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We consider a population model consisting of d species interacting in a p-periodic environment and
modelled by a d-dimensional system of Leslie–Gower-type difference equations (coupled Beverton–Holt
equations). It is shown that if the interspecific competition (coupling) is sufficiently small and the inherent
growth rate of each species is such that in the absence of competition each species will grow to its (positive)
individual carrying capacity, then there is a positive asymptotically stable p-periodic state that globally
attracts all positive initial states. Three examples are studied numerically in which the competition is large
and the principle of competitive exclusion is observed. The rate of decay to extinction is observed to be
sensitive to the inherent growth rate of the dying species. The individual carrying capacities are seen to
play a determining role in the case of equal and large competition and equal inherent growth rates.

Keywords: periodic difference equation; global stability; Leslie–Gower model
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1. Introduction

The study of competition models inevitably leads one to consider either the Lotka–Volterra
model in the continuous case or the Leslie–Gower model [10] in the discrete case. The typical
Leslie–Gower model consists of two Beverton–Holt equations with added coupling (interspe-
cific competition). When the interspecific competition is strong, one species will be driven to
extinction; the principle of competitive exclusion that is one of the important tenets in ecology
(see [2,3,7] for results and many references to this phenomenon). In [11], global stability in a
two-species model is considered using techniques of monotone systems [9]. In [4], multi-species
models are considered, taking into account harvesting and stocking.

See [6] for further results on stage-structured models for larvae, pupae and adults, the well-
known ‘LPA’ model that is essentially a delay equation for the larvae and adults. In [5], non-
equilibrium competitive coexistence for a two-species LPA model was explored and a boundary
2-cycle was established. See also [1] in which a two-species juvenile–adult model is studied with
the assumption that there is no competition between juveniles and adults.
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550 R.J. Sacker

For the Beverton–Holt (scalar) equation, the issue of global asymptotic stability, even in the
periodic case, has been settled in [8]. Since the functions defining these equations, being fractional
linear, form a semi-group B under composition, the existence and global asymptotic stability of
a periodic equation reduces to establishing a fixed point with the same property for a single
(autonomous) equation. In fact, in [8], it was shown that B is a sub-semi-group of the larger semi-
group K of continuous functions f : R+ → R+ that are concave, increasing and cross the diagonal
in R+ × R+. In [12], the result was extended to C3 functions that are either concave increasing or
convex decreasing and have non-negative Schwarzian. These conditions are satisfied by certain
rational functions with the roots of the numerator interlaced with the roots of the denominator.

In this paper, we consider d species interacting in a periodic environment modeled by a d-
dimensional system of Leslie–Gower-type equations, or equivalently coupled Beverton–Holt
equations. It is assumed that the inherent growth rate of each species is such that in the absence of
competition each species will grow to its (positive) individual carrying capacity. It is shown that if
the interspecific competition (coupling) is sufficiently small, then there is a positive asymptotically
stable periodic state that globally attracts all positive initial states.

We then study numerically, in three four-dimensional examples, some cases in which the inter-
specific competition is large. In the first example, we see that large competition against just species
number one, not surprisingly, drives that species to extinction. In the second example, we see that
an increase in the inherent growth rate for species one by a factor of 1.77 must be countered by a
4.3-fold increase in the competition by all three competing species in order to achieve the same
rate of decay to extinction. In the third example, we make all the competition large and equal
and all the inherent growth rates equal and observe that the species with the smallest individual
carrying capacity is driven to extinction.

2. Autonomous two-dimensional case

We begin with a discussion of this case in order to develop some notation that will make the
d-dimensional case easier to formulate and discuss.

The two-species Leslie–Gower model is usually written in the following form:

x1(n + 1) = b1x1(n)

1 + c11x1(n) + c12x2(n)

x2(n + 1) = b2x2(n)

1 + c21x1(n) + c22x2(n)
. (1)

We propose the following equivalent form of Equation (1) that is a pair of coupled Beverton–
Holt equations. In addition, we view a difference equation as a mapping x(n + 1) = f (x(n)) and
thus focus our attention on the right-hand side f :

f1(x1, x2) = µ1K1x1

K1 + (µ1 − 1)x1 + c12x2

f2(x1, x2) = µ2K2x2

K2 + c21x1 + (µ2 − 1)x2
. (2)

Here the coupling parameters cij are the coefficients of interspecific competition. If both cij = 0
and µi > 1, the system is decoupled and each xi(n) with xi(0) > 0 asymptotically approaches
its carrying capacity (fixed point), Ki as n → ∞.

