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CHAPTER II
BIFURCATION - MAPPING METHOD

1. Introduction
In this chapter we treat the bifurcation problem by considering the mapping induced by the
vector field near the periodic solution: the method of surfaces of section mentioned earlier.

We consider the differential equation

dx

dt
= F (x, µ) (2.1)

where x and F are real n-vectors and µ is a real parameter. Suppose that for all
sufficiently small µ, |µ| < µ∗, (2.1) has a periodic solution x = ψ(t, µ) with period 2π.
Assume that F has ρ ≥ 5 continuous derivatives with respect to x and µ in some
neighborhood of ψ and that in this neighborhood

|F |ρ ≤M0

where differentiation is with respect to x and µ. (See Appendix for definition of |F |ρ .)

Suppose that ψ is asymptotically stable for µ < 0 in the sense that n-1 of the Floquet
multipliers lie inside the unit circle in the complex plane. As µ increases through zero we
assume that a conjugate pair of the multipliers

λ(µ) = e2πα(µ), λ(µ) = e2πα(µ)

leaves the unit circle with
Re α(0) = 0, Re α

′
(0) > 0

while the remaining n-3 stay inside. Hence the periodic solution ψ becomes unstable.

We do not require that ψ is obtained by a bifurcation from an equilibrium as discussed in
Chapter I but just consider any periodic solution which loses its stability in the above
manner as µ passes through a critical value (assumed to be µ = 0).

2. Reduction to a Mapping Problem
We now obtain the mapping described by the flow near the periodic solution ψ. Let C be
the curve described by ψ. Choose a point P on C and let S be the n-1 dimensional
hyperplane normal to C at P . Let P be the origin of coordinates x = (x(1), . . . , x(n−1))
describing S. It is known [1; p.50] that any solution of (2.1) starting on S and close enough
to P will return to S for the first time after a time lapse of 2π + ε(x) where ε→ 0 as
x→ 0. In a small neighborhood of P this defines a mapping T of S into itself having P as
a fixed point

T : x1 = Dx+ . . . (2.2)

It is known [1; p.163] that the eigenvalues of D are just the n− 1 previously mentioned
Floquet multipliers. Thus for µ < 0, P is an asymptotically stable fixed point which
becomes unstable as µ increases through zero.

The existence of a torus will be established by showing that P bifurcates into a closed curve
C̄, lying in S which is invariant under T , i.e., if q is a point of C̄, then Tq = q1 is on C̄.
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3. Normal Form for the Mapping
By appropriately transforming coordinates we will put the mapping in a certain normal
form which is needed in the existence theorem. We assume that a real linear
transformation of coordinates has been carried out so that D is in the real form

D =


Re λ(µ) −Im λ(µ)

0
Im λ(µ) Re λ(µ)

0 S(µ)


where S(µ) is a matrix whose eigenvalues σ(µ) satisfy

|σ(0)| < 1 (2.3)

and
sup
|Y |=1

|S(0)Y | = σ0 < 1

where Y = Col(x(3), . . . , x(n−1)) and |Y | is the ordinary Euclidean length of a vector

(Y, Y )
1
2 . Let z = x(1) + ix(2). Then in the z, Y coordinates the mapping is

z1 = λ(µ)z + U(z, z̄, Y, µ)
T :

Y1 = S(µ)Y + V (z, z̄, Y, µ)
(2.4)

where U is complex and V is real. The functions U, V, λ and S have five continuous
derivatives in a neighborhood of (z, Y, µ) = 0 which we assume to be

|z|2 + |Y |2 ≤ 2, |µ| < µ∗.

We assume U and V to be expanded into Taylor series up to polynomials of degree 4 plus
remainder.

