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Abstract Conditions on a domain D in Rn are given so that if f is a continuous mapping
of D into Rn , is an open mapping on the interior of D and maps the boundary of D into
the closure of D then f maps the entire set into its closure, i.e. D is invariant. This is an
improvement over a previous result where f was required to be injective (one-to-one) since
a locally injective map on the interior of D is an open map.
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1 Introduction and Statement of Result

For a continuous flow in Rn , e.g. the flow generated by an autonomous ordinary differential
equation, it is straightforward to show a domain D is forward invariant by showing that the
vector field on the boundary of D is nowhere pointing into the complement of D. For a
discrete flow generated by an iterated mapping x0 → x1 = f (x0) → x2 = f 2(x0) → · · ·
the problem is more difficult.

In this work we will obtain an improvement in the result presented in [4]. In that note we
proved the following

Theorem 1.1 Let D ⊂ Rn be a bounded subset and f : D → Rn continuous. Suppose
f : D̊ → Rn is injective (one-to-one) and f (∂ D) ⊂ D.

If D
C = Rn\D has no bounded components, then f (D) ⊂ D.

Here we employ the standard notation; D denotes the closure of D, D̊ the interior of D,
∂ D = D\D̊ the boundary of D and DC = Rn\D, the complement of D.
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In [4], counterexamples were given for the theorem whenever any hypothesis is removed.
However, the counterexample given for the removal of injectivity also failed to be an open
map. An examination of the proof of Theorem 1.1 reveals that the injectivity of f was only
used to conclude, via the Brouwer Invariance of Domain Theorem [2], that f is an open map.

The assumption of injectivity is a global assumption and not always easy to verify. Local
injectivity, however follows immediately if we know, for example that f has no critical points,
see Remark (a). For a general treatment of mappings that are globally injective see Appendix
B of [3].

It is easy to construct maps f : D̊ → Rn that are locally injective but not injective. But
a continuous local injection on an open subset of Rn is locally open by Brouwer’s Theorem
and therefore an open map, i.e. for each open V ⊂ D̊, f (V) is an open subset of Rn . Thus
we may state a more general

Theorem 1.2 Let D ⊂ Rn be a bounded subset and f : D → Rn continuous. Suppose
f : D̊ → Rn is an open map and f (∂ D) ⊂ D.

If D
C = Rn\D has no bounded components, then f (D) ⊂ D.

Remark
(a) In applications it is sometimes the case that f ∈ C1 and the following applies. Suppose

det f ′(x) %= 0 for all x ∈ D̊. Then from the Inverse Function Theorem, f is locally
injective and from the above discussion, an open map. Thus Theorem 1.2 can be applied.

(b) For n ≥ 2 the “no bounded components” assumption on D
C

together with D bounded
imply D

C
is connected and in fact path connected.

It remains to prove Theorem 1.2. In the process we will correct a minor misstep in the
choice of the radius of the ball B in the proof of Theorem 1.1 in [4].

Proof If the interior D̊ is empty then ∂ D = D and the theorem is trivially true. Thus assume
D̊ %= ∅. For n = 1 the conditions imply D is an interval I and the theorem follows easily
from the Intermediate Value Theorem. Under the mapping the left end point moves to the
right and the right endpoint to the left. Since f is an open map, f is strictly monotonic and
therefore its range lies in [ f (b), f (a)] or [ f (a), f (b)], where a ≤ b are the endpoints of the
interval I .

For n ≥ 2 assume the theorem is not true. Then since f is an open map, G .= f (D̊)∩D
C %=

∅ and G is open in Rn . Let B be an open ball in Rn so large that G ⊂ B.
Let y ∈ G and from path connectedness of D

C
, let γ : [0, 1] → D

C
be a path with

γ (0) = y and γ (1) ∈ ∂B. Next define t0 = min{t ∈ [0, 1] | γ (t) ∈ ∂G} and set η = γ (t0) ∈
γ ∩ ∂G, the first point where γ meets the boundary ∂G starting from y.

Now choose a sequence η j ∈ G ∩ γ such that η j → η and choose x j ∈ f −1(η j ) ∩ D̊.
By compactness of D there is a subsequence, that we again call x j that converges, x j → x .
If x ∈ ∂ D̊ then η = f (x) ∈ f (∂ D̊) ⊂ f (∂ D) ⊂ D. But η ∈ γ and thus η ∈ D ∩ γ = ∅, a
contradiction.

Thus, x ∈ D̊ andη = f (x) ∈ f (D̊)∩γ . Nowγ ⊂ D
C

so thatη ∈ f (D̊)∩γ∩D
C = γ∩G,

and G is an open subset of Rn . But η ∈ γ ∩ ∂G, another contradiction and thus the proof is
complete. *+
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2 An Application

In [4] the following mapping h : R2
+ → R2

+ was considered

hi (x1, x2) = (1 + ai )xi

1 + bi (x1 + x2)
φ(x1 + x2), ai > 0, bi > 0, i = 1, 2, (1)

where
a1

b1
>

a2

b2
and φ is defined as follows. For fixed τ >

a1

b1
,

φ(s) =
{

1, 0 ≤ s ≤ τ

e−(s−τ ), s > τ.

