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1 Introduction

Malaria remains a major killer with more than 1 million deaths each year
in sub-Saharan Africa alone while yellow fever, dengue fever, West Nile
virus, encephalitis and filariasis continue to have an impact on populations
worldwide. The Anopheles strains of mosquitoes are largely responsible
for the transmission of Plasmodium or malaria, the Culex tarsalis accounts
largely for West Nile virus, encephalitis and filariasis and the Aedes aegypti
is associated with yellow fever and dengue.

Much work has been done to genetically modify mosquitoes in the labora-
tory to hinder or block parasite transmission thus making the mosquitoes
refractory. This is done by insertion of genes at appropriate sites to cre-
ate a stable germline. The progress in this area is fairly recent. In 2000
Catteruccia, et al. [4] report: “Success has has only been achieved in the
last five years, with the transformation of the Mediterranean fruitfly Cerat-
itus capitata, the yellow fever mosquito Aedes aegypti and the flour beetle
Tribolium castaneum.”
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One of the many problems faced by researchers is a reduction of fitness
caused by the mutations resulting from the gene insertions and the inbreed-
ing while transformed lines are established, [4, 3]. More recent significant
results were obtained by Moreira, Wang, Collins and Jacobs-Lorena, [15].
They produced transgenic Anopheles stephensi expressing either of two ef-
fector genes, a tetramer of the SM1 dodecapeptide or the phospholipase
A2 gene (PLA2) from honey bee venom. Both were effective in impairing
the transmission of Plasmodium berghei [14, 10, 9, 11]. However by mea-
suring mosquito survival, fecundity and fertility they found that mosquitos
transformed with the SM1 showed no significant reduction in these fitness
parameters relative to the nontransgenic controls. On the other hand, the
PLA2 transgenics had reduced fitness that seemed to be independent of
the gene insertion site. This reduced fitness was also observed in the Culex
tarsalis mosquito, [1] where they also report on a stable germline trans-
formation of the Culex quinquefasciatus mosquito using a Hermes trans-
posable element containing an enhanced green fluorescent protein marker.
Similar results were also obtained by Jasinskiene, et al. [12] using Hermes
to modify Aedes aegypti. Coates, et al. [5] show that the mariner trans-
posable element functions as a heritable, stable and efficient mediator of
gene insertion into Aedes aegypti.

Another factor affecting the mosquito’s survival probability when attack-
ing a defensive host is that sporozoite-infected mosquitoes probe more often
and spend more time probing for a blood meal than their uninfected coun-
terparts due to impaired salivary gland function, see Anderson, et al. [2]
and references therein.

In this paper we consider the discrete-time mathematical model for popula-
tions consisting of wild and genetically altered mosquitoes proposed by Jia
Li [13]. In that paper a two species model having a hybrid Ricatti/Ricker
type nonlinearity and equal survival probabilities is developed and sufficient
conditions are given guaranteeing the existence of a locally asymptotically
stable fixed point. It is shown below that under less restrictive conditions
the fixed point is actually globally asymptotically stable with respect to
initial populations in which both species are present. We then investigate
the cases in which the survival probabilities (fixed as well as density depen-
dent) are different for the two species, and show that the model becomes
sensitive to small changes in the survival parameters. In particular it is very
sensitive to changes in the density-dependent survival parameters. For re-
lated results see Jim Cushing [6] where he presents linear and nonlinear
matrix population models for structured species and for the interaction of
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several structured species and provides stability results for certain types of
nonlinear models in which the nonlinearities appear as a common factor of
each equation of the system.

2 Model for population of mosquitoes

The following description closely follows [13]. Let xn be the number of wild
mosquitoes present at generation n. The population dynamics of the wild
mosquitoes is described by the difference equation

xn+1 = f(xn)s(xn)xn, (2.1)

where f is the birth function (per-capita rate of offspring production)
and s is the survival probability (fraction of the off-spring that survive).
The survival probability is assumed to have a Ricker-type nonlinearity
s(xn) = e−d−kxn .

Let yn be the number of genetically altered mosquitoes present at gener-
ation n, and assume that before the wild and altered mosquitoes interact,
the dynamics of the altered mosquito population is similar to that of the
wild type. Once the altered mosquitoes are released into the wild mosquito
habitat, the populations are governed by the system of difference equations

xn+1 = f1(xn, yn)xne−d−k(xn+yn), (2.2)
yn+1 = f2(xn, yn)yne−d−k(xn+yn).

