definition 2.1)

C # U # TðCÞ;

and let V ¼ TðUÞ. If TðCÞ> Cþ ¼ B then T : U ! V is a homeomorphism.

Proof of Lemma 4.3. Since ðx1; y1Þ [ T m21ðCÞ we have that T is nonsingular on the
interior U

o

of U and therefore locally injective on U
o

. Since the zero-eigenspaces along
C are transverse to C the local injectivity extends to include C, i.e. each point of C has a
small compact neighbourhood relative to U on which the mapping is injective and hence a
homeomorphism. Thus T is a local homeomorphism on U. To see that T is proper note
that for any compact K , V, one has T 21ðKÞ is closed. Since K > ð0; 0Þ ¼ B, T 21ðKÞ is
bounded. Finally, U is clearly connected and V is clearly simply connected. A

Thus the location of the curve Cþ plays a critical role in the dynamics. The main idea
is as follows: With a homeomorphism, all the images T nðCÞ are necessarily simple Jordan
arcs, as a self intersection violates injectivity. Furthermore, the first few curves being
separated is enough for an induction argument when combined with the homeomorphism.

Proof of Theorem 2.4. Since C , T 2ðCÞ , TðCÞ, we have that for n $ 1 that T nðCÞ [ V
by Lemma 4.3. We now proceed inductively. Assume that T mðCÞ> T nðCÞ ¼ B for all
M $ m . n $ 1. This holds for M ¼ 2 by assumption. If T Mþ1ðCÞ> T nðCÞ – B for
some 1 # n # M, then there exists ðx0; y0Þ [ T MðCÞ and ðx1; y1Þ [ T n21ðCÞ such that
Tðx0; y0Þ ¼ Tðx1; y1Þ. By the inductive hypothesis, ðx0; y0Þ – ðx1; y1Þ, so by Lemma 4.3 we
have that T Mþ1ðCÞ> T nðCÞ ¼ B.

Likewise, if any T mðCÞ is not simple, then there exists a parametrization gðtÞ with
gðt0Þ ¼ gðt1Þ for t0 , t1. But then there exists two distinct points ðx0; y0Þ [ T m21ðCÞ and
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ðx1; y1Þ [ T m21ðCÞ such that Tðx0; y0Þ ¼ gðt0Þ ¼ gðt1Þ ¼ Tðx1; y1Þ, which violates
injectivity. A

The statement of Theorem 2.4 has topological conditions on the curves C, TðCÞ,
T 2ðCÞ, and Cþ. A natural question to ask is for which parameters a; b; p; q these conditions
are satisfied. This will be explored in the next section.

5. Parameter values

Theorem 2.4 essentially has four topological conditions. Namely, C , TðCÞ, C , T 2ðCÞ,
T 2ðCÞ , TðCÞ, and TðCÞ> Cþ ¼ B. These in turn imply that all future iterates are
nonintersecting and simple Jordan arcs. Ideally, one would have parameter values for
which these four conditions are satisfied.

In [1] it was shown that an algebraic condition that ensures that C satisfies C , Lp and
C , Lq is

p [
aþ 12 2a

ffiffiffi
b

p

12 ab
;
aþ 1þ 2a

ffiffiffi
b

p

12 ab

! "
and q [

bþ 12 2b
ffiffiffi
a

p

12 ab
;
bþ 1þ 2b

ffiffiffi
a

p

12 ab

! "
:

For these same parameters, we claim it follows that C , TðCÞ and T 2ðCÞ , TðCÞ. The
first of these claims will follow from the fact that C is monotone and concave as well as the
fact that, under these conditions, points on C are mapped to the upper right. The second
claim will follow from the fact that TðCÞ is an upper bound for the map T [1].

We also claim that under the algebraic conditions p , aþ 1, q , bþ 1, it follows that
TðCÞ> Cþ ¼ B. This will make use of the concavity of TðCÞ stated in Lemma 2.3 which
we now prove. Note that these conditions are only sufficient.

