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We give a brief introduction to re-publication of Chapter 2 of the author’s 1964 Dissertation.
The result has come to be known as the Neimark-Sacker bifurcation theorem. Some of the
applications of the theorem are cited and a brief overview of the reduction of the mapping
to normal form is given in 3-dimensions. By introducing weighted monomials the reduction
method is carried out without the use of the Center Manifold theorem which was not known
to the author and was published the same year as the dissertation. The first detailed proof of
the theorem is carried out in the above cited Chapter 2 and is contained in the companion
article to follow this one.
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1. Introduction

The article which follows this one is a re-publication of Chapter 2 of the author’s
1964 Thesis and bears the same title as the Thesis. The result has come to be
known, due in great measure to the book of Yuri Kuznetsov [16], as the Neimark-
Sacker bifurcation theorem.

The Theorem has found its way into many branches of Science, e.g. Fluids Me-
chanics [18, 21, 30], Mathematical Biology [15, 36], Cycling in Genetics [28], Epi-
demiology [4], Neural Networks [9, 33, 38], Economics [1, 6, 7], Computational
Methods [20, 35], Mechanical Engineering [29, 32], Chaos and Time Series Analy-
sis [31], Habit Formation and Addiction [5], Decoding Algorithms [34] to name a
few.

Along the lines of an earlier result of Andronov [2] for ordinary differential equa-
tions, Neimark [22] conjectured that an invariant curve would bifurcate from a
fixed point of a mapping provided a certain non-linear term has the correct sign.
Later the author [25] independently stated and proved the bifurcation theorem for
maps for the first time and discovered that certain low order “resonances”, referred
to as strong resonances by Iooss & Joseph [13, p.254] had to be avoided in order
to transform the mapping into normal form, i.e. the two complex eigenvalues of
the linearized map at the fixed point must avoid 3rd and 4th roots of unity as
they leave the unit circle. An additional condition is needed and, not unlike that
required by [2] and Hopf [11] says that initial states far from the fixed point are
mapped toward the fixed point. The result was later restated by [24]. Also see
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[3, 8, 10, 17, 19, 37]. Strictly speaking, Hopf did not “require” nonlinear damping
but rather stated an alternative [11, p. 5]; generically either the family of periodic
orbits exists and is asymptotically stable as the parameter µ increases through
zero or the family exists and is unstable as µ decreases through zero.

Once the mapping is in normal form the problem reduces to one of perturbation
of invariant manifolds. In the following article that problem is solved for the case
of an invariant circle. For ordinary differential equations it was extended in [26] to
invariant tori and in [27], it was extended to imbedded Riemann manifolds and the
Stable Manifold Theorem was established as a corollary.

The normal form is used in the proof of the theorem and is achieved by applying
near-identity transformations to remove all quadratic terms and all but one of
the cubic terms whose coefficient determines the nonlinear damping. As many
authors above observed, the nonlinear damping coefficient remains unchanged when
removing the other cubic terms. Thus in applying the theorem, removal of the
quadratic terms in the two variables in the plane spanned by the eigenvectors of
the eigenvalues causing the bifurcation, is all that is needed in order to verify the
nonlinear damping.

All the proofs known to the author invoke the Pliss Reduction Principle [23]
(aka the Center Manifold Theorem, Kelley [14]) and then proceed to attain the
normal form in R

2 with the usual near-identity transformations. In an application,
this involves two separate operations which may not be the most efficient way to
proceed. In the original work, the Center Manifold Theorem was not known to the
author so the entire reduction was done using near-identity transformations with
“weighted monomials”. There is, however, a formula for this nonlinear damping
term in Kuznetsov [16, p. 187] that combines these two steps. It was originally
derived by Iooss, et.al. [12]. For similar derivations see [8, 10, 19]. The procedure
is illustrated in the following brief overview (excerpt taken from [28]).

2. Brief Overview (in R
3)

We start with a C4 mapping x∗ = F (x, µ), µ ∈ (−1, 1) and assume there is a
smooth family of fixed points x̂(µ) depending on the parameter µ. Assume further
that the spectrum of the linearized equation along the family lies inside the unit
circle S in the complex plane for µ ∈ (−1, 0) and a complex pair of eigenvalues
{λ(µ), λ̄(µ)} crosses S transversally as µ increases through 0. The remaining eigen-
value σ(µ) remains inside S. We can transform the family of fixed points to the
origin in R

3 and by linear transformation put the mapping into the form

y∗ =

<λ(µ) −=λ(µ) 0
=λ(µ) <λ(µ) 0

0 0 σ(µ)

 y + f(y, µ), y =
[
y1

y2

]
. (1)

Using the procedure introduced in [25] we define z = y1 + iy2 and W = y3. Then
the mapping takes the form

z∗ = λ(µ)z + P (z, z̄,W, µ) (2)

W ∗ = σ(µ)W +Q(z, z̄,W, µ),

where P and Q are functions in z, z̄ and W whose series expansions begin with
quadratic terms whereas P (0, 0, 0, µ) = Q(0, 0, 0, µ) = 0 identically for µ in some
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small neighborhood of zero. Since all the conditions for bifurcation are verified at
µ = 0 we shall suppress the µ dependence until it is actually needed. Thus we
consider

z∗ = λz + P (z, z̄,W ) (3)

W ∗ = σW +Q(z, z̄,W ),

and proceed to put this into the desired canonical form where the bifurcation
conditions can be verified.

