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In a difference or differential equation one is usually interested in finding solutions having certain properties, either intrinsic properties
(e.g. bounded, periodic, almost periodic) or extrinsic properties (e.g. stable, asymptotically stable, globally asymptotically stable). In
certain instances it may happen that the dependence of these equations on the state variable is such that one may (1) alter that
dependency by replacing part of the state variable by a function from a class having some of the above properties and (2) solve the
“reduced” equation for a solution having the remaining properties and lying in the same class. This then sets up a mapping T of the
class into itself thus reducing the original problem to one of finding a fixed point of the mapping. The procedure is applied to obtain
a globally asymptotically stable periodic solution for a system of difference equations modeling the interaction of wild and genetically
altered mosquitoes in an environment yielding periodic parameters. It is also shown that certain coupled periodic systems of difference
equations may be completely decoupled so that the mapping T is established by solving a set of scalar equations. Periodic difference
equations of extended Ricker type and also rational difference equations with a finite number of delays are also considered by reducing
them to equations without delays but with a larger period. Conditions are given guaranteeing the existence and global asymptotic
stability of periodic solutions.
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1. Introduction

Dynamic reduction is a problem dependent algorithm or procedure which allows one to find a solution
to a problem having specified properties by reducing the problem to a sequence of simpler ones, each
having a solution with the desired properties. To illustrate the technique, consider the problem of finding
a p-periodic solution of the p-periodic difference equation

xn+1 = fn(xn), fn : Rd → Rd, fn+p = fn, ∀n ∈ Z+. (1.1)

We will show in certain applications that the dependence of fn(x) on x can be decomposed into a convenient
form

fn(x) = Fn(x, gn(x)) (1.2)

such that for each v = {v0, v1, . . . , vp−1} in a certain class of p-periodic sequences Pp, the “reduced”
equation

xn+1 = Fn(xn, gn(vn)) (1.3)
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has a unique p-periodic solution v∗ ∈ Pp. One then has an induced mapping

T : Pp → Pp, v∗ = T (v). (1.4)

Clearly, a fixed point of the map (1.4) is equivalent to a p-periodic solution of (1.1). Throughout the
presentation the function “g” will be used solely to indicate the grouping of the state variables on which
the reduction is performed. In certain cases, with proper choice of the function “g”, the image under the
map T will have all the desired stability properties.

Linearization of a difference or differential equation is a form of dynamic reduction : about a solution
φ(t) ≡ 0,

xn+1 = fn(xn) = Axn + gn(xn), or

x′ = f(t, x) = Ax + g(t, x)

or about a periodic solution φ(t),

yn+1 = f ′n(φn)yn + gn(yn), or

y′ = ∂xf(t, φ(t))y + g(t, y).

In the following sections we consider some applications of the technique to various problems. The first
involves a model describing the interaction between wild and genetically altered mosquitoes in a periodi-
cally varying environment. Under certain conditions we find a globally attracting periodic state yielding
a solution to a coupled system of two equations of Ricatti/Ricker type. In subsequent sections we apply
dynamic reduction to other systems including systems of Ricker equations with delays and rational diffe-
rence equations with delays. In certain instances large systems may be completely decoupled thus reducing
their solution to an application of known results.

1.1. Stability

Throughout this work, we mean R+ = [0,∞) and R+
0 = (0,∞). While the theorem to follow is quite

general, we will restrict ourselves to the setting most common in problems in Mathematical Biology where
the state variable x lies in (R+

0 )d or (R+)d. By global asymptotic stability (GAS) of a periodic orbit
v = {v0, v1, . . . , vp−1} we shall mean that v globally attracts all solutions starting in (R+)d and is locally
exponentially asymptotically stable.

That GAS of a periodic solution of (1.1) (or equivalently (1.2)) does not immediately follow from the
GAS of the same solution of (1.3) is seen from the following simple example. Consider an autonomous
Ricker equation

xn+1 = xneg(xn)−xn
.= F (xn, g(xn)), 0 < g(x) < 2. (1.5)

If we let g(x) = x then every v ∈ (0, 2) is a GAS fixed point of (1.3) on R+
0 , but not of (1.2). However, with

a smallness condition on g′, e.g. g(x) = α+εx, α ∈ (0, 2), 0 < ε << 1, the fixed point x∗ = α/(1−ε) ∈ (0, 2)
and is a GAS solution of (1.2) with respect to R+

0 .
In order to quantify this smallness condition let x∗ = {x∗n} be a fixed point of T and hence a periodic

point of (1.1) which we write, taking into account (1.2), as

x∗n+1 = Fn(x∗n, gn(x∗n)). (1.6)

Notation : For U ⊂ (R+
0 )d and a periodic vector valued sequence of functions V = {V1, V2, . . . , Vp−1, Vp =

V0} with Vn : U → (R+)d we define |V |0
.= maxn=1,...,p supu∈U |Vn(u)|. For a fixed g =

{g1, g2, . . . , gp−1} with gn : U → (R+)s, and F = {F1, . . . , Fp−1} with Fn = Fn(ξ, gn(η)) define
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|F |0
.= maxn=1,...,p supξ,η∈U |Fn(ξ, gn(η))|. For F = F (x, g(ξ)), we will use ∂2F and ∂gF interchangeably to

mean differentiation with respect to the second argument.
We now state a theorem which will be used to establish GAS in the applications to follow.