In order to motivate the following theorem consider the following example of a mapping

z1 = ei+µ+β|z|2z

Y1 = SY + b|z|2

where β is complex, b is a real constant vector and S is a matrix which satisfies (2.3). If
Re β < 0, this mapping has the invariant curve

|z| =
(

µ

−Re β

) 1
2

, Y = (S − I)−1b
µ

Re β

contained in a neighborhood |z| ≤ c
√
µ, |Y | ≤ c2µ, c a constant. We now consider the

effect of perturbing this example by adding more nonlinear terms. In such an oblate
neighborhood Y is small of order µ whereas z is small only to order µ

1
2 . More precisely

consider the neighborhood
N : z = aζ, Y = a2Ỹ
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where |ζ|2 + |Ỹ |2 ≤ 2 and a is a small parameter, 0 ≤ a ≤ 1. In N the monomial
Mτ = Y p

(i)z
qz̄r, τ = 2p+ q + r, satisfies |Mτ |k ≤ c(k)aτ where differentiation is with respect

to Ỹ(i), ζ, and ζ̄ and c(k) is a constant depending only on k.

Definition. We call τ the weight of Mτ . In the following theorem we will transform the
mapping (2.4) into a form similar to the above example in which monomials of weight 2
and 3 will serve to determine the invariant curve in the first approximation while the
remaining terms will act as small perturbations. The transformations used are of the type
treated by B. Segre [2]. See also A. Kelly [3] for an excellent bibliography.

Theorem 1. If λ4(0) 6= 1, λ3(0) 6= 1 and (2.3) is satisfied, then there exists a µ0 ≤ µ∗ such
that for |µ| < µ0 there exists a transformation

z = cw + P (w, w̄,W, c, µ)
0 < c ≤ 1

Y = cW + P̃ (w, w̄,W, c, µ)

with P and P̃ polynomials in w, w̄, and W , which carries (2.4) into the form

w1 = e2πα(µ)+c2β(µ)|w|2w +R4(w, w̄,W, c, µ)

W1 = S(µ)W +R3(w, w̄,W, c, µ)
(2.5)

where Rk are function whose Taylor expansions1 about (w, w̄,W ) = 0 contain no terms of
weight < k. P and P̃ contain no constant or linear terms. For proper choice of c the
transformation is one-to-one in the neighborhood |w|2 + |W |2 ≤ 2.

Proof: In this proof subscripts on functions will carry the same significance as for Rk

defined above. We write the first equation of (2.4) as

z1 = λ(µ)z + u(z, z̄, µ) + v(z, z̄, Y, µ) + F4 (2.6)

where u contains quadratic and third order terms in z and z̄ and v = Y ′[p(µ)z + q(µ)z̄]
with p, q vectors and prime denoting transpose. We transform (2.6) by

z = w + r(µ)wkw̄`, k + ` = 2, 3 (2.7)

to obtain
w1 = λ(µ)w + u(w, w̄, µ)− g(µ)wkw̄` + v(w, w̄, Y, µ) + F̃4

where
g(µ) = (λkλ̄` − λ)r(µ), λ = λ(µ)

Unless k = 2, l = 1 we see that r(µ) may be determined so that (2.7) removes the term
wkw̄` from u. By successive applications of (2.7), we obtain the form

w1 = λ(µ)w + b(µ)|w|2w + v(w, w̄, Y, µ) +G4. (2.8)

The transformation
w = ζ + Y ′r(µ)ζkζ̄`, k + ` = 1 (2.9)

1By the smoothness assumption made after (2.4), Rk is well defined provided k ≤ 4.
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with r(µ) a vector carries (2.8) into

ζ1 = λ(µ)ζ + b(µ)|ζ|2ζ + v(ζ, ζ̄, Y, µ)− Y ′g(µ)ζkζ̄` + G̃4

where
g(µ) = [S ′(µ)λkλ̄` − λI]r(µ), λ = λ(µ)

and I is the identity matrix. Since λ(0) is on the unit circle and from (2.3) the eigenvalues
of S ′(0) are inside the unit circle, we see that r(µ) may be determined for µ sufficiently
small such that the term ζkζ̄` is removed from v. The mapping now has the form

ζ1 = λ(µ)ζ + b(µ)|ζ|2ζ +H4. (2.10)

The second equation of (2.4) may be written

Y1 = S(µ)Y + s(ζ, ζ̄, µ) +H3 (2.11)

where s is quadratic in ζ and ζ̄. The transformation

Y = X + r(µ)ζkζ̄`, k + ` = 2

reduces (2.11) to
X1 = S(µ)X + s(ζ, ζ̄, µ)− g(µ)ζkζ̄` + H̃3

where
g(µ) = [λkλ̄`I − S(µ)]r(µ), λ = λ(µ).

