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In this paper, we investigate the long-term behaviour of solutions of the periodic Sigmoid Beverton–Holt
equation

xn+1 = anxδn
n

1 + xδn
n

, x0 > 0, n = 0, 1, 2, . . . ,

where the an and δn are p-periodic positive sequences. Under certain conditions, there are shown to exist
an asymptotically stable p-periodic state and a p-periodic Allee state with the property that populations
smaller than the Allee state are driven to extinction while populations greater than the Allee state approach
the stable state, thus accounting for the long-term behaviour of all initial states. This appears to be the first
study of the equation with variable δ. The results are discussed with possible interpretations in Population
Dynamics with emphasis on fish populations and smooth cordgrass.
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1. Introduction

In this paper, we investigate the long-term behaviour of solutions of the periodic Sigmoid
Beverton–Holt (or Holling Type III, [15]) equation

xn+1 = anxδn
n

1 + xδn
n

, x0 > 0, n = 0, 1, 2, . . . , (1)

where the an and δn are p-periodic positive sequences. In a recent ground-breaking publication
by Harry et al. [14], an extensive study has been made on the case δ = constant and a rich source
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1020 G.R.J. Gaut et al.

of references on the subject has been presented. Technically, the term ‘Sigmoid’ applies only to
the case in which δ > 1 where the graph of what we call the Sigmoid Beverton–Holt function,

fa,δ(x) = axδ

1 + xδ
, a > 0,

has the characteristic ‘S’ shape, the slow rise from zero, a rapid rise, and then flattening out for
large x. This shape is especially interesting in discrete dynamics when for ‘a’ sufficiently large, it
gives rise to the famous Allee effect in which small populations are driven to extinction. This is
of paramount importance in the management of fisheries and establishment of safeguards against
overfishing [2,19]. Stephens and Sutherland [25] described several scenarios that cause the Allee
effect in animals. For example, cod and many freshwater fish species have high juvenile mortality
when there are fewer adults. Fewer red sea urchins give rise to worsening feeding conditions of their
young and less protection from predation. In some mast flowering trees, such as smooth cordgrass,
Spartina alterniflora, a low population density results in lower probability of seed production and
germination [5]. In Section 7, some possible implications of our results in Population Dynamics
are given. In particular, our theoretical results are in agreement with the fact that the maximum tol-
erable depensation can vary with time in the study of fish populations and the observedAllee effect
[5] in smooth cordgrass could be modelled with a periodic system such as the one studied here.

See [9] for a discussion of some new examples of models exhibiting theAllee effect and, similar
to the Beverton–Holt model, having important biological quantities as parameters, for example,
intrinsic growth rate, carrying capacity, Allee threshold, and a new parameter, the shock recovery
parameter. Further references pertaining to the Allee effect can be found in [1,3,4,6,10–12,16–
18,23,26,31,32], and for references to the general theory of difference equations, see [7,20]. For
a discussion on the use of the Sigmoid model, see [28, p. 82]

In what follows, we show that under certain conditions on the coefficients, Equation (1) has
an asymptotically stable p-periodic state and an unstable p-periodic Allee state. With the aid of a
Skew-Product Dynamical System, we also show that all initial states smaller than the Allee state
go extinct, while all initial states larger than the Allee state approach the asymptotically stable
p-periodic state.

Throughout the paper, we use the notation R+ = [0, ∞) and R+
0 = (0, ∞). Also ‘increasing’

shall always mean strictly increasing and similarly for decreasing. Also, by C1(R+, R+), we mean
the space of continuously differentiable functions from R+ to R+.

2. Stable periodic orbit

The model that we consider is the p-periodic iterated mapping

xn+1 = fn(xn), n = 0, 1, . . . , (2)

on R+ where fn = fn+p, n = 0, 1, . . .. In particular, we are interested in the case when fn = fan,δn

are Sigmoid Beverton–Holt functions, although we will also have occasion to consider other
functions fn. We are interested in establishing the existence of a positive periodic orbit

{s0, s1, . . . , sp−1} (3)

that is asymptotically stable and attracts all orbits for which x0 lies in some interval (B, ∞). It
is well known that this is equivalent to showing the existence of a fixed point s0 of the mapping
F : R+ → R+ given by

F .= fp−1 ◦ · · · ◦ f0

that has the same stability properties.
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Journal of Biological Dynamics 1021

It is also known [8,21], but not fully appreciated, that the concept of a semigroup plays a key
role in the study of periodic difference equations. To illustrate this fact, we begin by disposing of
the case in which all δn ≤ 1.

Theorem 2.1 Suppose in Equation (2) that fn = fan,δn with δn ≤ 1 and {an} ⊂ R+
0 has the property

that an > 1 whenever δn = 1. Then, there is a periodic orbit (3) that is asymptotically stable and
attracts any orbit for which x0 ∈ R+

0 .