Proof of Lemma 2.3. We can express C by the curve y ¼ fðxÞ where

fðxÞ ¼ 12 x

12 ð12 abÞx for 0 # x # 1:

We note that fðxÞ [ ½0; 1& and that

f0ðxÞ ¼ 2ab

ð12 ð12 abÞxÞ2 , 0:

Now we parametrize C by ðt;fðtÞÞ with 0 # t # 1.
Then TðCÞ is parametrized by ðxðtÞ; yðtÞÞ with xðtÞ ¼ tep2t2afðtÞ and

yðtÞ ¼ fðtÞeq2bt2fðtÞ. Then

dy

dt
¼ f0ðtÞeq2bt2fðtÞ 2 ðbþ f0ðtÞÞfðtÞeq2bt2fðtÞ ¼ eq2bt2fðtÞðf0ðtÞð12 fðtÞÞ2 bfðtÞÞ , 0

and

dx

dt
¼ ep2t2afðtÞ þ tð212 af0ðtÞÞep2t2afðtÞ ¼ ep2t2afðtÞðð12 tÞ2 atf0ðtÞÞ . 0

so that dy
dx ¼

dy
dt

dt
dx , 0.

For concavity, we aim to show that d2y
dx 2 , 0. A computation shows that

d

dt

dy

dx
¼ beEðtÞpðtÞ

ð12 ð12 abÞtÞ3 ;
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where pðtÞ ¼ At 2 þ Bt þ C with A ¼ 21þ b2 a2b2 þ 2ab2 2ab2 þ a2b3, B ¼ 32
2b2 4abþ 2ab2 þ a2b2, C ¼ 22þ bþ a2b and EðtÞ ¼ q2 pþ tð12 bÞþ fðtÞða2 1Þ.
Since

d2y

dx2
¼ d

dt

dy

dx
=
dx

dt

it suffices to show that pðtÞ , 0 on ½0; 1&.
Since A ¼ ðb2 1Þð12 abÞ2 is always negative, pðtÞ has an absolute maximum at

t * ¼ 2 B
2A. Noting that B ¼ ð32 ab2 2bÞð12 abÞ, we have that this value of t * is given

by

t * ¼ 32 ab2 2b

2ð12 bÞð12 abÞ :

However, t * # 1 would imply that 32 ab2 2b # 22 2b2 2abþ 2ab2 or equivalently
1 # abð2b2 1Þ, which is impossible for a; b [ ð0; 1Þ. Hence t * . 1 so the absolute
maximum on the interval ½0; 1& occurs at t ¼ 1. A computation shows that

pð1Þ ¼ abðab2 þ a2 2Þ

which is clearly negative for a; b [ ð0; 1Þ.
Hence d2y

dx 2 , 0 as claimed. A

Lemma 5.1. [1] Let ðx; yÞ [ ½0;1Þ £ ½0;1Þ. Then Tðx; yÞ # TðCÞ.

Proof of Lemma 5.1. A topological proof is given in [1]. We give a different algebraic
proof here.

Let ðx; yÞ [ ½0;1Þ £ ½0;1Þ. We first claim that there exists ðx0; y0Þ [ C and t; s [ R
such that

x ¼ x0 þ x0at ¼ x0 þ ð12 y0Þs; ð3Þ

and

y ¼ y0 þ ð12 x0Þt ¼ y0 þ y0bs : ð4Þ

We address the trivial cases first. If x ¼ 0 then one takes x0 ¼ 0, y0 ¼ 1, t ¼ y2 1,
s ¼ 12y

b . If x – 0 and y ¼ 0, then one takes x0 ¼ 1, y0 ¼ 0, t ¼ 12x
a , s ¼ x2 1.