Theorem 1.1 Assume there are convex compact Kn ∈ (R+)d such that fn : Kn → Kn+1, g : Kn → Γ
(where the subscripts are interpreted mod p and Γ ⊂ (R+)s is convex and compact) and assume every
initial point x0 ∈ (R+

0 )d is ultimately mapped by (1.1) into one of the Kn. Assume Fn and gn are C1

functions. Define Pp to be that subset of p-periodic sequences such that

v ∈ Pp =⇒ v = (v0, v1, . . . , vp−1) ∈ D = K0 ×K1 × · · · ×Kp−1 .

Then, if |∂2F g′|0 is sufficiently small,
(i) the mapping T : Pp → Pp is a contraction and thus there is a unique fixed point T (v∗) = v∗ and
(ii) v∗ is a GAS periodic point of (1.1).

Remark 1.1 Item (ii) does not immediately follow from (i). A further reduction on the size of |∂2F g′|0
may be required.

Proof : For v ∈ Pp let us denote by y(v) the image of v under T , y(v) = T (v), i.e. yn+1(v) =
Fn(yn(v), gn(v)) .= Hn(yn(v)). Then expressing the periodicity of y(v), one has

y0(v) = Hp−1 ◦Hp−2 ◦ · · · ◦H1 ◦H0(y0(v)) (1.7)

y1(v) = H0 ◦Hp−1 ◦ · · · ◦H2 ◦H1(y1(v))

. . . . . .

yp−1(v) = Hp−2 ◦Hp−3 ◦ · · · ◦H0 ◦Hp−1(yp−1(v))

Letting Dv denote differentiation,

Dvyn+1(v) = DvHn(yn(v)) = DvFn(yn(v), gn(v))

= ∂1Fn(yn(v), gn(v))Dvyn(v) + ∂2Fn(· · · )Dvgn(v)

= ∆nDvyn(v) + hn, where

|hn| ≤ sup
v
|∂2Fn(yn(v), gn(v)) g′n(v)| = O(|∂2F g′|0), and (1.8)

∆n = ∆n(y, v) .= ∂1Fn(yn(v), gn(v)). (1.9)

Thus, from (1.7),

Dvy0(v) = ∆p−1∆p−2 · · ·∆1∆0Dvy0(v)(v) +O(|∂2F g′|0)
.= ∆(0)Dvy0(v)(v) +O(|∂2F g′|0) .

Repeating this for subsequent expressions under (1.7) one obtains

Dvyk(v) = ∆(k)Dvyk(v)(v) +O(|∂2F g′|0), k = 0, . . . , p− 1, where (1.10)

∆(k) = ∆(k)(y, v) = ∆k+p−1∆k+p−2 · · ·∆k+1∆k,

where all subscripts are interpreted “mod p”. The ∆(k) all share the same characteristic polynomial [3, p.
320] and hence the same spectrum σ(∗). From the assumed exponential asymptotic stability of y(v) as a
periodic point of (1.3), one has

σ(∆(k)) ⊂ {z ∈ C : |z| ≤ α < 1} .
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Thus (I −∆(k)) has a bounded inverse and from (1.10),

Dvyk(v) = (I −∆(k))−1O(|∂2F g′|0) . (1.11)

Next we define a norm in Pp to be

‖v‖ .= max (|v0|, |v1|, . . . , |vp−1|) .

Then it follows from (1.11) that for δ ∈ (0, 1) and |∂2F g′|0 sufficiently small,

|Dvyk(v)| ≤ δ,

and from the Mean Value estimate,

|yk(u)− yk(w)| ≤ sup
t∈[0,1]

|Dvyk(vt)| ‖u− w‖ ≤ δ‖u− w‖, vt = tw + (1− t)u , (1.12)

for any pair u, w ∈ Pp.Thus,

‖y(u)− y(w)‖ ≤ δ‖u− w‖, i.e. ‖T (u)− T (u)‖ ≤ δ‖u− w‖

and T is a contraction.
It remains to prove that the unique fixed point v∗ of T is GAS as a solution of (1.2). We first prove v∗

is asymptotically stable. The matrix of the equation of first variation of (1.2) at v∗ is

= ∂1Fn(v∗n, gn(v∗n)) + ∂2Fn(v∗n, gn(v∗n))Dvgn(v∗n) (1.13)

= ∆n(v∗, v∗) +O(|∂2F g′|0) .

By the same argument given above we see that the spectrum of ∆(n)(v∗, v∗) is independent of n and lies
inside the unit circle in the complex plane.