Just as before r(µ) may be determined for µ sufficiently small. Thus the mapping has the
form (2.10) together with

X1 = S(µ)X + V3.

Using λ(µ) = e2πα(µ), (2.10) may be written

ζ1 = e2πα(µ)[1 + β(µ)|ζ|2]ζ +H4

= e2πα(µ)+β(µ)|ζ|2ζ + H̃4

with β = b/λ. All the previous transformations may be combined into one;
z = ζ + . . . , Y = X + . . . where the dots represent polynomials in ζ, ζ̄, X without constant
and linear terms. It is one-to-one in a neighborhood |ζ|2 + |X|2 ≤ 2c. The transformation
ζ = cw, X = cW then gives the desired results.

4. Existence of an Invariant Curve
Having the mapping in the form (2.5) we may now establish the existence of an invariant
curve and hence, according to the discussion of Section 2, an invariant torus of the
differential equation (2.1).

Theorem 2. In (2.4) assume

1. λ4(0) 6= 1, λ3(0) 6= 1 (non-resonance)

2. λ(µ), S(µ), U, V ∈ C`(z, z̄, Y, µ) for ` an integer ≥ 5, |µ| ≤ µ∗, |z|2 + |Y |2 ≤ 2 and
assume S(µ) satisfies (2.3).
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In (2.5) assume

3. A = 2πRe α′(0) > 0, B = Re β(0) < 0.

Let r, 1 ≤ r ≤ ` be a positive integer. Then there exists µr ≤ µ∗ such that for 0 ≤ µ < µr,
(2.4) has an asymptotically stable invariant curve

z = a0
√
µeiθ + µf(θ, µ)eiθ

Y = µg(θ, µ)
(2.12)

where a0 =
√
−A/B . f and g are defined for all θ and 0 < µ < µr, have period 2π in θ,

f, g ∈ Cr−1(θ) ∩ Lipr−1(θ) ∩ C(µ)

and
|f |r−1, |g|r−1 ≤ c̃(r)

where c̃(r) is a constant which depends only on r and differentiation is with respect to θ
only. In general µr → 0 as r increases. µr depends on the coefficients of terms of degree
≤ 3 in(2.4), i.e., on terms of degree ≤ 3 in the expansion of (2.1) about ψ. µr also depends
on the constant M0 defined after (2.1).

Proof. In (2.5) we assume c to be fixed such that the transformation is one-to-one for
|w|2 + |W |2 ≤ 2. Note that c depends only on the coefficients of terms of degree ≤ 3 in
(2.5).
We restrict attention to a neighborhood,

w = az, W = a2Y (2.13)

where |z|2 + |Y |2 ≤ 2 and 0 ≤ a ≤ 1. Then (2.5) becomes

z1 = e2πα(µ)+a2c2β(µ)|z|2z + f1(z, z̄, Y, a, µ)

Y1 = S(µ)Y + f2(z, z̄, Y, a, µ)

and
|f1|r ≤ c(r)a3, |f2|r ≤ c(r)a

where differentiation is with respect to z, z̄ and Y . Note that the subscripts on the
functions are used simply for identification and have nothing to do with “weight” as they
did in the previous theorem.

