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If a continuous mapping f carries the boundary of a set D into the closure of D it may not be
true that f maps D into its closure, even if f is injective on D. Examples are discussed and
conditions are given under which it is true. An simplified application is given to a Biological
migration-selection model.
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1. Introduction

The study of long time behavior of solutions of difference equations is the study
of iterations of mappings f : X → X. In some cases, the first step in showing the
existence of a globally attracting fixed point is to show that for each x ∈ X there
is a positive integer k such that fk(x) .= f ◦ f ◦ · · · ◦ f(x) (k-times) lies in some
compact set K, the next step being to show that K is invariant under the action
of f, f(K) ⊂ K, i.e. the mapping is dissipative. Finally, using the compactness
and other properties, show the existence of a fixed point that attracts points of K.
Only the invariance issue will be discussed here.

For an autonomous ordinary differential equation in Rn the invariance problem is
solved by showing that the vector field on the boundary of K is never pointing into
the complement, KC = R

n\K. For mappings the problem is a bit more tricky since
points of K can be mapped outside K even in the case f is injective (one-to-one),
see examples in Section 3.

Many interesting difference equations give rise to mappings that are not injective
when considered on their total domain of definition. Nevertheless, under certain
reasonable conditions sub-domains can be found where the mapping is injective and
indeed the Theorem given below applies, viz. the example in R

2 given in Section 4
of a simplified migration-selection model.

2. The Invariance Theorem

By invariance here we always mean forward invariance, i.e. D is invariant under
the action of f if f(D) ⊂ D. For a set D ⊂ R

n, let D denote the closure of D, D̊ the
interior of D, ∂D = D\D̊ the boundary of D and DC = R

n\D, the complement of
D. By a path we mean a homeomorphic image of [0, 1].
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2 An Invariance Theorem for Mappings

Theorem 2.1 :
Let D ⊂ R

n be a bounded subset and f : D → R
n continuous. Suppose f : D̊ → R

n

is injective (one-to-one) and f(∂D) ⊂ D.
If DC = R

n\D has no bounded components, then f(D) ⊂ D.

Remarks:
(1) The function f , while continuous on D is assumed to be injective only on the
interior of D.
(2) For n ≥ 2 the “no bounded components” assumption on D

C together with D

bounded imply DC is connected and in fact path connected.
Proof: For n = 1 the conditions imply D is an interval I and the theorem follows

easily from the Intermediate Value Theorem. Under the mapping the left end point
moves to the right and the right endpoint to the left. Injectivity implies f is strictly
monotonic and therefore its range lies in [f(b), f(a)] or [f(a), f(b)], where a ≤ b
are the endpoints of the interval I.

For n ≥ 2 assume the theorem is not true. Then G
.= f(D̊) ∩ DC 6= ∅. By

Brouwer’s Invariance of Domain Theorem ([1], [2]) f |D̊ is an open map (and hence
a homeomorphism) onto f(D̊). Thus G is open. Let B be an open ball about the
origin so large that D ⊂ B.

Let y ∈ G and from path connectedness of DC , let γ : [0, 1] → D
C be a path

with γ(0) = y and γ(1) ∈ ∂B. Next define t0 = min{t ∈ [0, 1] | γ(t) ∈ ∂G} and set
η = γ(t0) ∈ γ ∩ ∂G.

Now choose a sequence ηj ∈ G ∩ γ such that ηj → η. Then xj = f−1(ηj) ∈ D̊.
By compactness of D there is a subsequence, that we again call xj that converges,
xj → x. If x ∈ ∂D̊ then η ∈ f(∂D̊) ⊂ f(∂D) ⊂ D. But η ∈ γ and thus η ∈ D∩γ =
∅, a contradiction.

Thus, x ∈ D̊ and η = f(x) ∈ f(D̊) ∩ γ. Now γ ⊂ D
C so that

η ∈ f(D̊) ∩ γ ∩ DC = γ ∩ G, and G is an open subset of Rn . But η ∈ γ ∩ ∂G,
another contradiction and thus the proof is complete. �

3. A Discussion of the Hypotheses

We next construct counterexamples after dropping each hypothesis one at a time,
while keeping the other hypotheses intact.

(A). If the set D is unbounded, the conclusion of the Theorem is false without
further assumptions. To see this let D = (0,∞) and define f : D → R by
f(x) = −x.

(B). If DC is allowed to have a bounded component then let D = (0, 1) ∪ (2, 3)
and

f(x) =

{
0.5x x ∈ [0, 1]
2x− 3 x ∈ [2, 3]

and again the conclusion of the Theorem is false since f(D) = [0, 0.5] ∪ [1, 3].

(C). If we replace Rn by a path connected metric space X then for X = the unit
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circle in R
2, let

D = {(x, y) ∈ R2 | y =
√

1− x2, |x| ≤ 1}, the upper half-circle,

and define f : D → X by f(x, y) = (x,−y) and again the conclusion of the
Theorem is false.