We finally show v∗ is globally attracting. Let B = B(v∗) be the basin of attraction of v∗. Since B is
open, from (1.12) with w = v∗, it follows that for δ sufficiently small the entire image under T of Pp lies
in B, T (Pp) ⊂ B. Thus for each v ∈ Pp there exists a T (v) ∈ Z+ such that the solution xn of (1.3) with
x0 = v0 lies in B for n = T (v) and by continuity, some open neighborhood of v, U(v) is carried into B in
the same number of iterations : symbolically,

U(v) · T (v) ⊂ B .

Let {U1
.= U(v(1)),U2, . . . ,Uk} be a finite sub-cover of Pp and define T = max i=1,...,k{Ti

.= T (v(i))}. Thus
every initial point v ∈ Pp is mapped by (1.3) into B upon τ iterations, 0 ≤ τ ≤ T and the same will
remain true for (1.2) provided |∂2F g′|0 is sufficiently small. A sufficient (but not necessary) condition to
accomplish this would be to assume |g′| small. �

Remark 1.2

(a) The estimate (1.12) is the very raison d´ être for the reduction method. The spectrum σ of the product
of Fx(x, y)’s along a periodic sequence does not, in general, lie inside the unit circle in the complex
plane. What the reduction method accomplishes is that for each fixed t ∈ (0, 1) the solution of (1.3)
with v = ut “runs” over to the GAS periodic orbit y(v) of that system and it is there that |σ| < 1.

(b) In certain cases, notably rational difference equations (Section 3.3), it is possible it achieve the smallness
condition on |∂2F g′|0 without making |g′|0 small, c.f. (3.13).

The next lemma is needed in the sections to follow.
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Lemma 1.2 [5] The periodic Ricker equation,

xn+1 = xneσn−xn , σn+p = σn, xn ∈ R ,

with σn ∈ (0, 2) has a globally asymptotically stable p-periodic solution {x∗n}. Moreover,

1
p

p−1∑
i=0

x∗i =
1
p

p−1∑
i=0

σi ,

i.e. neither attenuation nor resonance prevails.

2. Genetically Altered Mosquitos

This model was first introduced in the time independent or autonomous case by Jia Li [4] and later
considered in [6,7] by the authors where the technique of “ratio dynamics” was introduced. In an attempt
to describe more accurately a periodically varying environment we consider the following p-periodic system
where x and y represent, respectively, the populations of wild (W) and genetically altered (GA) mosquitos

xn+1 =
α1,nxn + β1,nyn

xn + yn
xne−d1,n−k1,n(xn+yn),

yn+1 =
α2,nxn + β2,nyn

xn + yn
yne−d2,n−k2,n(xn+yn),

where the initial conditions x0, y0 and all the coefficients are positive and thus xn and yn remain positive
for all n ∈ Z+. We assume all the coefficients to be periodic of period p in the integer variable n. The
expressions

αi,nxn + βi,nyn

xn + yn

.= fi,n(xn, yn) i = 1, 2 (2.1)

are the growth functions, i.e. the per-capita rate of offspring production and are derived (following [4]) as
follows. Let Nn = xn + yn represent the total population at generation n and c(Nn) be the total number
of encounters or matings per individual, per unit of time. Concentrating first on the x equation governing
the wild (W) mosquitoes,

xn+1 = f1,n(xn, yn)s1,n(xn, yn)xn ,

the number of matings that are with W or GA mosquitoes at generation n is c(Nn)xn/Nn or c(Nn)yn/Nn

respectively. Let A1,n and B1,n be the number of W offspring that a W produces through a mating with
a W and a GA at generation n. Similarly, let A2,n and B2,n be the number of GA offspring that a GA
produces through a mating with a W and a GA respectively, at generation n. Then the total number of
W offspring produced by a single W at generation n is just

c(Nn)
A1,nxn + B1,nyn

xn + yn
.

For large populations it is reasonable to assume that the function c(Nn) reaches a constant saturation
level, c(Nn) = c0. Defining αi,n = c0Ai,n and βi,n = c0Bi,n we obtain (2.1).

The expressions

e−di,n−ki,n(xn+yn) .= si,n(xn, yn) i = 1, 2
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are the survival probabilities. The di,n are the ambient mortality rates while the ki,n are the rates of density
dependent mortality and characterize the instantaneous carrying capacity at generation n.

We first eliminate the “exp (−di,n)” terms by absorbing them into the coefficients ai, bi (ai = αie
−di ,

and bi = βie
−di ) to obtain

xn+1 =
a1,nxn + b1,nyn

xn + yn
xne−k1,n(xn+yn) , (2.2)

yn+1 =
a2,nxn + b2,nyn

xn + yn
yne−k2,n(xn+yn) . (2.3)

Remark 2.1 We assume that each species is self sustaining in the sense that if (2.2)-(2.3) evolves with the
parameters all fixed at any n ∈ {1, 2, . . . , p − 1} then each species, in the complete absence of the other,
can grow to a non-extinction state. This imposes the conditions a1,n > 1 and b2,n > 1, ∀n.