Expanding α, β, and S, we obtain

z1 = exp[2πα(0) + µ2πα′(0) + a2c2β(0)|z|2]z + f3(z, z̄, Y, a, µ)

Y1 = S(0)Y + f4(z, z̄, Y, a, µ)

where
|f3|r ≤ c(r)(µ2 + a2µ+ a3), |f4|r ≤ c(r)(a+ µ).
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Letting
S(0) = S, 2πα(0) = iτ

2πα′(0) = A+ iÃ, β(0) = B + iB̃

and choosing

a =

√
−Aµ
c2B

, 0 ≤ µ < µ0 = min

(
µ∗,

c2B

−A

)
we obtain

z1 = exp[i(τ + µφ) + µA(1− |z|2)]z + f5(z, z̄, Y, µ)

Y1 = SY + f6(z, z̄, Y, µ)
(2.14)

where

φ = Ã− AB̃

B
|z|2

and
|f5|r ≤ c(r)µ

3
2 , |f6|r ≤ c(r)µ

1
2 .

The unperturbed mapping (f5, f6 ≡ 0) has an invariant curve |z| = 1, Y ≡ 0. We introduce
coordinates in a small toriod (see Fig. 6) surrounding this curve.

z = (1 + ρ)eiθ, |ρ|2 + |Y |2 ≤ 1

4
. (2.15)

The first equation of (2.14) becomes

ρ1 = (1− 2µA)ρ− 3µAρ2 − µAρ3 + f7(ρ, θ, Y, µ)

θ1 = θ + τ + µ

[
Ã− AB̃

B
(1 + ρ)2

]
+ f8(ρ, θ, Y, µ)

where
|f7|r, |f8|r ≤ c(r)µ

3
2 .

Letting ρ = µ
1
2u, Y = µ

1
2v, we finally obtain (2.16)

u1 = (1− 2µA)u + µ[g(θ) + G̃(θ, u, v, µ)]

θ1 = θ + τ + µ[f0 + F̃ (θ, u, v, µ)]

v1 = Sv + h(θ) + H̃(θ, u, v, µ)

(2.17)

where f0 is a constant, all functions have period 2π in θ and

|g|r, |h|r ≤ ĉ(r); |G̃|r, |H̃|r, |F̃ |r ≤ c̃(r,K)µ
1
2 (2.18)

for

|u|2 + |v|2 ≤ K2, 0 ≤ µ ≤ 1

4K2
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where differentiation is with respect to all variables except µ. ĉ and c̃ are constants which
depend only on the arguments shown. See Fig. 7 for a description of the toroidal
neighborhood in the W, w coordinates. Finding an invariant curve u = u(θ, µ), v = v(θ, µ)
of (2.17) is equivalent to solving the functional equation

u(θ1)− (1− 2µA)u(θ) = µG(θ, u, v, µ)

v(θ1)− Sv(θ) = H(θ, u, v, µ)

θ1 = θ + τ + µF (θ, u, v, µ)

(2.19)
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where F = f0 + F̃ , f0 a constant, G = g(θ) + G̃ and H = h(θ) + H̃ satisfy (2.18). Theorem
3 which follows guarantees the existence of a unique solution u = u(θ, µ), v = v(θ, µ) of
(2.19) satisfying all our requirements. The form (2.12) is obtained by applying the
transformations (2.16), (2.15), (2.13) and finally, the transformation of Theorem 1.

We now prove the stability of the invariant curve. If u(θ, µ), v(θ, µ) is the solution of (2.19)
for 0 < µ < µ̄r, let u = u(θ, µ) + δu, v = v(θ, µ) + δv in (2.17) to obtain the nonlinear
variational mapping

δu1 = (1− 2µA)δu+ µ(Gu − u′Fu)δu+ µ(Gv − u′Fv)δv

δv1 = Sδv + (Hu − µv′Fu)δu+ (Hv − µv′Fv)δv

where prime is d/dθ and Fu etc. are evaluated at u(θ, µ) + εδu, v(θ, µ) + εδv, 0 < ε < 1.
From (2.18) we see that the derivatives of F,G, and H with respect to u and v are ≤
(constant) µ

1
2 uniformly in a small tube R : |δu|2 + |δv|2 ≤ constant. Hence in R for µ

sufficiently small, 0 < µ < µr ≤ µ̄r, the above mapping is a contraction. This completes the
proof of the theorem.