Now assume 0 , x , 1 and 0 , y , 1. We have y0 ¼ 12x0
12ð12abÞx0 (since

ðx0; y0Þ [ C). The first equalities in (3) and (4) will follow if by eliminating t, the
resulting equations have a solution ðx0; y0Þ [ C. Thus, putting t ¼ x2x0

x0a
, (3) into (4), we

obtain:

y ¼ 12 x0
12 ð12 abÞx0

þ ð12 x0Þ
x2 x0
x0a

:

This is equivalent to the cubic

hðx0Þ ¼ yð12 ð12 abÞx0Þðx0aÞ2 ð12 x0Þðx0aÞ2 ð12 x0Þðx2 x0Þð12 ð12 abÞx0Þ
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having a root in the interval ð0; 1Þ. This follows immediately since

hð0Þ ¼ 2x , 0

and

hð1Þ ¼ ayð12 ð12 abÞÞ ¼ a2 by . 0 :

Taking this toot x0, as well as taking y0 ¼ 12x0
12ð12abÞx0 and t ¼ x2x0

x0a
gives the first of the

equalities in (3) and (4).
To obtain the second equalities in (3) and (4), we note that for ðx0; y0Þ [ C, one has

that

ð12 x0Þð12 y0Þ ¼ abx0y0 :

Thus taking s ¼ x0at
12y0

we have that x0at ¼ ð12 y0Þs and ð12 x0Þt ¼ abx0y0
12y0

t ¼ y0bs as
claimed.

Now

Tðx; yÞ ¼ ðx0 þ x0atÞep2x02x0at2ay02atþax0t; ðy0 þ y0bsÞeq2bx02bsþby0s2y02y0bs
' (

which simplifies to

Tðx; yÞ ¼ x0ð1þ atÞep2x02ay0e2at; y0ð1þ bsÞeq2bx02y0e2bs
' (

:

Then referring to (2),

f ðx; yÞ ¼ x0ð1þ atÞep2x02ay0e2at ¼ f ðx0; y0Þð1þ atÞe2at # f ðx0; y0Þ;

and

gðx; yÞ ¼ y0ð1þ bsÞeq2bx02y0e2bs ¼ gðx0; y0ÞÞð1þ bsÞe2bs # gðx0; y0ÞÞ;

where we have made use of the inequality 1þ x # ex.
Thus Tðx; yÞ is in the negative cone of the point Tðx0; y0Þ on TðCÞ. This implies

Tðx; yÞ # TðCÞ since TðCÞ is a monotonically decreasing concave Jordan arc from
Lemma 2.3. A

Theorem 5.2. Let

p [
aþ 12 2a

ffiffiffi
b

p

12 ab
;
aþ 1þ 2a

ffiffiffi
b

p

12 ab

! "
and q [

bþ 12 2b
ffiffiffi
a

p

12 ab
;
bþ 1þ 2b

ffiffiffi
a

p

12 ab

! "
:

Then C , TðCÞ and T 2ðCÞ , TðCÞ

Proof of Theorem 5.2. We first consider C and TðCÞ. As the endpoints of TðCÞ lie outside
the region bounded by C, it suffices to show that C > TðCÞ ¼ B. For the parameters
given, we note that for any ðx; yÞ [ C, one has that f ðx; yÞ . x and gðx; yÞ . y. Thus if at
some point C intersected TðCÞ, there would be a point on C that maps to another point on
C. But then there exists two points ðx0; y0Þ; ðx1; y1Þ [ C with x0 , x1 and y0 , y1,
contradicting the fact that C is monotone decreasing (Lemma 2.3).
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To see that T 2ðCÞ , TðCÞ, note that by lemma 5.1 if they intersected, there would be
an intersection point of C and TðCÞ, which was shown to not occur. A

We now give sufficient conditions for disjointness of TðCÞ and Cþ

Theorem 5.3. If aþ 1 . p and bþ 1 . q then TðCÞ> Cþ ¼ f.

Proof of Theorem 5.3. We will first give a bounding curve C * for TðCÞ such that
TðCÞ , C * and then will argue that C * > Cþ ¼ B (see Figure 8).

First, we parametrize C by ðt;fðtÞÞ, 0 # t # 1 where fðtÞ ¼ 12t
12ð12abÞt. Note that then

TðCÞ is parametrized by tep2t2afðtÞ;fðtÞeq2bt2fðtÞ' (
.

