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Abstract

In this work we propose a conjecture about the stability of the periodic solutions of
the Ricker equation with periodic parameters, which goes beyond the existing theory,
and for the special case of period-two parameters we analytically show the conjecture is
true. For this case we show that the stability region in parameter space obtained from
the conjecture is larger than a previously proposed stability region. The period-three
case is investigated numerically and similar extensions are realized. This suggests that
the current theory cited in this paper, while giving sufficient conditions for stability is
far from optimal.
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1 Introduction

Recent advances in genetics have allowed scientists to genetically modify mosquitoes in the
laboratory to hinder or block parasite transmission, thus making the mosquitoes refractory.
This opens the possibility to release genetically modified mosquitoes into the wild with the
objective to reduce the spread of mosquito borne diseases like Malaria. The progress in
this area is fairly recent [1] and only few mathematical models for the population dynamics
of wild and genetically modified mosquitoes are available in the literature. Jia Li [2] pro-
posed a discrete-time mathematical model for populations consisting of wild and genetically
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altered mosquitoes, and in [3] presented an extension of his model where the zygocity of
the mosquitos is considered. See Ackleh et al [4] for a three-stage discrete-time population
model with continuous versus seasonal reproduction, and Jang [5] for a discrete-time model
consisting of two interacting populations. Ratio dynamics was used in [7, 8] to decouple
the mosquitoes population dynamics equations introduced in [2] into two Ricker equations.
In [6], the idea of dynamic reduction was introduced, and a model where the seasonal vari-
ability was taken into account by allowing the birth and survival functions to have periodic
parameters was presented. Through the use of dynamic reduction the equations governing
the population of the wild and genetically modified mosquitoes become a set of decoupled
Ricker equations with periodic parameters. So the study of the stability of the periodic solu-
tions of the mosquitoes model in [6] reduces to study the stability of periodic solutions of the
Ricker equation with periodic parameters. This highlights the importance of understanding
the stability of the periodic solutions of Ricker’s equation with periodic parameters and the
motivation for the work here presented.

Here we propose a conjecture about the stability of the periodic solutions of the Ricker
equation with periodic parameters, and for the special case of period-two parameters we
analytically show the conjecture is valid. Furthermore, for this case we show that the stability
region in parameter space obtained from the conjecture is larger than the one obtained by
applying the results of Z. Zhou and X. Zou [9]. Results from numerical solutions suggest that
for some regions in parameter space, it may be possible to attain stability of the periodic
solutions for parameter values beyond the ones constrained by the conjecture.

The conjecture on the stability of periodic solutions of Ricker’s equation with periodic pa-
rameters is given in Section 2, there it is also shown that the conjecture is valid for periodic
parameters with period two. In Section 3 the conjecture is explored numerically for param-
eters with periods 2, 3 and 4. Conclusions are given in Section 4.

2 The Conjecture

In this section we present a conjecture on the stability of the periodic orbit for the Ricker
equation with periodic parameters. The stability of such equations has been studied by Zhou
and Zou [9], Kon [10], and Sacker [?].

Consider the Ricker equation given by

zn+1 = zne
p(n)−zn , (2.1)

where the parameter p(n) is periodic with period k. In the trivial case of k = 1 we have
that p(n) = p for all n, and (2.1) has the unique positive fixed point ẑ = p, that is globally
asymptotically stable with respect to initial conditions z0 ∈ R+

0
.
= (0,∞) if 0 < p < 2. The
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upper bound is significant since as p increases across 2, ẑ loses its stability and bifurcates
into a stable period-two solution. In the general case, with p(n) k-periodic, it is shown in
[13] that for 0 < p(n) < 2, there is a periodic solution that is globally asymptotically stable
with respect to R+

0 . We propose the following conjecture.

Conjecture Suppose p(n) > 0 and p(n) is periodic with period k. Then the Ricker equation

(2.1) has a globally asymptotically stable periodic orbit if p(0)+...+p(k−1)
k

< 2 , and 0 < p(j) <
2 + εk, where εk is a positive number depending on k, and 0 ≤ j ≤ k − 1.

We first consider the special case of k = 2. Suppose p(n) is period two, that is, p(n+2) = p(n)
for all n ≥ 0. Let p0 = p(0) and p1 = p(1) with both p0 and p1 being positive, then to study
the 2-periodic solutions of (2.1) we can consider

zn+1 = g(zn), where g(zn) = (g1 ◦ g0)(zn), (2.2)

with gi(z) = zepi−z, and i = 0, 1. The fixed points of (2.2) are the period-2 solutions of (2.1).

A direct computation gives

g(z) = zep0+p1−z−zep0−z

, and (2.3)

g′(z) = (1− z)(1− zep0−z)ep0+p1−z−zep0−z

.

In order to show local exponential asymptotic stability of a fixed point z∗ we must show
|f ′(z∗)| < 1.

From (2.3) we have that z = 0 is a fixed point and for positive p0 and p1, g
′(0) = ep0+p1 > 1.