It is assumed that both wild and altered mosquitoes have the same survival
probability e−d−k(xn+yn). For xn > 0, yn > 0 the birth rate functions f1

and f2 are given by

f1(xn, yn) = c(Nn)
α1xn + β1yn
xn + yn

, (2.3)

f2(xn, yn) = c(Nn)
α2xn + β2yn
xn + yn

,

where c(Nn) is the number of matings per individual, per unit time with
Nn = xn + yn. At generation n the number of matings, per individual,
with wild mosquitoes is c(Nn)xn/(xn + yn) and with altered mosquitoes,
c(Nn)yn/(xn + yn). Let α1 be the number of wild offspring that a wild
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mosquito produces through mating with a wild mosquito, and β1 be the
number of wild mosquitoes produced through mating with an altered
mosquito. Similarly, α2 and β2 are the number of altered mosquitoes pro-
duced by the mating of altered mosquitoes with wild and altered mosquitoes
respectively.

Combining (2.2) and (2.3) gives the following set of difference equations
that govern the interacting populations of wild and altered mosquitoes

xn+1 = c(Nn)
α1xn + β1yn
xn + yn

xne
−d−k(xn+yn) (2.4)

yn+1 = c(Nn)
α2xn + β2yn
xn + yn

yne
−d−k(xn+yn) .

The mating rate depends on the population density. When the population
is relatively small the mating rate will be assumed to be proportional to
the total population, Nn, that is, c(Nn) = c0Nn. Once the population size
exceeds a certain level, we expect the number of matings to saturate, and
we assume the mating rate is constant, that is, c(Nn) = c.

In this paper we will focus on the constant mating rate case. Thus letting
ai = cαi and bi = cβi, for i = 1, 2, (2.4) becomes

xn+1 =
a1xn + b1yn
xn + yn

xne
−d−k(xn+yn) (2.5)

yn+1 =
a2xn + b2yn
xn + yn

yne
−d−k(xn+yn) .

In (2.5) we assume that xn > 0, yn > 0, n ≥ 0.

3 Global asymptotic stability

In this section we will study the ratio zn = xn/yn and we will show that
under certain conditions the positive fixed point of (2.5) is globally asymp-
totically stable (GAS). In fact, we will show that this takes place under less
stringent conditions than those imposed in [13] to obtain local asymptotic
stability.

Lemma 3.1 Suppose a, b, c, d > 0, z ≥ 0 and consider the difference equa-
tion
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zn+1 = f(zn), with (3.1)

f(z) = z
az + b

cz + d
.

If b/d > 1 and c/a > 1, then (3.1) has a unique positive, GAS fixed point.

Proof. From the hypothesis we have that bc/ad > 1 and so bc − ad > 0.
Through direct computation we have that

f ′(z) =
acz2 + 2adz + bd

(cz + d)2
> 0 for z ≥ 0. (3.2)

We have that f ′(0) = b/d > 1 and

f ′′ =
2d(ad− bc)
(cz + d)3

Therefore f ′′(z) < 0 for all z > 0, and (3.1) has the unique positive fixed
point z∗ = (d− b)/(a− c). It is easily seen from the increasing and concave
properties of f that the positive fixed point is unique and GAS (for z > 0).
See [8] for more details. �

Considering the ratio zn = xn/yn and using (2.5) we get

zn+1 =
a1zn + b1
a2zn + b2

zn. (3.3)

Due to the decay survival probability term in (2.5) the populations can not
grow indefinitely (xn + yn →∞ is not possible).

The nonzero fixed point of (3.3) is

ẑ =
b2 − b1
a1 − a2

. (3.4)

With a = a1, b = b1, c = a2, and d = b2 (3.3) is just (3.1). If b1/b2 > 1 and
a2/a1 > 1 then the conditions of Lemma 3.1 apply and the positive fixed
point of (3.3) given in (3.4) is GAS (for z > 0).

Note that a fixed point for (3.3) represents a fixed or invariant line in the
(x, y) plane, i.e. the line S = {(x, y) : y/x = r} is invariant where r =
a2 − a1

b1 − b2
. From the GAS of this fixed point we then have that

yn
xn
→ 1

ẑ
= r,
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i.e. the ω-limit set of any point (x, y) with x > 0, y > 0 lies in the line S.
Then to study the solutions in S we can set yn = rxn in the first equation
of (2.5), and in the second equation we can set xn = (1/r)yn. Using these
substitutions we get the following two uncoupled Ricker’s equations (on S).

xn+1 =
a1 + b1r

1 + r
xne
−d−k(1+r)xn , (3.5)

yn+1 =
a2 + b2r

1 + r
yne
−d−k(1+1/r)yn .