Proof It has been shown in [8, p. 272] that the set of all functions from R+ to R+ that are contin-
uous, non-decreasing, concave, and whose graph crosses the diagonal on R+

0 forms a semigroup
under composition. Moreover, for any function f in this set, the value of x ∈ R+

0 where the graph
crosses the diagonal is a fixed point of the iterated mapping xn+1 = f (xn) that attracts any orbit
for which x0 ∈ R+

0 . It is easy to see, under the hypotheses of the theorem, that the functions fn
belong to this set, so, by the semigroup property, their composition F = fp−1 ◦ · · · ◦ f0 must also
belong to this set. The positive fixed point of F corresponds to a periodic orbit of Equation (2)
that is asymptotically stable and attracts any orbit for which x0 ∈ R+

0 . !

When at least one of the δn’s is greater than 1, the existence of a positive asymptotically stable
periodic orbit (3) is more subtle. In order to state conditions on the parameters under which such
an orbit is guaranteed to exist, we first explore the nature of the autonomous iterated mapping
xn+1 = fa,δ(xn) for different values of the parameters (see also [14] for helpful illustrations).

It is clear that every Sigmoid Beverton–Holt function fa,δ is increasing, goes through the origin,
and limx→∞ fa,δ(x) = a. When 0 < δ < 1 and a has any positive value or when δ = 1 and a > 1,
the graph is concave everywhere and there is a unique fixed point Kf ∈ (0, ∞) that is asymptoti-
cally stable on R+

0 . When δ = 1 and 0 < a ≤ 1, the graph is concave everywhere but lies below
the diagonal, so x = 0 is the only fixed point and it is globally asymptotically stable. When δ > 1,
the function is convex on (0, xinfl) and concave on (xinfl, ∞) where the inflection point is given by

xinfl(δ) =
(

δ − 1
δ + 1

)1/δ

.

Note that xinfl depends on δ alone.Also, xinfl(δ) < 1 and xinfl(δ) → 1 as δ → ∞. It has been shown
in [14] that there is a critical value of a given by

acrit(δ)
.= δ

(δ − 1)1−1/δ

at which a saddle-node bifurcation takes place. Namely (Figure 1),

(1) for a < acrit , the entire graph of y = fa,δ(x), x ∈ R+
0 , lies under the diagonal y = x so that the

origin is globally asymptotically stable, while
(2) for a = acrit , the graph of y = fa,δ(x) is tangent to the diagonal at a semi-stable fixed point,

and
(3) for a > acrit , the graph of y = fa,δ(x) intersects the diagonal at two fixed points: the Allee

threshold Af and the carrying capacity Kf . The origin is exponentially asymptotically stable
and attracts all orbits for which x0 ∈ [0, Af ), the Allee threshold Af is unstable, and Kf is
exponentially asymptotically stable and attracts all orbits for which x0 ∈ (Af , ∞).

Also of significance is the x value of the bifurcation point as a function of δ, xbif(δ). At the
bifurcation point, the graph of f intersects and is tangent to the diagonal. Thus, xbif is the solution
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1022 G.R.J. Gaut et al.
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a > a crit

a = a crit

a < a crit

A K

Figure 1. Bifurcation as a increases for fixed δ > 1.

to the simultaneous equations

acrit xδ

1 + xδ
= x and acrit δxδ−1

(1 + xδ)2
= 1.

Dividing the first by the second and simplifying, we obtain the rather simple expression

xbif(δ) = (δ − 1)1/δ . (4)

Clearly, xinfl(δ) < xbif(δ) for all δ > 1 and Af < xbif(δ) < Kf . However, the relative sizes of xinfl(δ)

and Af depend on the size of a. We denote by aallee(δ) the value of a where Af = xinfl(δ). At this
value, we have

fa,δ(xinfl(δ)) = xinfl(δ).

Solving yields

aallee(δ) =
(

2δ

(δ − 1)1−1/δ(δ + 1)1/δ

)
. (5)

Note that acrit(δ) < aallee(δ) for all δ > 1. If acrit(δ) < a < aallee(δ), then xinfl(δ) < Af < xbif(δ) <

Kf , and if a > aallee(δ), then Af < xinfl(δ) < xbif(δ) < Kf . Figure 2 shows plots of xinfl and xbif as
functions of δ and Figure 3 shows plots of aallee and acrit as functions of δ.

In all of our theorems, we will only be concerned with those Sigmoid Beverton–Holt functions
that have a positive asymptotically stable fixed point, in other words those for which δ < 1 and a
has any value, or δ = 1 and a > 1, or δ > 1 and a > acrit . To specify these concisely, we define
acrit(δ)

.= 0 for δ < 1 and acrit(δ)
.= 1 for δ = 1. The maps that we are interested in are then those

fa,δ for which a > acrit(δ).
Harry et al. [14] obtained the following result concerning the existence of a positive

asymptotically stable periodic orbit of Equation (2) in the δn = constant case.

