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In this article we present a new method for reconstructing three-dimengi®balimages with
cylindrical symmetry from their two-dimensional projections. The method is based on expanding
the projection in a basis set of functions that are analytical projections of known well-behaved
functions. The original 3D image can then be reconstructed as a linear combination of these
well-behaved functions, which have a Gaussian-like shape, with the same expansion coefficients as
the projection. In the process of finding the expansion coefficients, regularization is used to achieve
a more reliable reconstruction of noisy projections. The method is efficient and computationally
cheap and is particularly well suited for transforming projections obtained in photoion and
photoelectron imaging experiments. It can be used for any image with cylindrical symmetry,
requires minimal user’s input, and provides a reliable reconstruction in certain cases when the
commonly used Fourier—Hankel Abel transform method fails. 2@2 American Institute of
Physics. [DOI: 10.1063/1.1482156

I. INTRODUCTION In imaging experiments, the projectid®(x,z) is measured

_ _ _asa 2D arrap e R"*Nz with elements defined on an evenly
The expanding use of photoion and photoelectron IMaggpaced 2D grid X, 2)=(iA,jA) of sensorgor pixels with

ing in studies of molecular dynamics has brought into focuspe total numbeN, X N, usually ranging from 10to 1. In
the need for efficient, high-fidelity image reconstruction. this case

This need has increased recently owing to the improved reso-

lution achieved via velocity map imaging and event-counting ©rl(r,z)

and centroiding techniqués? Ideally, the image reconstruc- Pij :ZJ h(x=x;,z=z)dx dZJM mdr, 2

tion method should be able to reproduce the sharpest features

in the image, have a large dynamic range, and handle noisghereh(x,z) defines an instrumental function to be specified

well. In order to be used in routine laboratory applications, itlater.

is desirable that such a method be fast and general, requiring The quantity of interest is the imagér,z), which can in

minimal input from the experimenter. principle be obtained directly by evaluating the inverse Abel
Fortunately, in many applications of imaging, cylindrical transform®

symmetry exists with respect to the polarization vector of the 1 (= [dP(x,2)/dx]

excitation laser. This is the case when the kinetic energy of | 7)=— _f T T dx 3

the charged particles obtained in the acceleration stage is ™ Jr Vx2—r?

much greater than their photoejection energy. In such casesowever. using Eq(3) is numerically impractical as it has

the three-dlmensmn@D) |ma_ge,l_:I(r,z), IS a function of singularities and requires derivative estimation for a gener-
only two C(_)ordlnates na _Cylmdncal coordinate system. I‘etally noisy function defined on a grid. Although attempts to
P(x,2) define the 2D projection or(r,z) on the detec_:tor use Eq.(3) were madege.g., by fitting the experimental data
plane, .z), where thex axis is perpendicular to theaxis. at each slicez=const with analytical functions, and using

The two functions are then related by the Abel integral, Eq. (3) to find the inverse Abel transform with analytically

= r1(r,z) computed derivativeg ~® none of the proposed methods was
P(x,z)=2f dr. (1) successful in achieving high quality inversion, especially for
LA noisy projections.
Currently, the most commonly used method for calculat-
dElectronic mail: reisler@usc.edu ing the inverse Abel transform in charged particle imaging
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applications is the Fourier—Hankel technidd&his method method works well in situations that cannot be handled by
is based on a representation of the inverse Abel transf8ym the regular Fourier—Hankel method.
via the Hankel transform of the Fourier transform of the  The article is organized as follows. Section Il gives a
projection’® It is widely used for reconstruction of imaging general description of the method along with a description of
data, as it is fast and produces satisfactory results for higlthe specific basis set used in our work. Section Ill demon-
guality images with a small dynamic range. However, thestrates the performance of the new method and compares it
method magnifies experimental noise and also produces artvith the Fourier—Hankel method, for which two different
ficial structures when reconstructing images with high-codes were used: the first was developed by Strickland and
intensity sharp features. These artificial structures are depefshandlert® and the second is based on the algorithm given
dent on the particular fast Fourier transform and discretdy Whitaker in Ref. 1. We end by discussing in Sec. IV the
Hankel transform algorithms used and, thus, differ for differ-advantages of the BASEX method and some possible modi-
ent implementations of the Fourier—Hankel method. Furtherfications and extensions.
more, as demonstrated in Sec. lll, the artificial structures
extend through the entire reconstructed image, causing a re-
ductipn in resolution and in signal—to—noisg ratio. In fact, thgll_ DESCRIPTION OF THE METHOD
Fourier—Hankel method becomes practically unusable in
cases of excessively noisy images, or images with a larg8- BASEX: The basis set expansion method for an ill-
dynamic range. posed inverse problem