The above two equations are of the general form of the Ricker’s equation

wn+1 = R(wn), where R(w) .= ρwep−αw. (3.6)

The nonzero fixed point of (3.6) is w∗ = (p+ ln (ρ))/α, and w∗ is GAS for
0 < p+ ln (ρ) < 2, or e−p < ρ < e2−p, [7] with

ρ =
a1 + b1r

1 + r
=
a2 + b2r

1 + r
=

a1b2 − b1a2

a1 − a2 + b2 − b1
. (3.7)

The fixed points of the decoupled system (3.5) are

x̂ = (−d+ ln (ρ))/(k(1 + r)), (3.8)
ŷ = r(−d+ ln (ρ))/(k(1 + r)),

and these fixed points are stable provided 0 < −d+ ln (ρ) < 2.

This shows the following result.

Theorem 3.2 The positive fixed point of (2.5) (given in (3.8)) is globally
asymptotically stable in the first open quadrant provided that b1/b2 > 1,
a2/a1 > 1 and 0 < −d+ ln (ρ) < 2.

Let

N =
(a1 − a2)(b2 − b1)

a1b2 − b1a2
, and P = −d+ ln (ρ). (3.9)

Thus if b1/b2 > 1, a2/a1 > 1 and 0 < P < 2, then (2.5) has a positive fixed
point and it is GAS. In terms of N and P , Li’s result (Theorem 3.2, [13])
requires b1/b2 > 1, a2/a1 > 1, 0 < P , and
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N(P − 1) < P < 2 + (N/2)(P − 2) (3.10)

for local asymptotic stability of the positive fixed point. The right portion
(P < 2 + (N/2)(P − 2)) of the inequality in (3.10) is equivalent to P < 2.
Note that N < 0, and thus if P < 1 then N(P − 1) is a finite positive
quantity so that the left inequality in (3.10) is more restrictive than just
P > 0 as the following example illustrates.

4 Numerical examples

Here we construct an example in which Theorem 3.2 applies but condition
(3.10) is violated.
Example: Consider a system (2.5) with the following set of parameter val-
ues: a1 = 2, a2 = 3, b1 = 7, b2 = 6.9, k = 0.2, and d = 1.87. The
parameter values satisfy b1/b2 > 1 and a2/a1 > 1. Using (3.4) the fixed
point for the ratio system is ẑ = 0.1. Using (3.6) the fixed point of the
decoupled system is x̂ ≈ 0.00398674828 and ŷ ≈ 0.03986748281. The con-
dition 0 < −d+ ln (ρ) < 2 is satisfied with P = −d+ ln (ρ) = 0.008770846,
and thus by (Theorem 3.2) the point (x̂, ŷ) of the coupled system (2.5) is
GAS within the open first quadrant.

Using an initial condition of (x0, y0) = (0.03, 0.07) direct simulations con-
firm the expected behavior of the system. Figure 1 shows the population
level of the wild and altered mosquitos for the first 4000 generations. As
expected, the population of the wild and altered mosquitos approach the
fixed level (x̂, ŷ) given above. The ratio dynamics for zn = xn/yn is shown
in Figure 2 and as guaranteed by Theorem 3.2 the iterates approach the
computed fixed value of ẑ = 0.1. The parameter values of this example do
not satisfy condition (3.10). In fact N(P − 1) ≈ 0.01376707158.

5 The model is not robust

In the previous sections it was assumed that the survival probabilities of the
wild and the altered mosquitoes are identical. In this section we will show
that in spite of the global asymptotic stability exhibited by the system, only
a slight deviation from identical survival probabilities yields dynamics which
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Figure 1: Wild and altered mosquitoes–4000 generations

Figure 2: Ratio dynamics zn = xn/yn for 4000 generations

8



are quite different. In particular the frequency of the altered mosquitoes
can decrease radically due to a small decrease in the survival probabilities,
especially the density dependent survival probability ky (below).

In this section we will focus on the case when the survival probability of
the wild and altered mosquitoes are not equal. In this case (2.5) becomes

xn+1 =
a1xn + b1yn
xn + yn

xne
−dx−kx(xn+yn) (5.1)

yn+1 =
a2xn + b2yn
xn + yn

yne
−dy−ky(xn+yn) .