Our next goal will be to develop a notation and some operations that will make it straightfor-
ward to consider higher-dimensional maps. For those familiar with Matlab programming, these
operations will not seem so strange.
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Journal of Biological Dynamics 551

Let a be a scalar and u and v be column vectors in Rd and C an d × d matrix. Define, in
addition to the usual inner product and linearity rules,

uv = col (u1v1, u2v2, . . . , udvd),

u

v
= col

(
u1

v1
,
u2

v2
, . . . ,

ud

vd

)
, if v1v2 · · · vd &= 0,

diag u = the diagonal matrix with u on the diagonal,

diag C = col (c11, c22, . . . , cdd),

C0 = C − diag diag C, C with its diagonal entries set to zero,

u ≥ 0 ⇐⇒ ui ≥ 0 ∀i and u > 0 ⇐⇒ ui > 0 ∀i.

We may now now rewrite Equation (2) as

f (x) = (µ1, µ2)
′(K1, K2)

′(x1, x2)
′

(K1, K2)′ + [diag(µ1, µ2) − I + C0](x1, x2)′
, (3)

where the product in the denominator is the usual matrix–vector multiplication and ‘′’ means
transpose.

To further simplify this and eliminate cumbersome notation, we define the parameters

µ = diag col (µ1, µ2), growth parameter, (4)

K = col (K1, K2), individual carrying capacity, (5)

C0 =
(

0 c12

c21 0

)
, non-negative coupling parameters. (6)

With these, Equation (2) takes the form

f (x) = µKx

K + (µ − I + C0)x
. (7)

This form is not specific to R2, but can be interpreted in Rd as well. With C0 = 0, Equation (7)
represents d independent Beverton–Holt equations.

3. Interior fixed point, autonomous case: p = 1

We consider the positive cone

C0 = {x ∈ Rd |xi > 0 ∀i}. (8)

The condition for a fixed point of Equation (7) in C0 is just f (x) = x, which yields

(µ − I )K = (µ − I + C0)x, (9)

or in two dimensions is just

(µ1 − 1)K1 = (µ1 − 1)x1 + c12x2

(µ2 − 1)K2 = c21x1 + (µ2 − 1)x2. (10)

Equation (9) is a simple linear system and we have the following theorem.
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552 R.J. Sacker

Theorem 3.1 Assume µi > 1 for all i = 1, 2, . . . , d and the coupling terms C0 are sufficiently
small. Then there exists a unique fixed point x̃ ∈ C0 that reduces to K = col (K1, K2, . . . , Kd)

when C0 = 0.

The theorem applies equally well to any of the invariant coordinate ‘faces’

F = {(x1, x2, . . . , xd) | xj = 0, for k of the indices , 1 ≤ k < d}.
In order to study stability, we note the following lemma.

Lemma 3.2 The function f is bounded in Rd
+. More precisely, each component function

0 ≤ fj (x) ≤ Bj
.= µjKj

µj − 1
. (11)

Therefore,
f : Rd

+ −→ B0
.= [0, B1] × [0, B2] × · · · × [0, Bd ]. (12)

We next define Kmin and Kmax to be the minimum and maximum of the Ki and b = Kmin/2.
We then have the following lemma.

Lemma 3.3 Assume each row ci of the matrix C0 in Equation (7) satisfies

‖ci‖ ≤ (µ − 1)Kmin

2
√

dKmax
= (µ − 1)√

dKmax
b, (13)

where ‖ · ‖ is the euclidean norm. Then the compact set

B .= [b, B1] × [b, B2] × · · · × [b, Bd ] (14)

is invariant under the action of f, i.e.

f : B −→ B. (15)

The proof will follow by setting v = x in the next more general lemma needed later.

Lemma 3.4 Define f̂ (x) : B → Rd as follows. Let v ∈ B be arbitrary and define (cf.
Equation (7))

f̂ (x) = µKx

K + (µ − I )x + C0v
.