Our interest is in establishing the existence of a periodic state (x̂n, ŷn), n = 0, 1, . . . , p−1 which globally
attracts all initial states (x, y) with x > 0 and y > 0.

In the case of equal rates of density-dependent mortality we obtain a globally asymptotically stable
periodic solution (Section 2.1). When these rates are not the same, ratio dynamics fails. In Section 2.2 we
apply dynamic reduction to obtain a new set of equations to which ratio dynamics will apply to give the
desired periodic solution and hence the mapping (1.4).

Ratio dynamics ultimately leads to the study of the scalar p-periodic Ricker equation

xn+1 = xneσn−xn , σn+p = σn , (2.4)

to which Lemma 1.2 applies.

2.1. Ratio Dynamics, k1,n = k2,n, n = 1, 2 . . . , p

We first describe the case of equal rates of density dependent mortality, k1,n and k2,n. This case, while
quite artificial in practice, is nevertheless quite useful in solving the more general problem.

In (2.2) we form the ratio, zn = xn/yn to obtain

zn+1 =
a1,nzn + b1,n

a2,nzn + b2,n
zn. (2.5)

We then have the following lemma :

Lemma 2.1 For each fixed n assume a1,n/a2,n < 1 and b1,n/b2,n > 1. Then (2.5) has a globally asympto-
tically stable periodic solution {ζ0, ζ1, . . . , ζp−1}.

Proof : For each n the right hand side of (2.5) is a concave mapping from R+ → R+ that intersects the
diagonal. The rest follows from [2]. �

Remark 2.2 Referring to equations (2.2)-(2.3), and recalling that x represents Wild type while y represents
GA, the conditions a2,∗ > a1,∗ imply that the likelihood of a GA producing a GA when mating with a
Wild, is greater than the likelihood of a Wild producing a Wild when mating with a Wild. Similarly, the
conditions b1,∗ > b2,∗ imply that the likelihood of a Wild producing a Wild when mating with a GA, is
greater than the likelihood of a GA producing a GA when mating with a GA. The conditions preclude
an attracting fixed point of (2.2)-(2.3) on one of the axes, i.e. the case in which one of the species reaches
extinction. See [4] for a discussion of these extinction cases in the autonomous, or time independent case.
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Substituting xn = ynζn into the second equation in (2.2) we obtain

yn+1 =
a2,nζn + b2,n

ζn + 1
yne−k2,n(ζn+1)yn , (2.6)

= yn exp
[
ρ(n)−K(n)yn

]
where

ρ(n) = log (
a2,nζn + b2,n

ζn + 1
), and K(n) = k2,n(ζn + 1) (2.7)

Using the substitution un = K(n)yn in (2.6) we get, in the same form as in (2.4), the following Ricker
equation

un+1 = uneσ(n)−un , where (2.8)

σ(n) = log (
K(n + 1)

K(n)
) + ρ(n).

Thus, we have the following theorem :

Theorem 2.2 Assume σ(n) ∈ (0, 2) ∀n. Then (2.8) has a globally asymptotically stable
(with respect to R+

0 ) p-periodic solution {u∗0, u∗1, . . . , u∗p−1} and hence (2.2)-(2.3), with k1,n = k2,n ∀n, has
a globally asymptotically stable (with respect to the open first quadrant) solution

v∗
.= {( ζnu∗n

K(n)
,

u∗n
K(n)

), n = 0, 1, . . . , p− 1}.

Remark 2.3 The condition σ(n) ∈ (0, 2) in Theorem 2.2 is a sufficient condition only and it precludes period
doubling bifurcations from occurring (See [4] where these bifurcations were studied in the autonomous
case). The condition is, however, not necessary as pointed out in [8] where periodic coefficients were
treated and some results, largely numerical, were obtained for periods 2 and 3 where some of the σn are
allowed to exceed 2, provided their average remains less than 2.

Remark 2.4 In [2] the following was shown : Let two concave maps f, g : R+ → R+ have fixed points xf

and xg with xf < xg. Then xf < xf◦g < xg and xf < xg◦f < xg. This is useful in estimating the “spread”
of the invariant set of lines in the (x, y) plane determined by the periodic solution given by Lemma 2.1.
More precisely, if Pn is the fixed point of the nth map in (2.5), then the slopes of the invariant lines are
1/ζn and lie in the open interval (minSn,max Sn), where Sn = 1/Pn. Note that Pn is simply the solution
of (a1,n − a2,n)Pn = (b2,n − b1,n).