Define C * by the parametrization

ðxðtÞ; yðtÞÞ ¼ temð12fðtÞÞþ12t;fðtÞemð12tÞþ12fðtÞ' (

where m ¼ max fa; b} We observe that

tep2t2afðtÞ , teaþ12t2afðtÞ # temð12fðtÞþ12t

and

fðtÞeq2bt2fðtÞ , fðtÞebþ12bt2fðtÞ # fðtÞemð12tÞþ12fðtÞ

so that TðCÞ , C *.
The advantage of C * is that it is symmetric with respect to t and fðtÞ; that is we have

that xðtÞ ¼ yðfðtÞÞ and xðfðtÞÞ ¼ yðtÞ. Note that C * ¼ TðCÞ for a special set of parameters
(which do not apply to this lemma, namely when p ¼ q ¼ mþ 1 and a ¼ b ¼ m) so that
C * is monotone and concave by Lemma 2.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

T(C)

C*

C+

Parallel

Figure 8. The bounding curve C * (thick concave curve) of TðCÞ (thin curve) is shown, along with
the outer branch of the hyperbola Cþ (thick convex curve). Both C * and Cþ have a tangent line with
slope21 (shown as dashed lines), so in the proof of the Theorem it suffices to show that the point of
tangency on C * is to the lower left of the tangent point on Cþ whenever aþ 1 . p and bþ 1 . q.
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A computation or geometric reasoning shows that dy=dx ¼ 21 at the point where C *

crosses the line y ¼ x, which occurs when t ¼ fðtÞ. Solving t ¼ fðtÞ gives t ¼
1=ð1^

ffiffiffiffiffi
ab

p
Þ and it is t * ¼ 1=ð1þ

ffiffiffiffiffi
ab

p
Þ that lies in the interval ½0; 1&. Computing xðtÞ; yðtÞ

at this point gives the coordinate as ðt *eðmþ1Þð12t *Þ; t *eðmþ1Þð12t *ÞÞ. Since C * is concave, the
tangent line at this point lies above C * (and thus the tangent line lies above TðCÞ as in
Figure 8). Now on Cþ, the curve also has slope 21 at the point

1

12
ffiffiffiffiffi
ab

p ;
1

12
ffiffiffiffiffi
ab

p
! "

and since Cþ is convex, this tangent line lies below Cþ. As these two tangents are parallel,
the proof will be complete if

t *eðmþ1Þð12t *Þ ,
1

12
ffiffiffiffiffi
ab

p

This is equivalent to showing 1
t * e

ðt *21Þðmþ1Þ 2 1þ
ffiffiffiffiffi
ab

p
. 0. We compute directly:

1

t *
eðt

*21Þðmþ1Þ 2 1þ
ffiffiffiffiffi
ab

p
$

1

t *
ð1þ ðt * 2 1Þðmþ 1ÞÞ2 1þ

ffiffiffiffiffi
ab

p

¼ m2
m

t *
þ

ffiffiffiffiffi
ab

p

¼ m2 mð1þ
ffiffiffiffiffi
ab

p
Þ þ

ffiffiffiffiffi
ab

p

¼ 12 mð Þ
ffiffiffiffiffi
ab

p

This is positive since 0 , m , 1 by definition. A

Remark Trivially one has:

aþ 1 ,
aþ 1þ 2a

ffiffiffi
b

p

12 ab
and bþ 1 ,

bþ 1þ 2b
ffiffiffi
a

p

12 ab

so the parameter conditions given in Theorem 5.3 imply the upper bound part of the
conditions in Theorem 5.2.

In summary, we have sufficient (but not necessary) parameter values for three of the
four topological conditions. We comment that we lack parameter values for the final
topological condition C , T 2ðCÞ. This is likely to be difficult because of the nature of the
curve T 2ðCÞ. We can find conditions for the curves C, TðCÞ, and Cþ because the curves
have simple first and second derivatives; they are always monotone decreasing and either
always concave as with C and TðCÞ or always convex as with Cþ. The same is not true of
T 2ðCÞ. In general it is both not monotone and the second derivative changes sign.