Assume the rows ci of the matrix C0 satisfy Equation (13). Then

f̂ : B −→ B. (16)

Proof Let 〈p, q〉 denote the inner product of vectors p and q. For xi ≥ b = Kmin/2, the ith
component of f̂ satisfies

f̂i(x) = µiKixi

Ki + (µi − 1)xi + 〈ci, v〉 ≥ µiKib

Ki + (µi − 1)b + 〈ci, v〉

≥ µiKib

Ki + (µi − 1)b + ‖ci‖‖v‖ ≥ µiKib

Ki + (µi − 1)b + ‖ci‖
√

dKmax

≥ µiKib

Ki + 2(µi − 1)b
= µiKib

Ki + (µi − 1)Kmin
≥ µiKib

Ki + (µi − 1)Ki

= b.

This together with Equation (12) completes the proof. !
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Journal of Biological Dynamics 553

3.1. Dynamic reduction

In the technique of dynamic reduction introduced in [14], one defines a class of p-periodic
sequences of column vectors vn:

Pp = {v = (v1, v2, . . .)|vn+p = vn ∈ B, ∀n}. (17)

For p = 1, the case we are currently considering, the ‘sequences’are independent of n, i.e. constant
sequences. For each v ∈ Pp, one then looks at the ‘reduced’ version of difference equation with
the right-hand side (7):

x(n + 1) = f̂ (x(n)) = µKx(n)

K + (µ − I )x(n) + C0v
, (18)

which is just a system of d uncoupled difference equations. Next define B = col (B1, B2, . . . , Bd).
We then have

Theorem 3.5 In addition to Equation(13), assume that the rows of C0 satisfy

µK

K + C0B
> 1 element-wise. (19)

Then Equation (18) has a fixed point w ∈ B, thus establishing a mapping

T : P1 → P1, w = T (v). (20)

For C0 sufficiently small, T is a contraction yielding a unique fixed point v∗. In addition, v∗ is
an exponentially asymptotically stable fixed point of Equation (7) that is globally attracting with
respect to the cone C0 (Equation (8)).

Proof Each component function f̂i in Equation (18) is fractional linear, concave increasing and
from Equation (19) has a slope at the origin that is greater than one. Thus, either by [8] or [12],
one obtains an exponentially asymptotically stable solution (fixed point) wi and from Lemma 3.4,
w = col (w1, . . . , wd) ∈ B. This establishes Equation (20).

Note that since w satisfies Equation (18),

w = µKw

K + (µ − I )w + C0v
,

and thus

T ′(v) = dw

dv
= −(µ − I )−1C0,

from which it follows that T is a contraction for C0 sufficiently small. For the remaining details
of the proof, see [14]. !
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554 R.J. Sacker

4. Periodic case: p > 1

The periodic version of Equation (7) is x(n + 1) = fn(x(n)), where

fn(x) = µnKnx

Kn + (µn − I + C0
n)x

. (21)

For the sake of simplicity of presentation, we shall work with the case where the dimension d = 2,
the period p = 3 and only the individual carrying capacities Ki are periodic:

x(n + 1) = fn(x(n)) =
(

f1,n

f2,n

)
, where fn ≡ f(n mod 3),

and

f1,n(x1, x2) = µ1K1,nx1

K1,n + (µ1 − 1)x1 + c12x2

f2,n(x1, x2) = µ2K2,nx2

K2,n + (µ2 − 1)x2 + c21x1
. (22)

The evolution of the maps fn along with the state variable x(n) is illustrated in the skew-product
[13] setting (Figure 1).

Before proceeding, however, let us prove the periodic version of Lemmas 3.2 and 3.4 in the
general case.

Lemma 4.1 The functions fn are bounded in Rd
+. More precisely, each component function

satisfies

0 ≤ fj,n(x) ≤ Bj,n
.= µj,nKj,n

µj,n − 1
. (23)

Therefore,

f : Rd
+ −→ B0,n+1

.= [0, B1,n] × [0, B2,n] × · · · × [0, Bd,n]. (24)

Figure 1. Orbit in skew-product flow.
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Journal of Biological Dynamics 555