2.2. Dynamic Reduction leads to Ratio Dynamics, the case k1,n 6= k2,n for some n

The whole point of dynamic reduction is to reduce a given problem to one for which a known solution
technique is readily available. In order to reduce this case to the one treated in Section 2.1, we rewrite
(2.2) as

xn+1 =
a1,nxn + b1,nyn

xn + yn
xne−k2,n(xn+yn)gn(xn, yn), (2.9)

yn+1 =
a2,nxn + b2,nyn

xn + yn
yne−k2,n(xn+yn), where (2.10)

gn(xn, yn) = e(k2,n−k1,n)(xn+yn), (2.11)
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which has the form (1.2). Our aim is to define a region D ⊂ R+ × R+ as

D .= [0,M ]× [0,M ] \ [0,m)× [0,m) (2.12)

and a subset

Pp =
{
p-periodic sequences, {(xn, yn)}, with (xn, yn) ∈ D

}
such that for each sequence v = {(x̂n, ŷn)} ∈ Pp, the “reduced” system,

xn+1 =
a1,nxn + b1,nyn

xn + yn
xne−k2,n(xn+yn)gn(x̂n, ŷn), (2.13)

yn+1 =
a2,nxn + b2,nyn

xn + yn
yne−k2,n(xn+yn), (2.14)

with initial conditions x0 > 0 and y0 > 0, has a globally asymptotically stable (with respect to the open
first quadrant), and hence unique, periodic solution v∗ = {(x∗n, y∗n)} ∈ Pp. Thus the mapping (1.4) will be
established. If v∗ is a fixed point of T , i.e. a solution of

xn+1 =
a1,nxn + b1,nyn

xn + yn
xne−k2,n(xn+yn)gn(x∗n, y∗n), (2.15)

yn+1 =
a2,nxn + b2,nyn

xn + yn
yne−k2,n(xn+yn), (2.16)

then it remains to show that v∗ is GAS as a solution of the original system (2.9)-(2.10).
Note that while a fixed point of the mapping T in (1.4) is a p-periodic solution of (2.9)-(2.10) and

therefore (2.2)-(2.3), the converse is not true since (2.2)-(2.3) has p-periodic points on the two intervals of
the boundary of D where x = 0 or y = 0. It turns out that the mapping T will send sequences lying on
those portions of the boundary to sequences with values in that part of D lying on the interior of the first
quadrant.

Hence, we are interested first in defining the region D in (2.12) that is mapped into itself by the right
side of (2.13)-(2.14) with some mild restrictions on g. Then we explore conditions guaranteeing that the
ratio system

zn+1 =
a1,nzn + b1,n

a2,nzn + b2,n
zn gn(x̂n, ŷn), (2.17)

formed from (2.13)-(2.14) by setting z = x/y has a globally asymptotically stable (with respect to R+
0 )

solution. This will establish a positively invariant set of lines in the (x, y) plane which attract every solution
starting in the open first quadrant. Finally, the stability of the solution of the system corresponding to
(2.6) will be established.

We first consider the following scalar mapping containing a parameter λ,

x 7→ Fλ(x) .=
ax + bλ

x + λ
xe−k(x+λ), x, λ ≥ 0, x + λ > 0, (2.18)

and the the associated family of mappings (simple multiplication by φ),

F =
{

Fλ(x)φ,
1

min {a, b}
< φ <

e

2

}
. (2.19)

Note in particular that Fλ ∈ F when a, b > 1.
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Figure 1. Parameter region for which m ≤ x ≤ M is
invariant.

Figure 2. Parameter region for which m ≤ y ≤ M is
invariant.

Lemma 2.3 Assume a, b > 1 and let M be such that M ≥ max {a, b}
2k

. Then for λ ≤ M there exist small

positive numbers, m and m̃ depending on M , with m < m̃ < M such that each member of the family (2.19)
satisfies

(a) For λ ∈ [0,M ] and x ∈ [m̃,M ] one has Fλ(x)φ ∈ [m,M ],

(b) For λ ∈ [0, m̃] and x ∈ (0, m̃] one has x < Fλ(x)φ ≤ M .

Proof : For x and λ small, Fλ(x) may be approximated by gλ(x) =
ax + bλ

x + λ
x, and thus

g′λ(x)φ =
bλ2 + a(2λx + x2)

λ2 + 2λx + x2
φ ≥ min {a, b}φ > 1,

since the above expression is a convex combination of a and b. Thus there exists a small m̃ > 0 such that
(b) holds. Next observe that

0 < Fλ(x) ≤ max
x,λ

ax + bλ

x + λ
max
x,λ

xe−k(x+λ) ≤ max {a, b}
ke

,

again using convexity on the first “max”. Then choose m, 0 < m ≤ m̃ such that

m < min
x,λ

Fλ(x)
1

min {a, b}
, x ∈ [m̃,M ], λ ∈ [0,M ],

so that (a) follows. �
Figure 1 is an interpretation of Lemma 2.3. Part (a) implies that for (x, λ) in the large rectangle, each

member f of the family F maps x to the interval [m,M ] while part (b) implies that for (x, λ) in the small
rectangle f moves x to the right, but not past M . Thus, in either case the interval [m,M ] is invariant
under application of f ∈ F .