5. Solution of Functional Equation
The above stability argument is based on the principle of contraction, i.e., the eigenvalues
of the linear part of the mapping are less than unity in modulus. This same principle will
now be utilized to prove existence of a solution of equation (2.19).

Theorem 3. In (2.19) assume

1. A > 0, |Sv| ≤ σ0|v|, 0 < σ0 < 1 σ0 constant

2. F,G,H ∈ Cr(θ, u, v) ∩ C(µ), r ≥ 1,

for 0 ≤ µ < µ0 and |u|2 + |v|2 ≤ K2, K sufficiently large and assume these functions satisfy
(2.18) and have period 2π in θ.

Then there exists µr ≤ µ0 such that for 0 < µ < µr (2.19) has a unique solution
u(θ, µ), v(θ, µ) having period 2π in θ.

u, v ∈ Cr−1(θ) ∩ Lipr−1(θ) ∩ c(µ)

and |u|r−1, |v|r−1 ≤ K uniformly in µ where differentiation is with respect to θ only. µr
depends on A, σ0, r and the constants ĉ and c̃ in (2.18). In general, µr → 0 as r increases.

Proof. Define b = min(2A, 1− σ0). Then 0 < b < 1. Also define

K = b−r−1c0(r) ĉ(r)2
δ(r+1)+3

where c0(r) and δ are defined in Lemma 2 2 and ĉ(r) comes from (2.18). We will construct

successive approximations un and vn with u0 ≡ 0, v0 ≡ 0. For convenience let wn =
(
un
vn

)
.

As an induction assumption suppose wn−1 satisfies

wn−1 ∈ Cr(θ) ∩ C(µ), 0 < µ < µ0. (2.20)

2Lemmas 1, 2 and 3 are given later
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|wn−1|r < K (2.21)

Inserting this approximation in (2.19) we obtain

u(θ1) − (1− 2µA)u(θ) = µGn(θ, µ)

v(θ1) − Sv(θ) = Hn(θ, µ)
(2.22)

θ1 = θ + τ + µFn(θ, µ)

to be solved for wn(θ, µ), where

Fn(θ, µ) = F (θ, wn−1(θ, µ), µ) (2.23)

and so on. We now verify the conditions of Lemma 1. We have Fn, Gn, Hn ∈ Cr(θ) ∩ C(µ)
for 0 < µ < µ′0 = min(µ0, 1/4K

2). Also if we define m = infθ,µ Fnθ we have, using (2.18),

b+ rm ≥ b− crµ 1
2 > b/2 for µ small, 0 < µ < µ′ ≤ µ′0, where c depends on K and c̃(r,K).

Unless F ≡ 0 we see that µ′ → 0 as r increases. By Lemma 1, (2.22) has a solution
wn(θ, µ) which satisfies (2.20) for 0 < µ < µ

′′ ≤ µ′. To verify (2.21) for wn define

Qn =
(
Gn
Hn

)
and apply Lemma 2:

|wn|r ≤
c0(r)|Qn|r[1 + |Fnθ |r−1]

δ(r)

(b+ rm)r+1
.

From (2.18) we have

|Fnθ |r−1 ≤ c1µ
1
2 < 1

|Qn|r ≤ 2ĉ(r) + c1µ
1
2 < 4ĉ(r)

for µ small, 0 < µ < µ̃ < µ
′′
. Thus

|wn|r < (2/b)r+14ĉ(r)c0(r)2
δ(r) = K.

Repeating this procedure we generate a sequence {wn} which satisfies (2.20) and (2.21) for
0 < µ < µ̃.

To show convergence define δun+1(θ) = un+1(θ, µ)− un(θ, µ), δGn+1 = Gn+1 −Gn and so
on. Then from (2.22)

δun+1(θ1)− (1− 2µA)δn+1u(θ) = µ[δGn+1 − u′nδFn+1]

δvn+1(θ1)− Sδvn+1(θ) = δHn+1 − v′nδFn+1.