Lemma 4.2 For v(n) ∈ B0,n define f̂n = col(f̂1,n, . . . , f̂d,n) with

f̂i,n(x) = µi,nKi,nxi

Ki,n + (µi,n − I )xi + [C0
nv(n)]i

. (25)

and set

Kmin / max = min / max Ki,j i = 1, . . . , d, j = 1, . . . , p,

and b = Kmin/2. Assume each row ci,n of the matrices C0
n in Equation (25) satisfies

‖ci,n‖ ≤ (µi,n − 1)Kmin

2
√

dKmax
= (µi,n − 1)√

dKmax
b,

where ‖ · ‖ is the euclidean norm. Then the compact set

K .=
⋃

j=0,...,p−1

Bj × fj ⊂ Rd
+ × {f0, f1, . . . , fp−1},

where

Bn+1
.= [b, B1,n] × [b, B2,n] × · · · × [b, Bd,n] (26)

is invariant in the skew-product dynamical system, i.e.

fj : Bj → Bj+1.

Note: The set on the right is labelled with ‘j + 1’since it lies in the domain of fj+1 with subscripts
taken mod p (Figure 1).

Proof Let 〈p, q〉 denote the inner product of vectors p and q. For x ≥ b = Kmin/2, the ith
component of f̂ satisfies

f̂i(x) = µi,nKi,nxi

Ki,n + (µi,n − 1)xi + 〈ci,n, v〉 ≥ µi,nKi,nb

Ki,n + (µi,n − 1)b + 〈ci,n, v〉

≥ µi,nKi,nb

Ki,n + (µi,n − 1)b + ‖ci,n‖‖v‖ ≥ µi,nKi,nb

Ki,n + (µi,n − 1)b + ‖ci,n‖
√

dKmax

≥ µi,nKi,nb

Ki,n + 2(µi,n − 1)b
= µi,nKi,nb

Ki,n + (µi,n − 1)Kmin
≥ µi,nKi,nb

Ki,n + (µi,n − 1)Ki,n

= b.

This together with Equation (24) completes the proof. !

4.1. Dynamic reduction: periodic case

To apply dynamic reduction, we first separate out the coupling terms in Equation (21) to obtain

f1,n(x) = µ1K1,nx1

K1,n + (µ1 − 1)x1 + g1(x)
, g1(x) = c12x2,

f2,n(x) = µ2K2,nx2

K2,n + (µ2 − 1)x2 + g2(x)
, g2(x) = c21x1,

or simply

x(n + 1) = Fn(x(n), g(x(n))). (27)
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556 R.J. Sacker

We next define the class of three periodic sequences

P3 = {v = (v0, v1, v2)|vj ∈ Bj },

where all subscripts are taken mod 3. For v ∈ P3, we get the reduced equation

(n + 1) = Fn(x(n), g(v(n))), where v(j) = v(j mod 3), (28)

and

F1,n(x(n), g(v(n))) = µ1K1,nx1(n)

K1,n + (µ1 − 1)x1(n) + c12v2(n)

F2,n(x(n), g(v(n))) = µ2K2,nx2(n)

K2,n + (µ2 − 1)x2(n) + c21v1(n)
, (29)

where again, for the sake of clarity, we have suppressed the periodic dependence in the µi and cij .
The difference equations on the right-hand sides of Equation (29) are uncoupled and each such

equation is a three periodic concave increasing function mapping R+ → R+. By [8,12], we obtain
an exponentially asymptotically stable periodic solution,

w = (w0, w1, w2), wj ∈ Bj ⊂ R2, (30)

that globally attracts all initial states in the positive cone C0. Thus, we have the mapping T :
P3 → P3, w = T (v) (Figure 2).

We next introduce the following notation: For U ⊂ Rd
+ and a periodic vector valued

sequence of functions V = {V1, V2, . . . , Vp−1, Vp = V0} with Vn : U → Rd
+ we define |V |0 .=

maxn=1,...,p supu∈U |Vn(u)|. For a fixed g = {g1, g2, . . . , gp−1} with gn : U → Rs
+, and F =

{F0, . . . , Fp−1} with Fn = Fn(ξ, gn(η)) define |F |0 .= maxn=1,...,p supξ,η∈U |Fn(ξ, gn(η))|. For
F = F(x, g), we will use ∂1F and ∂2F to mean differentiation with respect to the first and
second arguments.