Recently, several methods have been developed in order Consider a set of 2D functions in the image space
to alleviate these problems and achieve reliable transformg+,(r,z)} (k=0,...K—1) to be specified later, and the cor-
tion of noisy experimental projectionsAlthough they work  responding transformed set of vectof§, e RN N2} (k
better than the Fourier—Hankel transform in many cases=0,...K—1) defined in the projection space. The two sets
they also have drawbacks. The back-projection method introare assumed to be related via Ef):
duced by Matsumi and co-workers employs filtering in the
frequency domain to reduce experimental ndis@his is Gki'zzf h(x—x ,z—z-)dxdsz ffk(T,Z)dr_ @
done at a cost of smoothing the data and, therefore, a poten- : ) X \r2—x2

tial loss of information. The back-projection procedure de-W furth that both set I-behaved and. i
veloped by Helm and co-workers is too complicated and € furthér assume fhat both sets are well-behaved and, in
articular, form good bases, so we can use the expansions:

time-consuming to be used in routine applications and reP

quires specific input parameters for each systef.The K-1

simplified “onion peeling” method does not handle well I(r,2)= > Cyf(r,2), 6)
noisy images; e.g., the noise in the reconstructed image in- k=0

creases progressively towards the cetftét. The iterative K-1

procedure of Vrakking does not have reconstruction artifacts, P;;= E CiGyij - (6)
but is slow'* k=0

In this article we describe a new image reconstructionin the matrix form
method that can serve as an alternative to the Fourier— P—CG e
Hankel transform method, but does not have its limitations. '
The method is efficient and computationally cheap and iswith the coefficients vecto€E=(Cg,...,Cx_1) and the basis
particularly well suited for transforming projections obtained transformation matriG=(G,,...,Gx_4)". Note that in gen-
in photoion and photoelectron imaging experiments. It careral, the total numbek, of basis functions may be greater or
be used for any image with cylindrical symmetry, requiressmaller than the total numbe, X N,, of pixels, which then
minimal user’s input, and provides a reliable reconstructiorresults in, respectively, an under- or overdetermined prob-
in certain cases when the Fourier—Hankel transform methotém. In such cases the inver€e ! does not exist. A solution
fails. of the corresponding least-squares problem can be obtained
The method is based on representing itmageas an by Tikhonov regularizatiod®
expansion in a well-behaved basis set in the inragspace, B -
and using Eq.(2) to generate the basis in the projection C=PG(GGT+a") ®)
space. The latter will be smooth because the forward Abelvherel is the identity matrix andy is a regularization pa-
integral(2), in contrast to the expression for the inverse Abelrameter. The regularization is used to improve the condition
transform(3), is a well-behaved operation. In order to avoid number of the matrbxGG' (i.e., the ratio of the highest and
any numerical instability, it is desirable to evaluate the translowest singular valugswhich may be ill-conditionedhave
forms analytically, which implies certain restrictions on the a large condition numbgror even singulatif K>N, X N,).
choice of the basis. We call this method the basis set expan- In principle, it would be most desirable to implement a
sion (BASEX) Abel transform method for image reconstruc- nonseparable 2D basis of si&e which would require inver-
tion. We show how by using a suitable basis set, we conversion of theK XK matrix GG'+g?l. Unfortunately, in the
the ill-posed inverse problem into a simple problem of find-present casK is too large(order of 16 to 1¢f) to be handled
ing expansion coefficients, a procedure that requires onlypumerically, unless a special basis optimized for particular
matrix multiplication. We also demonstrate that the newimages is used. However, the numerical burden can be alle-
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viated considerably by utilizing the separability of the —k=0
present problem, which allows the use of a direct-product mo- k=5
basis set of siz&, XK, 1.0 X . k=10
Ky—1 K,—1 Pu(1) :.: .'I’I
I(r2)= 2 X Cimpi(r)m(2), 9 081 ¥ ¥
k=0 m=0 ' : '
Ky—1 K,—1 0.6+ , : V!
Pij= > CkmXkiZmi - (10 ' Y
k=0 m=0 0.4 : ) I' )
In the matrix form C ! \
0.2 . lI . |I :
P=XTCz, (12) Do Co
H Oc T l: T .I ll I\ 1 T T ’I I\ l. T 'I T
with 144210 -8 6 4 2 0 2 4 8 10 12 14
r
= Tpy(r)
X -=2f h x—x)dxf dr, —k=0
S R e oo ke
12 e
ij:j h,(z—2z){m(2)dz. 8
A solution of Eq.(12) is given by 6. A "
C=APB, (13 ' '-‘ ‘.' !
with A=(XXT+g2)"*X and B=2"(zZT+q2)~%. Be- “ N Y
cause the matrices andB do not depend on the data matrix Ve .
P, they could be computed once and then restored from & 2+ ! ' :
disk whenever needed. The overall numerical cost of the ! /\ ' :
image reconstruction is, therefore, defined only by afewma- | __ .« /N~ .
trix multiplications. 44 12 10 8 6 -4 -2 2 4 6 8 10 12 14

Clearly, the two transformations in Egl3) are com-
pletely independent. The way the transformation alongzthe

X

FIG. 1. Examples of basis functiopg(r) (top panel and the correspond-

axis is implemented is not of crucial importance as its onlying projectionsy,(x) (bottom panelfor k=0, 5, and 10 andr=1.
purpose is to smooth the image and incorporate certain con-

straints, such as symmetiyr,z)=1(r,—2).