Two cases will be considered. In the first case kx = ky, and in the second
case kx 6= ky. Consider the case when kx = ky = k. For this special case we
have the advantage that we can easily follow the process given in section
(3) to show global asymptotic stability of the positive fixed point of (5.1).
Let ∆d = dx − dy, then the ratio zn = xn/yn becomes

zn+1 =
a1zn + b1
a2zn + b2

zne
−∆d. (5.2)

The ratio given in (5.2) is very similar to the one presented in (3.3) for the
identical survival probability case. The only difference is that (5.2) contains
the constant exponential term e−∆d, and due to this term the stability of
(5.2) requires that b1e−∆d/b2 > 1 and a2/(a1e

−∆d) > 1. Comparing with
the case ∆d = 0, ∆d > 0 increases the region of stability in the (a1, a2)
plane and reduces the region of stability in the (b1, b2) plane. In contrast,
∆d < 0 reduces the region of stability in the (a1, a2) plane and increases
the region of stability in the (b1, b2) plane.

The nonzero fixed point of (5.2) is

ẑ =
b2 − b1e−∆d

a1e−∆d − a2
. (5.3)

Similar to (3.5), the uncoupled equations of (5.1) become

xn+1 =
a1 + b1r

1 + r
xne
−dx−k(1+r)xn , (5.4)

yn+1 =
a2 + b2r

1 + r
yne
−dy−k(1+1/r)yn ,

with now r =
a2 − a1e

−∆d

b1e−∆d − b2
. The following conditions are required for the

stability of the uncoupled Ricker’s equations (5.4)
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0 < −dx + ln (
a1 + b1r

1 + r
) < 2, (5.5)

0 < −dy + ln (
a2 + b2r

1 + r
) < 2.

Note that the two above inequalities are equivalent, i.e.

−dx + ln (
a1 + b1r

1 + r
) = −dy + ln (

a2 + b2r

1 + r
).

Thus (5.5) imposes only one set of inequalities.

The fixed points of the decoupled system (5.4) are

x̂ =
−dx + ln (a1+b1r

1+r )
k(1 + r)

, (5.6)

ŷ = r(
−dy + ln (a2+b2r

1+r )
k(1 + r)

).

Similarly to Theorem 3.2, the positive fixed point of (5.1) (given in (5.6)) is
GAS in the first open quadrant provided that b1e−∆d/b2 > 1, a2/a1e

−∆d >
1 and (5.5) holds.

One way to measure which type of mosquito is the dominant mosquito
in the population at generation m is to determine the ratio (frequency)
Rm = ym/(xm + ym). Here, as before, xm and ym are the number of wild
and genetically altered mosquitoes present at generation m respectively. If
Rm > 0.5, then the genetically altered mosquitoes are the dominant type
of mosquito in the population.

The following example illustrates the sensitivity of the model to changes
in the survival probability, specifically sensitivity to changes in dx and dy.
Consider a system (5.1) with the following set of parameter values: a1 = 2,
a2 = 3, b1 = 7, b2 = 6.9, kx = ky = k = 0.2, and dx and dy vary. In Figure
3 the values of Rm are shown as a function of dx and dy. The values of Rm
were numerically computed by using (5.1) and m = 5000. It is clear that
that by simply changing dy or dx there can be a switch in the dominant
type of mosquito.

In the general case with kx 6= ky the equation for the ratio dynamics can
not be reduced to an equation in terms of z only, and thus we can not
follow the above process. The following example illustrates the sensitivity
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Figure 3: Ratio Rm as a function of dx and dy

of the model to changes in kx and ky. Consider a system (5.1) with the
following set of parameter values: a1 = 2, a2 = 3, b1 = 7, b2 = 6.9,
dx = dy = d = 0.25, and kx and ky vary.

In Figure 4 the values ofRm are shown for the cases when either kx or ky was
kept fixed and either ky or kx was allowed to vary for two different values
of a1. The values of Rm were numerically computed by using (5.1) and
m = 5000. This example show a very small change in ky or kx can induce
a very large change in Rm and thereby induce a switch in the dominant
type of mosquito. This effect is even stronger for the parameter value of
a1 = 2.5.

6 Conclusions

In this paper we explored some aspects of a discrete-time mathematical
model for populations consisting of wild and genetically altered mosquitoes
proposed by Jia Li [13]. We show that under certain conditions the fixed
point of the system studied is globally asymptotically stable. The global

11



Figure 4: Ratio Rm as a function of kx and ky keeping one of kx or ky
constant

stability is achieved under less stringent conditions than those imposed by
[13] to obtain local asymptotic stability. A numerical example is presented
to illustrate the result.

The model proposed by [13] assumes that the survival probabilities of the
wild and the altered mosquitoes are identical. In this paper we show that
with only a slight deviation from identical survival probabilities the model
can yield dynamics which are quite different. We provide several examples
where it is possible to change which population is the dominant one by just
slightly changing the survival probability of one of the populations.
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