Figure 2. Mapping T .
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Journal of Biological Dynamics 557

Referring to Equation (28), let us temporarily suppress the dependency of the Fj on g and define

Hj(x(n))
.= Fj (x(n), g(v(n))),

so that the periodic solution (30) satisfies wn+1 = Hn(w
n), where n is understood ‘mod 3’. Then

we see that the first element w0 of the periodic solution (30) is a fixed point of the composite map,

w0 = H2 ◦ H1 ◦ H0(w
0). (31)

In computing the derivative with respect to v, we need the following estimates:

Dvw
n+1(v) = DvHn(w

n(v)) = DvFn(w
n(v), g(v))

= ∂1Fn(w
n(v), g(v))Dvw

n(v) + ∂2Fn(· · · )Dvg(v)

= $nDvw
n(v) + hn,

where
|hn| ≤ sup

v
|∂2Fn(w

n(v), g(v))g′(v)| = O(|∂2Fg′|0),

and
$n

.= ∂1Fn(w
n(v), g(v)).

Thus, from Equation (31), and recalling that we are taking the period p = 3 for simplicity of
presentation,

Dvw
0(v) = $2$1$0Dvw

0(v) + O(|∂2F g′|0)
= $∗Dvw

0(v) + O(|∂2F g′|0), (32)

where
$∗ .= $2$1$0.

From the exponential asymptotic stability of w0(v) as a periodic solution of the difference equation
(28), one has

σ ($∗) ⊂ {z ∈ C : |z| ≤ α < 1}.
Thus (I − $∗) has a bounded inverse and from Equation (32),

Dvw
0(v) = (I − $∗)−1O(|∂2F g′|0). (33)

Next we define a norm in P3 to be

‖v‖ .= max (|v0|, |v1|, |v2|).
Then it follows from Equation (33) that for δ ∈ (0, 1) and |∂2F g′|0 sufficiently small,

|Dvw
0(v)| ≤ δ,

and from the mean-value estimate,

|w0(ξ) − w0(η)| ≤ sup
t∈[0,1]

|Dvw
0(vt )|‖ξ − η‖ ≤ δ‖ξ − η‖, vt = tη + (1 − t)ξ,

for any pair ξ, η ∈ P3 and t ∈ [0, 1]. Therefore,

‖w(ξ) − w(η)‖ ≤ δ‖ξ − η‖, i.e. ‖T (ξ) − T (η)‖ ≤ δ‖ξ − η‖,
and T is a contraction. Thus, T has a unique fixed point in v∗ ∈ P3. Being fixed under the action
of T means that when v∗ is inserted into Equation (28) in place of v, this equation has v∗ as its
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558 R.J. Sacker

asymptotically stable three periodic solution, i.e. v∗ is the asymptotically stable three periodic
solution of Equation (27).

The global asymptotic stability follows by the argument given in [14]. Thus, we have established
the following theorem.

Theorem 4.3 Consider the p-periodic, d-dimensional system (21) which we repeat: x(n + 1) =
fn(x(n)) where

fn(x) = µnKnx

Kn + (µn − I + C0
n)x

, x ∈ Rd
+ (34)

and assume µi,n > 1, i = 1, 2, . . . , d and all the ‘n’ subscripts are understood ‘mod p’. Then if
the coupling is sufficiently weak, ‖C0

n‖ 6 1, Equation (34) has a strictly positive, asymptotically
stable p-periodic solution

v∗ = {x̂(0), x̂(1), . . .}, x̂(n + p) = x̂(n).

Further, v∗ is globally attracting with respect to initial conditions x(0) > 0.

5. Large inter-specific competition: numerical examples

In the previous sections, we considered the result of small inter-specific competition, i.e. small
coupling C0 in Equation (7) or Equation (34) in the periodic case. No species was driven to
extinction and a coexistence state was established that attracted all initial states starting in the
positive cone C0 defined in Equation (8).

We now consider, in dimension 4, the effect of strong competition against species number
one, x1, with inherent growth rates approximately equal in Section 5.1. Then, in Section 5.2, we
increase the inherent growth rate for x1 and note the rather large increase in competition against
x1 needed to achieve the same decay rate to extinction as in case 1. In Section 5.3, we consider
the case of equal competition and equal inherent growth rates and see that the individual carrying
capacities determine the species that goes extinct.