Now fix n, and consider the mapping (2.13)-(2.14). The first component (2.13) has the form considered
in Lemma 2.3. But x and y occur symmetrically in (2.13)-(2.14), so that Lemma 2.3 applies to the family

Fλ(y)φ .=
aλ + by

λ + y
ye−k(λ+y)φ,

1
min {a, b}

< φ <
e

2
,

which includes the second component (2.14), see Figure 2. Finally we consider the mapping (2.13)-(2.14),
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Figure 3. Region D in x, y-plane left invariant.

with |k2 − k1| sufficiently small so that g satisfies the condition (with n suppressed),

1
min {a1, a2, b1, b2}

< min (1, g) ≤ max (1, g) <
e

2
. (2.20)

If (x, y) ∈ D then one of the variables must lie in the interval [m,M ] so that Lemma 2.3 implies the image
under the right side of (2.13)-(2.14) lies in D, the two shaded regions in Figure 3. But more can be inferred
from Lemma 2.3 which we state as

Corollary 2.4 Let condition (2.20) hold and m, and M be defined as in Lemma 2.3. If D is the region

D .= [0,M ]× [0,M ] \ [0,m)× [0,m) .

then D and its convex hull coD are each invariant under the mapping

xn+1 =
a1xn + b1yn

xn + yn
xne−k2(xn+yn)g(xn, yn), (2.21)

yn+1 =
a2xn + b2yn

xn + yn
yne−k2(xn+yn). (2.22)

Proof : From Lemma 2.3(b) it follows that any (x, y) ∈ [0,m]× [0,m] that satisfies y ≥ m−x is mapped
to a point (x1, y1) with x ≤ x1 ≤ M and y ≤ y1 ≤ M . �

Thus we have the following theorem :

Theorem 2.5

(a) In the reduced system (2.13)-(2.14) assume a1,n, a2,n, b1,n, b2,n > 1 and define

M = max {M1,M2} where Mi = max
n

{ai,n, bi,n}
ki,ne

.

Assume maxn|k2,n − k1,n| sufficiently small so that when x ≤ M and y ≤ M , one has

1
minn {a1,n, a2,n, b1,n, b2,n}

< gn(x, y) <
e

2
.
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Then there exists an m, 0 < m < M , such that the region

D .= [0,M ]× [0,M ] \ [0,m)× [0,m)

and its convex hull coD are invariant under the mapping (2.13)-(2.14), i.e. if (x0, y0) ∈ D then
(xn, yn) ∈ D and xnyn > 0 for all n ∈ Z+.

(b) Further, if for each n, |k2,n − k1,n| is sufficiently small so that max
n

a1,n

a2,n
max
D

gn < 1 and

min
n

b1,n

b2,n
min
D

gn > 1, then the ratio equation (2.17) has a globally asymptotically stable (with respect

to R+
0 ) p-periodic solution

{ζ0, ζ1, . . . , ζp−1}. (2.23)

(c) Assume σ(n) defined in (2.8) and computed from (2.23) satisfies σ(n) ∈ (0, 2). Then the reduced system
(2.15)-(2.16)) has a globally asymptotically stable (with respect to the open first quadrant) p-periodic
solution v∗ = {v∗0, v∗1, . . . , v∗p−1}. If, for each n, |k2,n − k1,n| is sufficiently small, then v∗ = {x∗n, y∗n)}
is a GAS solution of the original system (2.9)-(2.10)).

Proof : (a) This follows immediately from Corollary 2.4 since each map in the sequence satisfies the
conditions of Lemma 2.3.

(b) Toward ultimately defining the mapping

T : Pp → Pp, v∗ = T (v),

let v = {(x̂n, ŷn)} ∈ Pp be chosen and consider (2.13)-(2.14). Letting zn = xn/yn we obtain the “ratio”
equation :

zn+1 =
a1,ng(x̂n, ŷn)zn + b1,ng(x̂n, ŷn)

a2,nzn + b2,n
zn

.= hn(zn). (2.24)

From the hypotheses, for each n, hn : R+ → R+ is concave and the graph of η = hn(z) crosses the
“diagonal”, η = z in the (z, η) plane. The proof of part (b) follows from the results of Section 2.1.

(c) Theorem 2.2 tells us that the reduced equation (2.13)-(2.14) has a
globally asymptotically stable solution v∗ thus giving us the mapping T . It is clearly continuous
and carries points in Pp having values on the axes in coD (see Figure 3) to points in Pp having no values
on the axes in coD. Clearly a fixed point (periodic sequence in R2) has no values lying on either axis.