Theorem 2.2 [14, Theorem 8] Let δn = δ > 1 be fixed and {an} ⊂ R+ be a p-periodic sequence
satisfying an > acrit(δ), 0 ≤ n ≤ p − 1. Suppose

Amax
.= max{Af0 , . . . , Afp−1} < Kmin

.= min{Kf0 , . . . , Kfp−1}. (6)

Then, there exists A ∈ (Amax, Kmin) and a periodic orbit (3) that is asymptotically stable and
attracts all orbits for which x0 ∈ (A, ∞).
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Bifurcation point

Inflection point

d 

Figure 2. Bifurcation point: the point x at which the graph of facrit ,δ is tangent to the diagonal. Inflection point: the
point (independent of a) at which the graph of fa,δ changes from convex to concave. The intervals [1.5, 2] and [3, 7] are
examples of intervals I such that if δn ∈ I for all n, then condition 8 of Corollary 2.5 is met.

1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

a

aallee

acr i t

d 

Figure 3. acrit : for a > acrit , fa,δ has an Allee point Af and carrying capacity Kf .
aallee: for a > aallee, xinfl < Af , so fa,δ is convex on (0, Af ).

Since δ > 1 is constant in this theorem and Af < xbif(δ) < Kf , hypothesis (6) is unnecessary.
In addition, we will show in Theorem 2.4 that any orbit for which x0 > Amax is asymptotic to the
periodic orbit. Thus, the theorem can be restated as follows.

Theorem 2.3 Let δ > 1 be fixed and {an} ⊂ R+ be a p-periodic sequence satisfying an > acrit(δ),
0 ≤ n ≤ p − 1. Then, there is a periodic orbit (3) that is asymptotically stable and attracts all
orbits for which x0 ∈ (Amax, ∞).

In Section 5 we will further improve the condition x0 ∈ (Amax, ∞). We will prove the following
theorem in Section 3; it will be a direct consequence of a more general theorem that we prove
there. It is considerably stronger than Theorem 2.3, since it allows δn to vary.
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1024 G.R.J. Gaut et al.

Theorem 2.4 Let {δn} and {an} be p-periodic sequences in R+
0 such that an > acrit(δn), for

0 ≤ n ≤ p − 1. Let N = {n | δn > 1} and define

xinfl
max = max

n∈N
xinfl(δn), Amax = max

n∈N
Afn , Kmin = min

0≤n≤p−1
Kfn , Kmax = max

0≤n≤p−1
Kfn ,

and suppose

max{xinfl
max, Amax} < Kmin. (7)

Then, there is a periodic orbit (3) that is asymptotically stable and attracts all orbits for which
x0 ∈ (Amax, ∞). In addition, the entire orbit (3) lies in the interval [Kmin, Kmax].

Since we do not have simple formulae for Af and Kf , the hypotheses in the theorem given
above may need to be verified numerically. The following corollary is weaker than the theorem,
but the hypotheses are easily verifiable analytically, since we have formulae for all of the relevant
quantities in terms of an and δn.

Corollary 2.5 Let {δn} and {an} be p-periodic sequences in R+
0 such that δn > 1 and an >

aallee(δn), for 0 ≤ n ≤ p − 1. Define

xbif
min = min

0≤n≤p−1
xbif(δn),

and assume

xinfl
max < xbif

min. (8)

Then, there is a periodic orbit (3) that is asymptotically stable and attracts all orbits for which
x0 ∈ (Amax, ∞).

Proof Since δn > 1 and an > aallee(δn), we know that Afn < xinfl(δn) < xbif(δn) < Kfn for all n.
It follows that

max{xinfl
max, Amax} = xinfl

max

and

xbif
min < Kmin.

Thus, by the hypothesis of the corollary, max{xinfl
max, Amax} < Kmin, and the result follows by the

theorem. !

Remark 1 Condition (8) in the corollary is a condition on the δ’s alone. This condition says that
the δ’s must lie in an interval in which the highest point on the inflection point graph is lower
than the lowest point on the bifurcation graph. For example, it is clear from Figure 2 that this
condition is satisfied if δn ≥ 2 for all n. As another example, if 1.5 ≤ δn ≤ 2 for all n, then the
highest point on the inflection point graph is ≈ 0.5774 and the lowest point on the bifurcation
graph is ≈ 0.6300, so again this condition is satisfied.

3. A general theorem

In this section, we prove a general theorem that will have Theorem 2.4 as a corollary.
Given r ≥ 0, define Fr as the set of all continuous functions f : R+ → R+ that have the

following properties:

(1) f : [r, ∞) → [r, ∞).
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Journal of Biological Dynamics 1025

(2) There exists a number B ≥ r such that f (B) > B and f is increasing and concave on (B, ∞).
(3) There exists a number x∗ > B such that f (x∗) < x∗.