For 0 ≤ x1 + x2 < τ , then (1) is just

gi (x1, x2) = (1 + ai )xi

1 + bi (x1 + x2)
, ai > 0, bi > 0, i = 1, 2, (2)

which is the pure selection case of the more general mutation-selection model treated in [1],

x1(t + 1) = (γ11a1 + 1)x1(t) + γ12a2x2(t)
1 + b1(x1(t) + x2(t))

.= f1(x1(t), x2(t)), (3)

x2(t + 1) = (γ22a2 + 1)x2(t) + γ21a1x1(t)
1 + b2(x1(t) + x2(t))

.= f2(x1(t), x2(t)),

where

γ1 j + γ2 j = 1, j = 1, 2.

Equation (3) express the fact that the total new offspring from x j consists of growth within
the population x j , i.e. self growth, γ j j x j a j plus the mutation ai xiγ j i , i %= j , into x j . Since
mutations are small relative to self growth we express, for small ε, 0 < ε < ε0,

γ11 = 1 − γ1ε, γ21 = γ1ε, γ22 = 1 − γ2ε, γ12 = γ2ε, (4)

where 0 < γi < 1 and ε0 is fixed and sufficiently small that all quantities on the left side of
the equal signs in (4) are positive. We wish to consider here only the pure selection model

x(t + 1) = g(x(t)), (5)

with components given by (2), and its derivative

g′(x1, x2) =





(1+a1)(1+b1x2)
(1+b1 S)2 − (1+a1)b1x1

(1+b1 S)2

(1+a2)b2x2
(1+b2 S)2

(1+a2)(1+b2x1)
(1+b2 S)2



 , (6)

where S = x1 + x2. Note that the coordinate axes are invariant for (5) and P1 =
(

a1

b1
, 0

)

and P2 =
(

0,
a2

b2

)
are fixed points. Recalling that

a1

b1
>

a2

b2
, the eigenvalues of g′(P1) are

λ1 = 1
1 + a1

< 1, and λ2 = 1 + a2

1 + b2a1/b1
< 1,

while those for g′(P2) are

λ1 = 1 + a1

1 + b1a2/b2
> 1, and λ2 = 1

1 + a2
< 1.
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Thus P1 is asymptotically stable and P2 is saddle unstable. One wishes to show that P1
globally attracts all orbits of (5) having initial conditions in the open first quadrant.

The first step in achieving this, and the only step we are concerned with in this note, is to
show that all initial conditions in the open first quadrant are ultimately mapped into a compact
set D containing P1 and D is mapped into itself. To this end note that S(t) = x1(t) + x2(t)
and the following hold for the mapping (5); we prove only the first two.

1. S(t) >
a1

b1
,⇒ S(t + 1) < S(t),

2. S(t) = a1

b1
,⇒ S(t + 1) ≤ S(t), with “ = ” ⇐⇒ x2(t) = 0,

3. S(t) <
a2

b2
,⇒ S(t + 1) > S(t),

4. S(t) = a2

b2
,⇒ S(t + 1) ≥ S(t), with “ = ” ⇐⇒ x1(t) = 0.

To establish the first inequality note that b2a1/b1 > a2. Then

S(t + 1) = (1 + a1)x1(t)
1 + b1S(t)

+ (1 + a2)x2(t)
1 + b2S(t)

<
(1 + a1)x1(t)

1 + a1
+ (1 + a2)x2(t)

1 + b2a1/b1
< S(t). (7)

The second inequality (2) follows by changing the first “<” in (7) to “=” and noting that the
second “<” holds if, and only if x2 = 0. The remaining inequalities are proved in a similar
manner.

Remark (c): S = x1 + x2 is a metric in the positive cone K and the inequality (1), for
example, says points in K are moved closer to the origin.

Next consider the trapezoidal region D in the first quadrant bounded by the two parallel lines

L1 : S = a1

b1
, L2 : S = a2

b2
and the axes. By (1) and (3) it is easily seen that if ωP is the

ω-limit set of any point P = (x1, x2) ∈ K having x1 + x2 > a1
b1

, then ωP ∩ K\D = ∅, i.e.
P is ultimately mapped into D. A similar argument holds for points with x1 + x2 < a2

b2
.

By (2) and (4), L1 and L2 map into D, while the bounding segments in the axes are
themselves invariant. Thus g(∂ D) ⊂ D.

By Remark (a) it only remains to show that f is locally injective on D. This follows
immediately since the Jacobian J of the mapping (5) satisfies

J = det g′(x1, x2) = (1 + a1)(1 + a2)(1 + b1x2 + b2x1)

(1 + b1S)2(1 + b2S)2 , (8)

and all quantities are positive. Thus J > 0 so Theorem 1.2 applies and D is invariant.

Remark (d): For the full mapping (3) the Jacobian Jε is just an ε perturbation of (8) so the
local injectivity is immediate. In [4] it was shown that the mapping g is injective, not just
locally injective but the proof doesn’t generalize easily to handle the full mapping (3). This
is in fact what motivated the result of this note.

The choice of domain D and showing f (∂ D) ⊂ D for (3), however, is a much more
delicate issue.
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