θ1 = θ + τ + µFn+1(θ, µ)

Defining Qn as before, we have from the first estimate of Lemma 2

|δwn+1|0 ≤
2

b
{|Qn+1|0 + |wn|1 |δFn+1|0}.
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Using (2.21), (2.23) and (2.18) we have

|δwn+1|0 ≤ c̄µ
1
2 |δwn|0 ≤

1

2
|δwn|0

for µ sufficiently small, 0 < µ < µ̄ ≤ µ̃, i.e., uniform convergence of the wn. For the θ
derivative w

(λ)
n , 0 ≤ λ ≤ r − 1, we have from Lemma 3 (with m = 1, x1 = θ, ` = r) and

(2.21)

|w(λ)
n+p − w(λ)

n |0 ≤ 2K c(λ, r)|wn+p − wn|1−(x/r)
0 .

Hence {wn} converges to a solution w of (2.19) and w(θ, µ) ∈ Cr−1(θ) ∩ C(µ). The
Lipschitz condition follows from passing to the limit in

|w(λ)
n (θ′, µ)− w(λ)

n (θ, µ)| ≤ |wn|λ+1|θ′ − θ| ≤ K|θ′ − θ|.

Uniqueness follows by applying the convergence argument to the sequence
{w1, w2, w1, w2, . . .} where w1 and w2 are two supposed solutions. Finally we note that
|w|r−1 ≤ K. Thus the theorem is proved with µr = µ̄.

Lemma 1. (Solution of Linear Functional Equation)
Consider the equation

u(θ1) − (1− 2µA)u(θ) = µG(θ)

v(θ1) − Sv(θ) = H(θ)
(2.25)

θ1 = θ + τ + µF (θ, µ) (2.26)

where τ is constant, 0 < µ < µ′, A > 0 and |Sv| ≤ σ0|v| for some σ0, 0 < σ0 < 1. Define
b = min(2A, 1− σ0) and m = infθ,µ Fθ. Assume

1. b+ rm > 0 for some integer r ≥ 0

2. F,G,H ∈ Cr(θ) ∩ C(µ) and have period 2π in θ.

Then for

0 < µ < µ
′′

= min

[
1

2A
,

1

|m|
, µ′, 1

]
(2.25-6) has a solution u(θ, µ), v(θ, µ) ∈ Cr(θ) ∩ C(µ) having period 2π in θ.

Remark. Since F is periodic in θ, m will be ≤ 0 and hence if 1 is true for some integer
r = r0 then it is true for any smaller integer r < r0.

Proof. Each equation in (24) has the form

Y (θ1)−D(µ)Y (θ) = P (θ, µ) (2.27)

with
|D(µ)Y | ≤ (1− µb)|Y | (2.28)

12



where D(µ) represents either S(µ) or 1− 2µA. Let I be any closed subinterval of (0, µ
′′
).

We may solve (2.26) for the negative iterates θ−1, θ−2, . . . where
θ−n+1 = θ−n + τ + µF (θ−n, µ) since∣∣∣∣dθ1

dθ

∣∣∣∣ ≥ 1 + µm > 0 for µ ∈ I.

We allow D to depend on θ also and write

Y (θ)−D(θ−1, µ)Y (θ−1) = P (θ−1, µ)

D(θ−1, µ)Y (θ−1)−D(θ−1, µ)D(θ−2, µ)Y (θ−2) = D(θ−1, µ)P (θ−2, µ)
...

Adding and passing to the limit

Y (θ, µ) =
∞∑
j=1

j−1∏
k=1

D(θ−k, µ)P (θ−j, µ)

where
∏0

k=1 ≡ 1. From (2.28) we see that the series converges uniformly for all θ and for
µ ∈ I. If r = 0 we are finished. If r = 1 we differentiate term by term using

d

dθ
θ−j =

dθ−j
dθ−j+1

. . .
dθ−1

dθ

and ∣∣∣∣ ddθθ−j
∣∣∣∣ ≤ ( 1

1 + µFθ

)j
.