For f ∈ Fr , define Bf = inf{B}, where the infimum is taken over all B satisfying (2). Note that
Bf ≥ r, f (Bf ) ≥ Bf , and f is increasing and concave on (Bf , ∞).

Lemma 3.1 For each function f ∈ Fr , the iterated mapping given by

xn+1 = f (xn) (9)

has a unique fixed point Kf on the interval (Bf , ∞). This point is asymptotically stable and attracts
all orbits for which x0 ∈ (Bf , ∞).

Proof We first prove uniqueness. Suppose x1 < x2 are fixed points on (Bf , ∞). Choose B such
that Bf ≤ B < x1 and f (B) > B. Choose t such that x1 = tB + (1 − t)x2. Since f is concave on
(B, x2),

x1 = f (tB + (1 − t)x2) ≥ tf (B) + (1 − t)f (x2) > tB + (1 − t)x2 = x1,

a contradiction. The existence follows from (2) and (3) and the intermediate value theorem. To
show the asymptotic stability of Kf , note that x < f (x) < Kf for x ∈ (Bf , Kf ) and Kf < f (x) < x
for x ∈ (Kf , ∞). Thus, the sequence {xn} defined by Equation (9) is increasing and bounded above
by Kf when x0 ∈ (Bf , Kf ) and decreasing and bounded below by Kf when x0 ∈ (Kf , ∞). It follows
that the sequence converges. By continuity, the limit is a fixed point and by uniqueness it must
be Kf . !

There are two important observations to be made about Fr . The first is the role of the number r.
Since every function in Fr maps the interval [r, ∞) into itself, the autonomous iterated mapping
(9) can be restricted to the set [r, ∞). Moreover, because this interval is common to all the functions
in Fr , the p-periodic iterated mapping (2), where fn ∈ Fr , can also be restricted to [r, ∞). Each
function f ∈ Fr also has other intervals that map to themselves, namely [B, ∞) for any number B
satisfying (2). However, the p-periodic iterated mapping cannot necessarily be restricted to any
subset of [r, ∞), since there may not be a number B that is common to all of the fn’s.

The second observation already came out in the proof of Lemma 3.1, but it will be used again,
so we point it out explicitly. Given any function f ∈ Fr , x < f (x) < Kf for x ∈ (Bf , Kf ) and
Kf < f (x) < x for x ∈ (Kf , ∞).

3.1. A new class of mappings

Given r ≥ 0 and " ∈ [r, ∞), we define the class

Ur,"
.= {f ∈ Fr |Bf ≤ " < Kf }. (10)

Theorem 3.2 Ur," is a semigroup under the operation of composition of maps. Moreover, for
any f , g ∈ Ur,", Bf ◦g ≤ max{Bf , Bg} and Kf ◦g lies on the closed interval with endpoints Kf and Kg.

Proof Let f , g ∈ Ur," be given. We first show that f ◦ g lies in Fr .

(i) Since f and g both map [r, ∞) to itself, f ◦ g does as well.
(ii) Let B be any number such that max{Bf , Bg} < B < min{Kf , Kg}. Since B ∈ (Bg, Kg), g(B) >

B, and since f is increasing on [B, ∞), it follows that f ◦ g(B) = f (g(B)) > f (B). Now,
since B ∈ (Bf , Kf ), f (B) > B. Thus, f ◦ g(B) > B. Moreover, f and g are both increasing
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1026 G.R.J. Gaut et al.

and concave on (B, ∞), and since g(B) > B, this interval is invariant under g, so f ◦ g is also
increasing and concave on this interval.

(iii) We show that there exists a number x∗ > B such that f ◦ g(x∗) < x∗.
Case 1: Suppose there exists x > B such that g(x) > Kf . Since g is increasing on (Bg, ∞),
this will be true for all sufficiently large x. Choose x∗ so that g(x∗) > Kf and x∗ > Kg. Then,
x∗ > B, and since g(x∗) > Kf , f ◦ g(x∗) = f (g(x∗)) < g(x∗), which, in turn, is less than x∗,
since x∗ > Kg.
Case 2: Suppose g(x) ≤ Kf for all x > B. In this case, choose x∗ to be any number larger
than Kf . Then, x∗ > B, and since g(x∗) ≤ Kf and f is increasing on (B, ∞), f ◦ g(x∗) =
f (g(x∗)) ≤ f (Kf ) = Kf < x∗.

Thus, f ◦ g lies in Fr . Once we have established that Bf ◦g ≤ max{Bf , Bg} and that Kf ◦g lies
between Kf and Kg, it will follow immediately that f ◦ g ∈ Ur,". The former is immediate because
we have seen that any number B that lies between max{Bf , Bg} and min{Kf , Kg} has the properties
in (2). To show the latter, there are three cases.