Thus the zero fixed point is unstable. If we consider only positive fixed points of (2.2), using
(2.3) we can get the following two equivalent conditions

ep0+p1−z−zep0−z

= 1, and (2.4)

p0 + p1 − z − zep0−z = 0.

Using (2.4) in (2.3) we obtain the following expression,

g′(z) = (1− z)(1 + z − (p0 + p1)). (2.5)

Figure 1 shows a contour plot of the derivative given by (2.5) as a function of z and the sum
p0 + p1. The thick solid lines mark the line where |g′(z)| = 1. Note that on this plot the
parameters p0 and p1 are not restricted by the conjecture and the values of z shown may not
be fixed points of (2.2). The plot shows the derivative of the composite map (2.2) at values
of z that are candidates for fixed points of (2.2). The graph shows that there is a region
where the magnitude of the derivative of the composite map is less than unity.
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Figure 1: Level curves of the derivative of the composite map at candidates for a fixed point
z

The right-hand side of (2.5) is a quadratic expression in z. If one bounds p0 and p1 by
0 < p0+p1 < 4, and additionally constrains p0 and p1 with 0 < p0 < 2+ε2 and 0 < p1 < 2+ε2,
then a direct computation shows that for ε2 ≈ 0.2845 we have that |g′(z)| < 1, for all z that
are fixed points of g in (2.3). Furthermore, ε2 ≈ 0.2845 is approximately the largest value of
ε2 for which the conjecture holds with period two parameters.

Figure 2 shows a contour plot of level p0 lines at the fixed points of (2.2) as a function of
the sum p0 + p1. Here, as in Figure 1, the thick solid lines mark the boundary of stability
(i.e., the line where |g′(x)| = 1). In contrast with Figure 1, here only values at actual fixed
points are represented. For a known sum of the parameters (p0 + p1) and a given p0, Figure
2 can be used to determine the location of the fixed-point. With the location of the fixed
point, Figure 1 can be used to determine the stability of that fixed point.

The following Lemma found in [11] and [12] will be used to show that the conjecture holds
for the k = 2 case.

Lemma Let z∗ be a fixed point of a continuous map on the closed interval I = [a, b]. Then
z∗ is globally asymptotically stable relative to (a, b) if and only if f 2(z) > z for z < z∗ and
f 2(z) < z for z > z∗ for all z in (a, b)\{z∗}, and a, b are not periodic points.

Recall that g(z) in (2.3) is such that g′(0) = ep0+p1 > 1, and due to the exponential, g(z) will
tend to zero as z increases. By continuity, g will have at least one positive fixed point for all
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nonzero p0 and p1. The number of positive fixed points of the iterated map g2(z) = g(g(z))
are shown on Figure 3 as a function of p0 and p0. The values shown on the figure are the
ones that were found computationally. The solid lines represent the boundaries between
the regions with different number of fixed points. The region enclosed by the dashed lines
represents the region in parameter space where the assumptions of the conjecture hold.

It is clear that the region in which only one fixed point g2(z) occurs, that fixed point is the
unique positive fixed point of g(z). Note that d(g2(0))/dz = e2(p0+p1) > 1 so for values of
z close to 0, we have that g2(z) > z. In fact, for the region where only one fixed point
occurs, by continuity, the inequality holds for z < z∗, where z∗ is the positive fixed point
of g and z > 0. Due to the exponential decay term of g2(z), for large values of z, we have
that g2(z) < z. Again, in particular, for the region where only one fixed point occurs, by
continuity, the inequality holds for z > z∗. In [13] it was shown that there exists and interval
I = [a, b], with a > 0, which is invariant under the application of g and into which all points
of R+

0 are mapped in a finite number of applications of g. The endpoints of the invariant
interval are b = exp(max(pi) − 1) and a = min{min(pi), b exp(min(pi) − b)}. Hence by the
Lemma 2, the region on Figure 3 where g2(z) has only one fixed point, corresponds to the
region in parameter space (p0, p1) where the unique positive fixed points of g are globally
asymptotically stable. This shows that the conjecture actually holds for k = 2. Figure 3
actually shows that the region in parameter space where (2.1) has a globally asymptotically
stable orbit is larger than the one given in the conjecture.

In [9], Z. Zhou and X. Zou provide a condition (Theorem 3.2) on the parameter values
for a Ricker type difference equation that guarantees the stability of periodic orbits. In the
period-2 case, the condition can be used to establish a stability region in the p0, p1 parameter
space. On Figure 4 the region labeled A is the stability region obtained by using the result
from Zhou and Zou. Our approach yields a significantly larger stability region A

⋃
B shown

on Figure 4.