(D). The injective assumption cannot be dropped due to the quadratic map f
on D

.= [0, 1], where

f(x) = ax(1− x), a > 4,

since f(
1
2

) > 1.

(E). The following rather bizarre example (a sliding window) shows that re-

quiring only D̊
C

to be connected is not sufficient (see Remark 2). Let D =
D1 ∪ L1 ∪ L2 ∪ L3 ⊂ R

2 and f : D → R
2 be defined as follows,

D1 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (x, y) 7→ (2x, y)

L1 : 1 ≤ x ≤ 2, y = 1, (x, 1) 7→ (2, 1)

L2 : x = 2, 0 ≤ y ≤ 1, (2, y) 7→ (2, y)

L3 : 1 ≤ x ≤ 2, y = 0, (x, 0) 7→ (2, 0).

It is easily checked that f satisfies all the remaining conditions, but f(D) * D.
Note that f is not injective on the boundary, but even requiring that does not
help as the next example shows.

(F). In R define D = [2, 3]∪{1
k
, k = 1, 2, . . . }∪{0}, and f(0) = 0, f(

1
k

) =
1

k + 1
and on [2, 3] let f be linear with f(3) = 3, f(2) = 1.

4. An Application

The following is a simplified version of a migration-selection model to be considered
further in a forthcoming study. Consider the following mapping f : R2

+ → R
2
+,

fi(x1, x2) =
(1 + ai)xi

1 + bi(x1 + x2)
φ(x1 + x2), ai > 0, bi > 0, i = 1, 2, (1)

where
a1

b1
>
a2

b2
and for fixed τ >

a1

b1
,

φ(s) =

{
1, 0 ≤ s ≤ τ
e−(s−τ), s > τ.

It is easily verified that P1 = (
a1

b1
, 0) and P2 = (0,

a2

b2
) are fixed points, the first

being asymptotically stable, the second unstable for the difference equation

x(t+ 1) = f(x(t)). (2)



December 1, 2010 15:4 Journal of Difference Equations and Applications Invar˙Submitted

4 REFERENCES

We wish to show that P1 globally attracts all orbits of (2) having initial conditions
in the open first quadrant. Define S(t) = x1(t) + x2(t).

The following are easily established:

(a) S(t) >
a1

b1
=⇒ S(t+ 1) < S(t),

(b) S(t) =
a1

b1
=⇒ S(t+ 1) ≤ S(t), with “ = ”⇐⇒ x2(t) = 0,

(c) S(t) <
a2

b2
=⇒ S(t+ 1) > S(t),

(d) S(t) =
a2

b2
=⇒ S(t+ 1) ≥ S(t), with “ = ”⇐⇒ x1(t) = 0.

Next consider the open trapezoidal region D in the first quadrant bounded by the
two parallel lines L1 : S =

a1

b1
, L2 : S =

a2

b2
and the axes. By (a) and (c), each

point in the open first quadrant is mapped into D by sufficiently many iterations
of f . By (b) and (d), L1 and L2 map into D, while the bounding segments in the
axes are themselves invariant. Thus f(∂D) ⊂ D.

It only remains to show that f is injective on D. Assume f(x1, x2) = f(ξ1, ξ2) =
(u1, u2), and define Σ = ξ1 + ξ2 and U =

u1

(1 + a1)
+

u2

(1 + a2)
. From

(1 + ai)xi
1 + biS

=
(1 + ai)ξi
1 + biΣ

= ui, i = 1, 2, (3)

it follows that

(1 + a1)x1 = u1 + u1b1S, (1 + a2)x2 = u2 + u2b2S

(1 + a1)ξ1 = u1 + u1b1Σ (1 + a2)ξ2 = u2 + u2b2Σ .

Dividing by the 1 + ai, adding horizontally and setting p =
u1b1

1 + a1
+

u2b2
1 + a2

,

S = U + pS and Σ = U + pΣ.

Solving for U, U = (1− p)S = (1− p)Σ.
Since f : R2

+ → R
2
+, U = 0 is impossible and therefore p 6= 1, from which it

follows that S = Σ. Finally from (3), x1 = ξ1 and x2 = ξ2 and thus f is injective
and Theorem 2.1 tells us f(D) ⊂ D.

It remains to show points in D are attracted to (a1/b1, 0). This issue and others
for a more general form of (1) will be addressed in a forthcoming manuscript.

Remarks:
(3) It was pointed out to the author by Christian Pötzsche that the Invariance of
Domain Theorem and hence Theorem 2.1 can be extended to Banach space if D is
assumed relatively compact and f | D̊ is continuous, locally a compact perturbation
of the identity and injective, [2, p. 705].
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