Case 1: Suppose Kf < Kg. Then, Kg ∈ (Kf , ∞), so f ◦ g(Kg) = f (Kg) < Kg. Similarly, Kf ∈
(Bg, Kg), so g(Kf ) > Kf , and f is increasing on (Bf , ∞), so f ◦ g(Kf ) = f (g(Kf )) > f (Kf ) = Kf .
Thus, Kf < Kf ◦g < Kg.

Case 2: Suppose Kf > Kg. Then, Kg ∈ (Bf , Kf ), so f ◦ g(Kg) = f (Kg) > Kg. Similarly, Kf ∈
(Kg, ∞), so g(Kf ) < Kf , and f is increasing on (Bf , ∞), so f ◦ g(Kf ) = f (g(Kf )) < f (Kf ) = Kf .
Thus, Kg < Kf ◦g < Kf .

Case 3: Suppose Kf = Kg. In this case, f ◦ g(Kg) = f (g(Kg)) = f (Kg) = f (Kf ) = Kf . Thus,
Kf = Kg is a fixed point of f ◦ g, so by uniqueness it must be Kf ◦g. !

3.2. Proof of Theorem 2.4

It is easy to see that every Sigmoid Beverton–Holt function f = fa,δ with a > acrit(δ) lies in F0

and Bf = 0 if δ ≤ 1 and Bf = max{xinfl(δ), Af } if δ > 1. Choose l so that max{xinfl
max, Amax} <

l < Kmin. This is possible by the hypothesis of the theorem. Then, fn ∈ U0,l for all n. It follows
by Theorem 3.2 that F = f0 ◦ f1 ◦ · · · fp−1 ∈ U0,l ⊂ F0 and that BF ≤ max{xinfl

max, Amax}. Thus, by
Lemma 3.1, F has a unique fixed point on the interval (BF , ∞) that is asymptotically stable and
attracts all orbits for which x0 ∈ (BF , ∞). This fixed point corresponds to a periodic orbit of the
non-autonomous system (2) with the same stability properties.

Since BF ≤ max{xinfl
max, Amax}, it follows immediately that this periodic orbit attracts all orbits

for which x0 ∈ (max{xinfl
max, Amax}, ∞). However, if Amax < xinfl

max, we still need to show that the
periodic orbit attracts all orbits for which x0 ∈ (Amax, xinfl

max]. To this end, let such a point x0 be
given and let {xi}∞i=0 denote its orbit under Equation (2). To show that this orbit is attracted to the
periodic orbit, it suffices to show that there exists k ∈ N such that xkp > xinfl

max.
Note first that if xn > Kmin, then xn+1 > Kmin, and if xn ≤ Kn, then xn+1 = fn(xn) ≥ xn > Kmin,

and if xn > Kn, then xn+1 = fn(xn) > Kn ≥ Kmin. Moreover, if xn ∈ (Amax, Kmin), then An < xn <

Kn, so xn+1 = fn(xn) > xn. Thus, there are two possibilities: the first is that there exists n ∈ N such
that xn > Kmin and the second is that xn ≤ Kmin for all n. In the former case, xm > Kmin > xinfl

max
for all m ≥ n, so the result follows. In the latter case, {xi}∞i=0 is an increasing sequence that is
bounded above and therefore has a limit. By continuity, the limit is a fixed point of F. But the
observations that we have just made show that for any x ∈ (Amax, Kmin), F(x) > x, so the limit
must be Kmin > xinfl

max and the result follows.
To show that the entire orbit lies in [Kmin, Kmax], we use induction. From Theorem 3.2,

min{Kf1 , Kf0} ≤ Kf1◦f0 ≤ max{Kf1 , Kf0}.
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Assume, as an induction hypothesis,

min
0≤j≤m

{Kfj } ≤ Kfm◦···◦f0 ≤ max
0≤j≤m

{Kfj }.

Applying Theorem 3.2 to fm+1 and fm ◦ · · · ◦ f0, we get

min{Kfm+1 , Kfm◦···◦f0} ≤ Kfm+1◦···◦f0 ≤ max{Kfm+1 , Kfm◦···◦f0}.

From the inductive hypothesis, it follows that

min
0≤j≤m+1

{Kfj } ≤ Kfm+1◦···◦f0 ≤ max
0≤j≤m+1

{Kfj }.

This shows that s0 = Kfp−1◦···◦f0 ∈ [Kmin, Kmax]. To show that the entire periodic orbit lies in
[Kmin, Kmax], note that si = Kfi−1···f0◦fp−1···◦fi+1◦fi and apply a similar argument.