The differentiated series converges uniformly for the same values of θ and µ since for
|y| = 1,

|D(µ)y|
1 + µFθ

≤ 1− µb
1 + µm

≤ c < 1 (2.29)

where c depends only on I, b and m. Hence Y (θ, µ) ∈ C1(θ) ∩ C(µ). If r > 1 assume for
s ≤ r that Y ∈ Cs−1(θ) ∩ C(µ). Then differentiate (2.27) s− 1 times with respect to θ

Y (s−1)(θ1)−
D(µ)Y (s−1)(θ)

(1 + µFθ)s−1
= P̃ (θ, µ) (2.30)

where P̃ contains derivatives Y (λ), 0 ≤ λ ≤ s− 2 considered as known functions. Thus
P̃ ∈ C1(θ) ∩ C(µ). We now consider this as an equation for Y (s−1) and repeat the above
procedure with D(µ)[1 + µFθ]

1−s in place of D(µ). Using the fact that for
x > −1, (1 + x)s ≥ 1 + sx we see that the corresponding condition (2.29) is

|D(µ)y|
[1 + µFθ]s

≤ 1− µb
1 + µsm

≤ c1 < 1

hence the solution of (2.30) is in C1(θ) ∩ C(µ), i.e.,

Y (θ, µ) ∈ Cr(θ) ∩ C(µ). Q.E.D.
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Lemma 2. “A-priori” Estimates. Consider equation (2.25-6) of Lemma 1 and assume
everything in the statement of that lemma. Letting Q =

(
G
H

)
we then have the following

estimates for the solution w =
(
u
v

)
of (2.25-6).

|w|0 ≤
2

b
|Q|0

|w|1 ≤
2|Q|1

(b+m)2

and in general for 1 ≤ s ≤ r, s an integer,

|w|s ≤
c0(s)|Q|s[1 + |Fθ|s−1]

δ(s)

(b+ sm)s+1

where, as before, m = infθ,µ Fθ. c0(s) is a constant which depends only on s, δ(1) = 0 and
δ(n+ 1) = δ(n) + n.

Proof. We will use the fact that for x > −1 and n ≥ 0 an integer

(1 + x)n ≥ 1 + nx. (2.30a)

From the first equation of (2.25)

|u(θ1)| ≤ (1− µb)|u|0 + µ|G|0

for all θ1 and in particular at the point where |u|0 is assumed. Thus |u|0 ≤ b−1|G|0.
Similarly for v

|v|0 ≤ (1− b)|v|0 + |H|0
and therefore |v|0 ≤ b−1|H|0. Adding we obtain the first estimate. For the second estimate
we differentiate to obtain

u(1)(θ1)(1 + µFθ)− (1− 2µA)u(1)(θ) = µGθ.

Noting the restrictions imposed on µ in Lemma 1,

(1 + µm)|u(1)|0 ≤ (1− µb)|u(1)|0 + µ|G|1

and similarly for v. Thus
|w(1)|0 ≤ 2(b+m)−1|Q|1.

Using b+m ≤ b < 1 we have |w|1 ≤
2|Q|1

(b+m)2
. To prove the general statement for s ≥ 2

assume it true for s− 1 and differentiate the first equation in (2.25) s times

u(s)(θ1)(1 + µFθ)
s − (1− 2µA)u(s)(θ) = µ[G(s) + gs]

where gs is a linear combination of terms of the form

u(p)

q∏
i=1

F (λi) (2.31)
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where 0 ≤ p, q ≤ s− 1 and 1 ≤ λi ≤ s.

At the point θ1 where |u(s)(θ1)| = |u(s)|0 we have, using (2.30a), 1 + µsm ≤ (1 + µFθ)
s and

therefore
|u(s)|0(1 + µsm) ≤ (1− µb)|u(s)|0 + µ[|G|s + |gs|0]

or

|u(s)|0 ≤
|Q|s + |gs|0
b+ sm

.