To see that T is a contraction and its unique fixed point v∗ is GAS as a solution of the original system,
we will verify the smallness condition of Theorem 1.1. Noting that Fn is the right hand side of (2.9)-(2.10)),
and defining ∆kn = (k2,n − k1,n), we have

∂gFn(xn, yn) =

[
a1,nxn+b1,nyn

xn+yn
xne−k2,n(xn+yn)

0

]
, ∂(x,y)gn(x, y) = −∆kne−∆kn(xn+yn)

[
1
1

]

From Lemma 2.3, |∂gFn| ≤ M . The rest follows from by letting |∆kn| be sufficiently small for each n. �

Remark 2.5 We saw in an earlier in Remark 2.1, the assumption that each species is self sustaining imposed

the condition a1,n, b2,n > 1, ∀n. In Remark 2.2 the assumptions
a1,n

a2,n
< 1,

b1,n

b2,n
> 1 were interpreted

biologically and were seen to preclude extinction states. From these it follows that a2,n, b1,n > 1, ∀n. The
condition σ(n) ∈ (0, 2) is a sufficient condition that precludes period doubling, Remark 2.3.
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3. Other Applications

The possible applications of dynamic reduction are limited only by the users imagination. The key
point is that the reduced equation should have a solution having all the properties desired of the solution
of the original problem. As we saw in the mosquito model, some of these properties (periodicity) are
built into the class Pp on which T acts while other properties (global asymptotic stability) are obtained
by carefully defining the map. Here we state a few applications with just enough details to establish
the mapping T : Pp → Pp on a subset of periodic sequences such that each point in the range of T
is a globally asymptotically stable solution of the reduced system. As noted earlier, a fixed point yields a
solution of the original problem. We also calculate the derivatives needed to verify the smallness conditions
of the stability theorem, Theorem 1.1.

The first two examples are systems of Ricker equations with coupling and delays. Although Ricker’s
equation arose in the modeling of problems in Biology, the authors have no specific application in mind.
The aim is to illustrate the use of dynamic reduction.

3.1. Systems may be decoupled

Consider

xn+1 = xneg1,n(xn,yn)−xn (3.1)

yn+1 = yneg2,n(xn,yn)−yn

where g∗,n is periodic in n of period p and 0 < gj(n, x, y) < 2 whenever (n, x, y) ∈ Z+ ×D, where

D = [m, M ]× [m,M ],

and where the constants are chosen as follows. With 0 < c < 2, the maximum of x exp (c− x) on R+ is
x = exp (c− 1) < e. Thus we take M = e. Using this value for x and c = 0 gives a lower bound m on how
close to the origin a point can be mapped :

m < e1−e . (3.2)

Using these values the region D is invariant under the action of (3.1). Here g is periodic in n and we seek a
globally asymptotically stable periodic solution. To this end define Pp ⊂ {p-periodic sequences} such that

v = (v0, v1, . . . , vp−1) ∈ Pp =⇒ vj =
(

xj

yj

)
∈ D .

Then for v̂ ∈ Pp, the globally asymptotically stable solution v∗ of

xn+1 = xneg1,n(x̂n,ŷn)−xn (3.3)

yn+1 = yneg2,n(x̂n,ŷn)−yn

To obtain the contraction property and global asymptotic stability as a solution of (3.1) one then must
restrict the size of |∂2F g′|0 in order to verify smallness condition of Theorem 1.1 where

∂gFn =
[
F1,n 0
0 F2,n

]
and g′n =

[
∂x1g1,n ∂x2g1,n

∂y1g2,n ∂y2g2,n

]
.
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3.2. Periodic systems with delays

These can be handled similarly, e.g. consider

xn+1 = xnegn(xn,xn−1,...,xn−k)−xn
.= F (xn, gn(xn, xn−1, . . . , xn−k)), xj ∈ (R+

0 )d, (3.4)

gn : Z+ ×
k∏

j=0

(R+
0 )d → (R+

0 )d (3.5)

where multiplication and exponentiation on the right side are done element-wise. In this case, with the
same m as in (3.2), we define the region D and v ∈ Pλ as

v = (v0, v1, . . . , vλ−1) ∈ Pλ =⇒ vj ∈ D =
d∏

j=1

[m, e] .

where λ is determined as follows. If p is the minimal period of the system (3.4) then λ = µp where µ is
the unique positive integer such that

(µ− 1)p < (k + 1) ≤ µp . (3.6)

The mapping, v∗ = T (v), is then established by finding the solution v∗ of the reduced system

xn+1 = xnegn(vn,vn−1,...,vn−k)−xn , x ∈ (R+
0 )d ,

where again we assume 0 < gj,n(· · · ) < 2, j = 1, . . . , d.

Remark 3.1 Even though a fixed point of T yields a λ-periodic solution of (3.9), λ need not be the minimal
period of that solution.