4. Allee periodic orbit

We saw in Theorem 2.4 that inside the envelope [Kmin, Kmax] of the carrying capacities, there is
an asymptotically stable periodic state. A similar result is obtained for the Allee thresholds. For
b > 0, define

Xb
.= {f ∈ C1(R+, R+) | f (0) = 0, f increasing and convex on [0, b],
f (b) > b, and there exist x1 ∈ [0, b) + f (x1) < x1}. (11)

Note that each function f ∈ Xb has a unique unstable fixed point Af ∈ [0, b) such that any orbit
of the autonomous iterated mapping xn+1 = f (xn) for which x0 ∈ [0, Af ) converges to 0.

Theorem 4.1 Consider a finite collection of functions f0, f1, . . . fp−1 ∈ Xb. Define

Amin = min
0≤n≤p−1

Afn and Amax = max
0≤n≤p−1

Afn .

The periodic iterated mapping (2) has a positive unstable p-periodic orbit
α = {α0, α1, . . . , αp−1} ⊂ [Amin, Amax] such that all orbits for which x0 ∈ [0, α0) are attracted
to 0. We call this orbit the Allee periodic orbit of the iterated mapping.

Proof Define

Fn(x) =
{

fn(x) x ∈ [0, b]
fn(b) + f ′

n(b)(x − b) x > b

and let φn = F−1
n . Note that φn ∈ U0,0 for all n and recall that U0,0 is a semigroup under com-

position. (See Section 3.1 for the definition and properties of U0,0.) Moreover, Bφn = 0 and
Kφn = Afn . It follows that the iterated mapping xn+1 = φp−1−n(xn) has a unique stable peri-
odic orbit β = {β0, β1, . . . , βp−1} that attracts all orbits for which x0 ∈ (0, ∞). The fact that
β ⊂ [Amin, Amax] follows by an induction argument similar to that used in the proof of Theorem 2.4.
Thus, α0, α1, . . . , αp−1 where αn = βp−1−n is an unstable p-periodic orbit of the iterated mapping
xn+1 = Fn(xn) and any orbit for which x0 ∈ [0, α0) is attracted to 0. Since fn = Fn on [0, b] and
αn ∈ [Amin, Amax] ⊂ [0, b] for all n, α is also a periodic orbit of xn+1 = fn(xn) and any orbit of this
iterated mapping for which x0 ∈ [0, α0) is attracted to 0. !
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Figure 4. The trapezoidal region R is an example of a region such that if (δn, Afn ) ∈ R for all n, then the conditions of
Theorem 4.2 are satisfied and there is a unique Allee p-periodic orbit. The point b is the smallest value on the inflection
curve and the line at b must be above R.

4.1. Application to the Sigmoid Beverton–Holt equation

Recall the definition of aallee in Equation (5), the value of a as a function of δ at which the
inflection point and Allee threshold coincide. Its graph is shown in Figure 3. If an > aallee(δn) for
n = 0, 1, . . . , p − 1, each Allee threshold lies on an interval of convexity of the graph of fn. Thus,
if we assume

Amax < xinfl
min

.= min
0≤n≤p−1

xinfl(δn),

then each fn ∈ Xb where b = xinfl
min, see Figure 4. Thus, we have the following.

Theorem 4.2 Let {δn} and {an} be p-periodic sequences in R+
0 such that δn > 1 and an >

aallee(δn), for 0 ≤ n ≤ p − 1. Assume

Amax < xinfl
min.

Then, the periodic iterated mapping (2) has a positive unstable p-periodic orbit α = {α0, α1, . . . ,
αp−1} ⊂ [Amin, Amax] such that all orbits for which x0 ∈ [0, α0) are attracted to 0.

Remark 2 As a increases through acrit(δ) with δ fixed, Kfa,δ moves upward from the bifurcation
graph and Afa,δ moves downward. The trapezoidal region in Figure 4 shows a typical containment
region for all the (δn, Afn) satisfying the hypotheses of the theorem.

5. A new perspective using the Skew-Product space

Certain refinements to the above results can be realized by studying the problem in the Skew-
Product setting. In the 1970s, the Skew-Product Dynamical System was introduced and developed
by R.J. Sacker and G.R. Sell as a means to analyse time-varying differential equations in a more
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geometric setting (see [22] and references therein). The concept sprung from an idea in [24] in
which the evolution in time of the function on the right-hand side of

x′(t) = f (t, x), x ∈ Rn, (12)

is considered along with the evolution of a solution. This is accounted for by embedding f in a
certain function space F and introducing the shift flow σ in F whereby the function f , after τ

units of time, evolves to σ (f , τ ) = fτ , where fτ (t, x) = f (t + τ , x). In this setting, the orbit under
the action of σ of a periodic (in t) f in Equation (12) is a closed Jordan curve in F . Then, an
enlarged phase space Rn × F is introduced and the Skew-Product flow

π : Rn × F × R → Rn × F with π(x0, g, τ ) = (ϕ(x0, g, τ ), gτ ), ∀g ∈ F , (13)

where ϕ(x0, g, τ ) is the solution, evaluated at τ , of x′(t) = g(t, x), ϕ(x0, g, 0) = x0. It is readily
verified that π is indeed a flow in the enlarged state space Rn × F and thus all the theory of
autonomous dynamical systems can be brought to bear.