Using the estimate for s− 1 and the fact that b+ sm ≤ . . . ≤ b+m ≤ b ≤ 1, we obtain

|u(s)|0 ≤
c(s)|Q|s[1 + |Fθ|s−1]

δ(s)

(b+ sm)s+1
.

In estimating gs, since the maximum number of terms in the product in (2.31) is s− 1, we
choose δ(s) = δ(s− 1) + s− 1. Repeating this for the second equation in (2.25) and adding
we obtain the desired result. Q.E.D.

We now establish an inequality which is useful in proving the convergence of the derivatives
g

(λ)
n , 0 ≤ λ < l, of a sequence whenever the original sequence {gn} converges and the

sequence {g(l)
n } is uniformly bounded.

Lemma 3. Suppose f(x) = (f1, . . . , fn) ∈ C`(x) for all x = (x1, . . . , xm). Then for 0 ≤ λ < `

|Dλf |0 ≤ c(λ, `)|f |1−(λ/`)
0 |f |λ/``

for positive integers λ and `, where Dλ is any partial derivative of order λ. c depends on m
and n but not f .

Proof. We define the norm
[f ]r = sup

x,i
|Drfi|

where the supremum is taken over all rth order derivatives. We introduce the smoothing
operator (J. Moser [4])

TNf(x) =

∞∫
−∞

. . .

∞∫
−∞

KN(x− x′)f(x′)dx′1 . . . dx
′
m (2.33)

valid for any N > 0 and all x. The kernel is given by

KN(x) = NmK(Nx1) . . . K(Nxm)

where K(t) ∈ C∞ for all t and K(t) ≡ 0 for |t| > 1, and

∞∫
−∞

tk K(t)dt =

{
1 for k = 0
0, 0 < k < s
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with s an integer to be fixed later. K is constructed in [4] from a C∞ function φ. We
assume that the mode of construction as well as φ are fixed. Therefore K depends only on
t and s. For (2.33) the following inequalities can be verified for σ, s, r ≥ 0:

[TNf ]r+σ ≤ c1(σ, s)N
σ[f ]r (2.34)

[f − TNf ]r ≤ c2(s) N
−s[f ]r+s (2.35)

where c1 and c2 depend on m but not on N and f . Letting N = ([f ]`/[f ]0)
1/`, we use (2.35)

with r = λ, s = `− λ and (2.34) with r = 0, σ = λ to obtain

[f ]λ ≤ c̃(λ, `)[f ]
1−(λ/`)
0 [f ]

λ/`
` .

The final result follows using

c3(n)|Dpf |0 ≤ [f ]p ≤ |f |p
where c3 is a constant depending only on n. Q.E.D.

APPENDIX

The following material is taken from Chapter 1. (RJS 2008)

Notation: We now introduce some notation which will be used throughout the rest of our
work. For r a positive integer

F (x, y, µ) ∈ Cr(x, y) ∩ C(µ)

means that F has r derivatives with respect to x and y which are continuous in (x, y, µ).

F (x, y, µ) ∈ Cr(x, y) ∩ Lipr(x, y) ∩ C(µ)

means the same as above and the derivatives are Lipschitz continuous in x and y uniformly
in µ.

For a vector f = (fi) define

|f | =

(∑
i

f 2
i

) 1
2

= (f, f)
1
2

We will consider functions f(x, µ) defined for x a vector in some domain G and µ a small
parameter. For r ≥ 0 an integer define the norm

|f |r = max
0≤ρ≤r

sup
x∈G
|Dρf |

where Dρ is any ρth order derivative of f with respect to the components xi of x. Unless
otherwise stated, differentiation will never be performed with respect to µ.

For two real vectors u = (u1, . . . , un) and v = (v1, . . . , vn), the symbol (u, v) will denote the
usual inner product

(u, v) =
n∑
k=1

ukvk.
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