In general, for the periodic-k solutions of (2.1) we can consider

zn+1 = g(zn), and (2.6)

g(zn) = (gk−1 ◦ gk−2 ◦ ... ◦ g1 ◦ g0)(zn),

with gi(z) = zepi−z, and i = 0, 1, ..., k − 1. The fixed points of (2.6) give the period-k
solutions of (2.1). In the next section we explore the conjecture numerically for period 2, 3
and 4 solutions.
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Figure 4: Stability regions of periodic orbits in the p0, p1 parameter space

3 Results from numerical simulations

Numerical simulations were conducted in order to estimate the values of εk for k = 2, 3, 4.
For each k a large set of randomly selected parameters p(0), p(1), ..., p(k − 1) satisfying the
conditions of the conjecture was selected. At every combination of the parameters the fixed
point of (2.1) was computed together with the derivative at the fixed point. The largest
possible values of εk for which all parameter combinations yielded a stable fixed point were
selected. The numerical simulations gave as estimates ε2 ≈ 0.285, ε3 ≈ 0.383 and ε4 ≈ 0.15

The k = 2 case. A large set of random values of the parameters p0 and p1 were used to
numerically estimate the largest value of ε2 that satisfies the conditions of the conjecture.
The numerical simulations suggested a value of ε2 ≈ 0.285. Using this value of ε2 as guide, ε2
was set to equal 0.28, and a large set of such parameters p0 and p1, satisfying the conjecture,
were randomly chosen. The fixed point and the derivative of the composite map at the fixed
point were computed for each case of the randomly selected parameters p0 and p1.

Figure 5 shows a plot of the fixed point in terms of the sum of the parameters p0 + p1 for
the above-mentioned set of randomly chosen parameters. The solid lines correspond to the
points where the magnitude of the derivative of the composite map at the fixed point is
unity. The general shape of the region on Figure 5 is very similar to the one on Figure 2.
The main difference between the plots is that on Figure 2 values of fixed points corresponding
to all possible parameter combinations are shown, including values with ε2 > 0.285, while
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Figure 5: Sum of the parameter values (p0 + p1) in terms of the fixed point

on Figure 5 only parameter combinations that satisfy the conjecture are shown.

Figure 6 shows a plot of the derivative at the fixed point in terms of the sum of the parameters
p0 + p1 for the above-mentioned set of randomly chosen parameters. The figure shows that
for the chosen set of parameters that satisfy the conjecture, the magnitude of the derivative
of the composite map evaluated at the fixed point of the composite map (2.2) is always less
than unity, numerically confirming the assertion given in the conjecture.

The k = 3 case.

Figure 7 shows a plot of of the sum p0 + p1 + p2 in terms of the derivative of the composite
map evaluated at the fixed point of (2.6) for a set of randomly chosen parameters, and
corresponds to Figure 6 in the k = 3 case. For the simulations a large set of parameter
values that satisfy the conditions of the conjecture with ε3 = 0.383 were chosen.

The magnitude of the derivative at the fixed point approaches one when the sum p0 +p1 +p2

is close to 4 and 5. On the other hand, if the sum of the parameters is fixed at a large
value of say, p0 + p1 + p2 = 5.75, one can observe that the derivative of the composite map
evaluated at the fixed point is relatively smaller than one. This suggests that one may be
able to choose one of the pi = 2 + ε > 2 + ε3 and still have a stable periodic solution.
This is actually the case. Figure 8 shows a plot of the derivative at the fixed point of the
composite map (2.6) as a function of p1, for various values of ε. Here p0 was taken to be
p0 = 2+ε, and p0+p1+p2 = 5.75. As previously observed, the plot suggests that it is possible
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Figure 6: Sum of the parameter values (p0 + p1) in terms of the derivative at the fixed point

Figure 7: Sum of the parameter values (p0 + p1 + p2) in terms of the derivative at the fixed
point
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Figure 8: Derivative at the fixed point as a function of p1 for various values of ε

to obtain stable solutions at some combinations of parameters where the conditions of the
conjecture are not satisfied. In this example p0 was allowed to exceed the values allowed by
the conjecture. The example suggests that by appropriately increasing a parameter it may
be possible to change from an unstable solution to a stable solution. This behavior is also
suggested in the k = 2 case. Figures 2 and 6 show that for values of p0 +p1 slightly less than
4 it is possible to chose one of the parameters with a value exceeding 2 + ε2 and still obtain
a stable solution.

4 Conclusions

A conjecture about the stability of periodic solutions of the Ricker equation with periodic
parameters is given. For the special case of period-two parameters the conjecture is analyt-
ically shown to be valid. The region in parameter space (for period-two parameters) given
by the conjecture where the periodic solutions of the equation are asymptotically stable is
compared with the region obtained by a result from Z. Zhou and X. Zou [9]. The stability
region obtained by using the conjecture encompasses the one obtained in [9], and it actu-
ally is significantly larger. It is also larger than that obtained in [13]. In addition, in the
period-two case we find numerically the maximal parameter region in which the equation
has a globally asymptotically stable periodic solution.
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Results from numerical explorations for parameters with period-three suggest that in pa-
rameter space, it may be possible to attain stability for parameter values in regions larger
than the ones conjectured. The simulations also suggest that by appropriately increasing a
parameter it may be possible to move from a region of unstable solutions to one with stable
solutions.
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