In the present setting of p-periodic difference equations in one dimension, the situation is much
simpler, F = {f0, f1, . . . , fp−1}, σ (fk , m) = fk+m, and Equation (13) becomes

π : R+ × F × Z+ → R+ × F with π(x0, f , n) = (ϕ(x0, f , n), fn). (14)

In Figure 5, the Skew-Product space is shown for period p = 4 along with the stable periodic
orbit s = {s0, s1, s2, s3} and the Allee periodic orbit α = {α0, α1, α2, α3}. The following theorem
is obtained by a more careful analysis of this figure.

−2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

8

10

12

s0

s1

s2
s3

s0

R+

0

b
AM

Am

f0 f1 f2 f3 f4=f0

s = stable periodic orbit

a = Allee periodic orbit

Period = 4

Time

x

a0

a1

a2
a3

a0

Figure 5. The stable periodic orbit sj and the Allee periodic orbit αj in the Skew-Product space. AM = Amax, the largest
of the Allee thresholds Aj of the component functions fj governing the evolution of the system at time t = j and Am = Amin.
The vertical dashed lines are the regions of extinction at times 0, 1, 2, 3, while the vertical solid lines are the regions of
attraction of the periodic orbit s.
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Theorem 5.1 Let {δn} and {an} be p-periodic sequences in R+
0 such that δn > 1 and an >

aallee(δn), for 0 ≤ n ≤ p − 1. Suppose that

Amax < xinfl
min ≤ xinfl

max < xbif
min.

Then, there are a stable periodic orbit s = {s0, s1, . . . , sp−1} ⊂ [Kmin, Kmax] and an Allee periodic
orbit α = {α0, α1, . . . , αp−1} ⊂ [Amin, Amax]. Moreover, we have the following:

(i) For all n ∈ N, the interval (0, αn) maps homeomorphically onto (0, αn+1) by fn, and any orbit
for which x0 ∈ (0, α0) approaches 0 asymptotically.

(ii) For all n ∈ N, the interval (αn, sn) maps homeomorphically onto (αn+1, sn+1) by fn, and any
orbit for which x0 ∈ (α0, ∞) is attracted to the stable periodic orbit s.

Proof The existence of the stable and Allee periodic orbits and their containments within
[Kmin, Kmax] and [Amin, Amax], respectively, follows directly from Theorems 2.4 and 4.2. More-
over, any orbit for which x0 ∈ (Amax, ∞) is attracted to the stable periodic orbit and any orbit for
which x0 ∈ (0, α0) approach 0 asymptotically. That (0, αn) maps homeomorphically to (0, αn+1)

and (αn, sn) maps homeomorphically to (αn+1, sn+1) follows from the fact that fn is increasing.
It only remains to be shown that any orbit for which x0 ∈ (α0, Amax] is attracted to the stable

periodic orbit s. For this, we look more carefully at the proof of Theorem 4.1. The orbit β is
globally asymptotically stable under the iterated mapping xn+1 = φp−1−n(xn). In particular, any
orbit under this mapping for which x0 ∈ (Amax, b), where b = xinfl

min, is attracted to the periodic
orbit β. It follows that there are points arbitrarily close to αn that are ultimately mapped into
the interval (Amax, b) under the mapping xn+1 = Fn(xn). Since Fn = fn on [0, b), this is also true
under the mapping xn+1 = fn(xn). Since (αn, sn) maps homeomorphically to (αn+1, sn+1), all points
arbitrarily close and greater than α0 are ultimately mapped to points greater than Amax. The result
follows since (Amax, ∞) has already been shown to lie in the basin of attraction of the stable
periodic orbit. !

6. Discussion of the conditions in the theorems

Our proof in Theorem 2.4 that the periodic iterated mapping (2) has a stable periodic orbit
requires the functions fn to share an interval [B, ∞) that is invariant under each function and on
which each function is concave with a fixed point. The conditions that an > acrit(δn) and that
max{xinfl

max, Amax} < Kmin guarantee this. However, they are not necessary conditions. Certainly,
if an ≤ acrit(δn) for all of the functions, then every function lies below the diagonal on R+

0 ,
so the origin is a globally asymptotically stable fixed point of the iterated mapping and there
is no positive stable periodic orbit. However, if some of the functions have an > acrit(δn) and
some do not, it is still possible for there to be a positive stable periodic orbit. This is the case,
for example, when δ0 = 2, a0 = 5, δ1 = 2, a1 = 1.9. If an > acrit(δn) for all of the functions but
max{xinfl

max, Amax} ≥ Kmin, then in most cases there is still a stable periodic orbit. However, the
following example illustrates that it is not universal: if a0 = 1.2, δ0 = 50 and a1 = 1.1, δ1 = 1.01,
the condition an > acrit(δn) holds, but the composition f1 ◦ f0 has only one fixed point at x = 0 to
which all solutions are attracted.