To verify T is a contraction and that the unique fixed point v∗ is a GAS solution of (3.4) one then must
restrict the size of |∂2F g′|0 in order to satisfy the conditions of Theorem 1.1. For each n, ∂gn

Fn is the
diagonal d× d matrix

∂gn
Fn = diag

[
∂g1,n

F1,n, . . . , ∂gd,n
Fd,n

]
and letting Dj represent differentiation with respect to the jth argument, the term ∂xgn in
gn(xn, xn−1, . . . , xn−k) is interpreted to mean the d× k + 1 matrix

∂xgn = [Djgi,n] , i = 1, . . . , d j = 1, . . . , k + 1 . (3.7)

3.3. Rational difference equations

The following equation has been the subject of much attention, [1]

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, x ∈ R+ .

where all coefficients are assumed non-negative (other conditions to follow). Adding periodicity gives

xn+1 =
αn +

∑k
i=0 βi,nxn−i

An +
∑k

i=0 Bi,nxn−i

, x ∈ R+ . (3.8)
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Separating out the delayed terms, one has

xn+1 =
αn + β0,nxn + g1,n(xn−1, . . . , xn−k)
An + B0,nxn + g2,n(xn−1, . . . , xn−k)

.= Fn(xn, gn(xn−1, . . . , xn−k)) . (3.9)

Consider, for v̂ ∈ Pp the reduced equation

xn+1 =
αn + β0,nxn + g1,n(v̂n−1, . . . , v̂n−k)
An + B0,nxn + g2,n(v̂n−1, . . . , v̂n−k)

=
α̂n + β0,nxn

Ân + B0,nxn

.= φn(xn) . (3.10)

For each n we assume β0,n > 0, B0,n > 0. Then

0 < Mn
.= lim

x→∞
φn(x) =

β0,n

B0,n
< ∞, n ∈ Z+ mod p . (3.11)

Our aim is to give additional conditions that guarantee that each φn is concave so that Mn = sup
x∈R+

φn(x).

Since the values of each φi are acted on by φi+1, we may restrict the upper boundary of the domain of
φi+1 to be Mi and thus define the region D and the subset of λ-periodic sequences, Pλ to be

v ∈ Pλ =⇒ v = (v0, v1, . . . , vλ−1) ∈ D = [m, Mλ−1]× [m,M0]× · · · × [m,Mλ−2] ,

where λ is chosen as in (3.6).
There is some latitude in the choice of m. In order to render (3.10) concave for each n we require

sup
v∈D

α̂n

Ân

= sup
v∈D

αn + g1,n(vn−1, . . . , vn−k)
An + g2,n(vn−1, . . . , v̂n−k)

< Mn , n ∈ Z+ . (3.12)

Then by the result, [2], the λ-periodic equation

xn+1 =
α̂n + β0,nxn

Ân + B0,nxn

has a globally asymptotically stable periodic solution v∗ thus establishing the mapping

v∗ = T (v̂) .

As noted in Remark 3.1, a fixed point of T yields a λ-periodic solution of (3.9) but λ need not be the
minimal period of that solution.

To verify T is a contraction and that the unique fixed point v∗ is a GAS solution of (3.9) one then must
satisfy the smallness conditions of Theorem 1.1. To that end, one needs to evaluate the derivatives ∂gF
and ∂xg (a d× k matrix) that are given by

∂gn
Fn =

[
1

An + B0,nxn + g2,n(xn−1, . . . , xn−k)
,− αn + β0,nxn + g1,n(xn−1, . . . , xn−k)

(An + B0,nxn + g2,n(xn−1, . . . , xn−k))2

]
, and

g′n = [Djgi,n] i = 1, . . . , d j = 1, . . . , k , (3.13)

where Dj is differentiation with respect to the jth variable.
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Remark 3.2 If at least one of the αn in (3.9) is positive we may actually choose m = 0 since the identically
zero solution is then impossible and therefore the zero sequence is not in the range of T . Even in this
case, however, it might be advantageous to use a larger m in order to satisfy the smallness condition on
|∂2F g′|0. This would be the case if g2 was not identically zero. No general statement seems possible.

4. Conclusions

Dynamic reduction is a procedure for solving a difference equation by replacing certain “excess” state
variables by a function lying in a class having some of the desired properties of the sought after solution.
Done properly, the resulting or reduced equation will have a solution having the remaining properties and
lying in the same class. This sets up a mapping T of the class into itself, a fixed point of which solves the
original problem. The technique is illustrated by applying it to various problems.

In the application to the periodic model for wild (W) and genetically altered (GA) mosquitos, it is
shown (See Remark 2.2) that if the growth parameters satisfy certain inequalities then neither species
goes extinct and in fact their population ratios are attracted to a periodically varying state and thus the
dynamics of the model takes place on a periodic set of lines in the plane of x, the W population and y, the
GA population. When restricted to these lines, further conditions (shown to preclude period doubling by
Jia Li [4] in the autonomous case) guarantee the existence of a periodic state to which all initial non-zero
populations are attracted. In Remark 2.4 it is noted that the population ratios asymptotically lie between
certain easily calculated bounds : solutions ξ of scalar equations of the form aξ = b.

It is also shown that certain coupled periodic systems of difference equations may be completely de-
coupled so that the mapping T is established by solving a set of scalar equations. Periodic difference
equations of extended Ricker type and also rational difference equations with a finite number of delays are
also treated by reducing them to equations without delays but with a larger period.
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