6. Conclusion

Our main points and results are as follows. We reduced an infinite number of topological
conditions for global attraction to the fixed point to a finite number. We also give upper
and lower bounds on p and q in terms of a and b which guarantee most of these topological
conditions. We are able to do this because the curves C, TðCÞ, and Cþare well behaved.
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Finally, we believe the Ricker Map is worth revisiting to tackle some of the more
pathological cases with intersections.

Acknowledgements

RJS is supported by a University of Southern California, Dornsife School of Letters Arts and
Sciences Faculty Development Grant. The authors thank Prof. Francis Bonahon of the University of
Southern California for discussions related to Lemma 4.3 and Dr Jeremy Brazas of Georgia State
University and Dr Omar Antolin Camarena of Harvard for pointing us to the reference [6].

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] E. Cabral Balreira, S. Elaydi, and R. Luis, Local stability implies global stability for the planar
Ricker competition model, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), March.

[2] P. Cull, Stability of one-dimensional population models, Bull. Math. Biology 50 (1988),
pp. 67–75.

[3] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Westview Press,
Boulder, CO, USA, 2003.

[4] S. Elaydi, An Introduction to Difference Equations. Undergraduate Texts in Mathematics, 3rd
ed., Springer, New York, 2005.

[5] S. Elaydi, Discrete Chaos, Chapman and Hall, CRC, Boca Raton, FL, 2008.
[6] C.-W. Ho, A note on proper maps, Proc. AMS 51 (1975), pp. 237–241, August.
[7] J. Li, Simple mathematical models for mosquito populations with genetically altered

mosquitos, Math. Biosci. 189 (2004), pp. 39–59.
[8] E. Liz, Local stability implies global stability in some one-dimensional discrete single-species

models, Discrete Contin. Dynam. Syst. B (2007), pp. 191–199.
[9] J. Mahaffy, and A. Chavez-Ross, Calculus: A Modeling Approach for the Life Sciences,

1, Pearson, New York, NY, USA, 2009.
[10] C. Mira, L. Gardini, A. Barugola, and J.-C. Cathala, Chaotic Dynamics in Two-Dimensional

Noninvertible Maps, volume 20 of Series in Nonlinear Sciences, World Scientific, Tokyo,
Japan, 1996.

[11] R.J. Sacker, A Note on Periodic Ricker maps, J. Difference Equations Appl. 13 (2007),
pp. 89–92, January.

[12] R.J. Sacker, Global stability in a multi-species periodic Leslie-Gower model, J. Biol. Dyn.
5 (2011), pp. 549–562.

[13] R.J. Sacker, and H.F. von Bremen, Dynamic reduction with applications to mathematical
biology and other areas, J. Biol. Dyn. 1 (2007), pp. 437–453, October.

[14] A.N. Sharkovsky, S.F. Kolyada, A.G. Sivak, and V.V. Federenko, Dynamics of one-
dimensional maps, Kluwer Academic Publishers Group, Dordrecht, Netherlands, 1997.

[15] M.P. Shepard, and F.C. Withler, Spawning stock size and resultant production for Skeena
sockeye, J. Fisheries Res. Board Canada 15 (1958), pp. 1007–1025.

[16] H. Smith, Planar competitive and cooperative difference equations, J. Difference Equations
Appl. 3 (1998), pp. 335–357.

[17] F.A. Bartha, A. Garab, and T. Krisztin, Local stability implies global stability for the
2-dimensional Ricker map, J. Difference Equations & Appl. 19 (2013), pp. 2043–2078.

B. Ryals and R.J. Sacker14
D

ow
nl

oa
de

d 
by

 [U
SC

 U
ni

ve
rs

ity
 o

f S
ou

th
er

n 
C

al
ifo

rn
ia

] a
t 1

3:
36

 2
1 

Se
pt

em
be

r 2
01

5 