Our proof that the periodic iterated mapping (2) has anAllee periodic orbit requires the functions
fn to share an interval (0, b) on which they are each convex with a fixed point. The conditions that
an > aallee(δn) and that Amax < xinfl

min in Theorem 4.2 guarantee this. As with the stable periodic
orbit, these conditions are not necessary. Indeed, near the origin, the composition F = fp−1 ◦ · · · ◦
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f0 behaves like

F(x) = ap−1aδp−1

p−2aδp−1δp−2

p−3 · · · aδp−1δp−2···δ1

0 xδ0δ1···δp−1 + o(xδ0δ1···δp−1).

It follows that if
∏p−1

i=0 δi < 1, then limx→0+ F ′(x) = ∞, so the origin is an unstable fixed point.
On the other hand, if

∏p−1
i=0 δi > 1, then F ′(0) = 0, so the origin is a stable fixed point. In this

case, if the ai’s are large enough, then there is an Allee point; otherwise, the origin is globally
asymptotically stable. Finally, if

∏p−1
i=0 δi = 1, then F ′(0) = ap−1aδp−1

p−2aδp−1δp−2

p−3 · · · aδp−1δp−2···δ1

0 . If
this product is greater than 1, then the origin is unstable. If it is less than or equal to 1, then the
origin is stable, but it is not clear if it is globally asymptotically stable or has an Allee point.
What this analysis of the behaviour of the function near the origin lacks is determination of the
uniqueness of the Allee and stable periodic orbit. Indeed, it appears to be theoretically possible
for the composition to have four (or more) fixed points: the origin, an Allee point, a point that is
asymptotically stable on (B, ∞) for some number B and one (or more) point. Under the conditions
of Theorem 5.1, this cannot happen and in fact each initial state smaller than the Allee state goes
extinct, while each state larger than the Allee state is attracted to the stable periodic state.

7. Implications in Population Dynamics

Fisheries: For a time-independent fish population governed by the autonomous Sigmoid
Beverton–Holt equation, it is clear that depensation caused by overfishing or overpredation that
drives the population below the Allee threshold will result in extinction even after the depensatory
causes are removed. What the results given in the previous sections imply is that the maximum
tolerable depensation can vary with time. This is made clear in Figure 5 where it is easily seen
that if one has a level of depensation at time 0 that drives the population to a point just above the
periodic Allee threshold α0, then that same level of depensation at time 2 will result in extinc-
tion. This could have disastrous outcomes if, for example, all the measurements to determine the
maximum allowable harvest are made at the same ‘time’, t = 0 each cycle.
This undoubtedly plays a role in the myriad seasonal shellfishing restrictions in coastal waters.

Smooth cordgrass: This species, Spartina alterniflora, spreads by rhizomatous growth and the
isolated recruits set one-tenth of the seed of the developed meadow plants and the seeds germinate
at only one-third the rate of the meadow plants. In [5], this is attributed to the demographic effects
of density and described as an Allee effect. This diminished growth seems to indicate that the
colony size resides just above the critical periodic Allee threshold shown in Figure 5. In light of
its many predators, for example, blue crab Callinectes sapidus [30], leaf miner parasite Hydrellia
valida [27], invertebrate, grass shrimp Palaemonetes pugio, and vertebrate predators, the killifish,
mud minnow Fundulus heteroclitus, [13,29], it is conceivable that a fledgling colony of cordgrass
could be extinguished.

8. Conclusions

An investigation has been conducted into the long-term behaviour of solutions of the periodic
Sigmoid Beverton–Holt equation

xn+1 = anxδn
n

1 + xδn
n

, x0 > 0, n = 0, 1, 2, . . . ,

where the an and δn are p-periodic positive sequences. Under certain conditions on the parameters
an and δn, there are shown to exist an asymptotically stable p-periodic state to which all nearby as
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well as large initial populations approach and a p-periodic Allee state that drives all initially small
states to extinction. By employing the Skew-Product Dynamical System, we have shown more,
namely every state not equal to the Allee state either goes extinct or is attracted to the stable state.
For δn independent of n, we obtained a result reported previously in [14] with fewer conditions.

Some possible implications in Population Dynamics are discussed with special emphasis on
fish populations and smooth cordgrass.
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