As a point of reference, let us consider an example of small competition with

C0 = 1
100





0 1 3 1
4 0 1 1
3 2 0 3
2 1 3 0



 , (35)

K =
[
2 2.5 3 3.5

]
and µ =

[
1.3 1.4 1.5 1.6

]
. (36)

Numerically, we find the attractive fixed point to be (Figure 3),

xfix ≈ [1.56 2.20 2.62 3.28].

5.1. Inherent growth rates approximately equal

We now consider the example in Equations (35) and (36) in which the inherent growth rates of all
species are approximately equal and increase the competition against species one to C(row1) =
4.45 C0(row1). The attractive fixed point is now (Figure 4),

xfix ≈ [0 2.35 2.71 3.33].
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Figure 3. Coexistence.

Figure 4. Large competition against species 1.

Specifically,

x1 < 2.4 × 10−4 after 1000 generations ,

x1 < 2.8 × 10−8 after 2700 generations ,

x1 < 2.6 × 10−12 after 4450 generations .

By increasing the competition against species 1 just 1.1% to C(row 1) = 5 C0(row 1), the attrac-
tive fixed point remains unchanged to the accuracy shown, but species x1 approaches extinction
much faster, viz.

x1 < 2.9 × 10−14 after just 883 generations.
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5.2. One dominant inherent growth rate

We now consider the example in Equations (35) and (36) except that now we take the inherent
growth rate of species 1 to be 1.77 times that given in Equation (36). Thus, let

µ = [2.3 1.4 1.5 1.6],

the attractive fixed point then becomes

xfix ≈ [1.90 2.16 2.60 3.27].

For C(row 1) = 19 C0(row 1), the attractive fixed point is

xfix ≈ [0 2.35 2.71 3.33]
x1 < 1.9 × 10−4 after 1000 generations,

x1 < 2.1 × 10−8 after 3000 generations,

x1 < 2.4 × 10−12 after 5000 generations.

Thus, by increasing the inherent growth rate of species one from 1.3 to 2.3, a factor of 1.77,
the competition against species one must be increased by a factor of 4.3 for all three competing
species in order to achieve the same asymptotic rate to extinction.

By increasing the competition against species one by approximately 5.3% to C(row 1) =
20 C0(row 1), the attractive fixed point remains unchanged to the accuracy shown, but species x1

approaches extinction much faster, viz.

x1 < 2.9 × 10−14 after just 857 generations.

Thus, increasing the competition by a factor only 5.3%, we see a much larger decay to extinction
by species one.

5.3. Equal but large competition

Here we consider the case in which all the competition is equal and the inherent growth rates are
equal. As a point of reference, consider the small competition case where in Equation (3),

C0 = 1
100





0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



 ,

K = [2 2.5 3 3.5] and µ = [1.6 1.6 1.6 1.6].

The attractive fixed point is

xfix ≈ [1.82 2.33 2.84 5.38].
Replacing C0 by C = 20C0, it is no surprise that the individual carrying capacities K , the only
parameters left that are not at parity with one another, determine the ordering of the coordinates
of the fixed point

xfix ≈ [0 0.45 1.20 4.95],
see Figure 5.
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Figure 5. Extinction determined by carrying capacities.

6. Conclusions

We have studiedd species interacting in ap-periodic environment and modeled by ad-dimensional
system of Leslie–Gower-type equations (coupled Beverton–Holt equations). It is shown that if
the interspecific competition (coupling) is sufficiently small and the inherent growth rate of each
species is such that in the absence of competition each species will grow to its (positive) individual
carrying capacity, then there is a positive asymptotically stable p-periodic state that globally
attracts all positive initial states, i.e. coexistence.

We also study three cases of large competition, all of which lead to competitive exclusion with
species one, x1 going extinct. In the first, we let the competition be unbalanced and discriminating
against x1 with inherent growth rates approximately equal. In case 2, we increase the inherent
growth rate for x1 by a factor of 1.77 and see that the competition against x1 must be increased
by a factor of 4.3 in order to obtain the same rate of decay to extinction as in case 1. In case 3,
we set all the competition equal and large and all the inherent growth rates equal and see that the
ordering of the size of the species at equilibrium is the same as that of the individual carrying
capacities, with the species having the least carrying capacity, x1, going extinct.
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