The first step is to “remove”, from the first equation of (3), all the quadratic
terms of the form zkz̄l, k + l = 2 by means of the transformation

z = ζ + aζ2 + bζζ̄ + cζ̄2 ,

in a sufficiently small neighborhood of the origin. If λ3 6= 1, a, b and c can be
uniquely chosen so that in the new mapping

ζ∗ = λζ + . . . (4)

W ∗ = σW + . . . ,

the first equation is devoid of these specific quadratic terms.
The next step is to “remove” the same type quadratic terms from the second

equation of (4) by means of the transformation

W = Y + αζ2 + βζζ̄ + γζ̄2.

The fact that |σ| < 1 guarantees that α,β and γ can be uniquely chosen so that
in the new mapping

ζ∗ = λζ + . . . (5)

Y ∗ = σY + . . . ,

the second equation is devoid of these specific quadratic terms. The others can
stay.

In the proof of the bifurcation theorem it is assumed that λν 6= 1 for ν =
1, 2, 3, 4. The exclusion of the fourth roots of unity (together with |σ| < 1) is
needed to remove terms of the form

ζkζ̄ l, k + l = 3, k 6= 2; ζY and ζ̄Y (6)

from the first equation of (5) to obtain the canonical form

ζ∗ = λζ + δζ2ζ̄ + F4(ζ, ζ̄, Y ) (7)

Y ∗ = σY + F3(ζ, ζ̄, Y ),

where the Taylor expansion of Fj has no monomials of “weight” < j . The weight
τ of the monomial Y sζtζ̄u is defined to be τ = 2s + t + u. It is this unbalanced
scaling of the variables that allows us to avoid the center manifold theorem and
treat the problem by straightforward perturbation techniques.
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Upon close inspection of the transformations needed to eliminate the terms (6),
e.g,

ζ = w + αwkw̄l, ζ = w + γwY and ζ = w + γw̄Y,

it is easy to see that the coefficient δ in (7) is the same as the coefficient of the same
monomial in (5). Thus in the verification that a bifurcation happens (as opposed
to the proof of the bifurcation theorem) one may stop at (5) and read off the
coefficient δ in (7).

Continuing with (7) we rewrite

ζ∗ = λζ + bζ2ζ̄ + F4(ζ, ζ̄, Y ) (8)

= λ(1 + β|ζ|2)ζ + F4

= eαeβ|ζ|
2
ζ + F̂4

= eα(µ)+β(µ)|ζ|2ζ + F̂4(ζ, ζ̄, Y, µ)

= eα(0)+α′(0)µ+β(0)|ζ|2ζ + µ2F̂2 + µF̂3 + F̂4 (9)

Y ∗ = σ(µ)Y + F3(ζ, ζ̄, Y, µ),

where

α(µ) = lnλ(µ) = α(0) + α′(0)µ+ . . . and

β(0) = b(0)/λ(0).

In the last three equalities in (8) we have returned the µ dependence. Note, how-
ever, that the µ dependence in the F̂j comes about only through coefficients of
monomials of weight j and higher.

In the first approximation we drop the F terms and the mapping takes the form

ζ∗ = ζ exp [<α′(0)µ+ <β(0)|ζ|2] exp i[=α(0) + =β(0)|ζ|2] (10)

Y ∗ = σY.

It follows that this mapping has an invariant circle

ζ = a0
√
µ exp (iθ), 0 ≤ θ ≤ 2π (11)

Y = 0,

provided <α′(0) > 0 and <β(0) < 0 with a0 =
√
−<α′(0)/<β(0).

The task remaining is to prove the main theorem which is esentially a perturbation
theorem.

Theorem 2.1 : Assume that in the C4 system (1),

(1) |λ(0)| = 1, λ3(0) 6= 1, and λ4(0) 6= 1 (non resonance)
(2) <α′(0) > 0 where α(µ) = log λ(µ) (loss of stability)
(3) |σ(0)| < 1 (stability in “normal” direction) and
(4) In the normal form (9), <β(0) < 0 (nonlinear damping)

Then in a sufficiently small µ neighborhood, 0 < µ < µ∗, (9) has an asymptotically
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stable invariant curve parametrized by θ, 0 ≤ θ ≤ 2π

ζ = a0
√
µ exp (iθ) + µg(θ, µ) (12)

Y = µh(θ, µ),

where a0 =
√
−<α′(0)/<β(0).

The proof of this theorem will be carried out in the next article where the sig-
nificance of the “weighted monomials” will become apparent.
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