B. The choice of basis set

Any basisp,(r) would suffice as long as it can be ana-
lytically integrated[cf. Eqg. (12)] and is uniform, i.e., can
account for sharp features of the size of one pixel and is

smooth on a smaller scale. Our choice, which satisfies the¥

criteria, is

e
(0]

Xk(X)=20p(X)

<11

K2

1+IZ (xlo)~?
=1

(kK>+1—m)(m—1/2)

m=1

m

. (15

Figure 1 shows plots gé,(r) for k=0, 5, and 1Qupper

ane) and the corresponding projectiogg(x) (lower panel
r o=1. (Note that even thougp,(r) needs to be defined

for r=0, we show it in thd —co, +o0] range, as this function

o) =(elk3)<(r10)2e10*(k=0,.K,—1), (14

is also used to represent thandx dependenciesThe latter

are symmetric functionsy,(x)= xx(—X), which are also

where the parametar is of the order ofA, the distance

highly peaked with maxima at~ = ko . Sincep,(r) already

between the pixels. Furthermore, we #gt<(N,+1)/2 so includes some broadening, the use of an instrumental func-
the matrixXX" is well-conditioned, i.e., it has a small con- tion will hardly make a difference in the results. Therefore,
dition number.p,(r) has a maximum at=ko and is prac- for simplicity, we assumeh,(x)= 6(x), which gives Xy;
tically indistinguishable from a Gaussian function, i.e., = xk(X;)-
pk(r)%e—Z(rlo—k)2 for sufficiently largek. A set of such To reduce the number of adjustable parameters, the basis
functions constitutes a basis that fills the image space unim(2) along thez axis is chosen equivalent to that for the
formly. The integral over in Eq. (12) can be evaluated Vvariable, i.e., we us&,(z)=pm(z) with Zp=pn(zj) (M
analytically, leading to =0,...K,—1). Sincel(z2)=¢,(—2), this also incorporates
the symmetry constraint. K,=<(N,+1)/2, the matrix2Z"
X :f h (= X;) xi(X)dx is well-conditioned and has an additional smoothing effect.
ki x i/ Xk ' In our current application wittN,=N,=1001, we use two
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types of basis sets depending on the measured projeéiion: thetic image from its noise-free projectipcalculated by nu-
K,=K,=226, 0=2, q2=50, q5=0 and (ii) K,=K,=251, merical evaluation of the Abel integrél)], and comparing
o=1, ;=5, g5=0. (Note that the value;=50 is very the results with those obtained with the Fourier—Hankel
small compared to the average value of the matrix elemenigansform. The model image contains structures most com-
of XXT.) An_ efficient algorithm f_or the nu_merical evalugtion monly observed in velocity map imaging experiments. Some
of the functionspi(r) and x«(x) is given in the Appendix. ¢ these structures, such as high-intensity rings near the cen-
ter and narrow rings with very sharp edges superimposed on
a low-intensity broad feature in the central region, cause
A. Performance of the BASEX Abel-transform method problems when reconstructed with the Fourier—Hankel trans-
with synthetic images form. Also note that the narrow rings have different angular
The performance of the BASEX method with the basisdistributions, while the broad central feature is isotropic.
sets described above was first tested in reconstructing a syn- The mathematical expression for the model image is

IIl. RESULTS

I(R, 0) =200Q 7€ (R-10%4] gj? g+ 3¢l (R-19%/4] 1 5l (R-2024] 002 ) + 20(( el (R~ 702414 Dl (R-89%4] o2 g

+ el(R-100%4 5jp ) 1 5 2e~ L(R-149°4] gjrR g 4 gl (R-150714] 1 3el(R-159%/4] ¢ ) 4 20~ [(R-45%/3600 (1)

whereR is the distance from the center of the image @nsl 1 0 i i
the angle betweeR and the axis of symmetrivertical axis. P(v)= > (v, 2—) v sin( 2—) , (18
These coordinates are relatedta, such thar =R sin 6 and maxn=0 v v

z=Rcos6. Figures 2a) and 2Zb) show a 2D cut of the syn-

thetic image in two different brightness scales to emphasizayhere v=1,...p . and I(v,7n/2v) is calculated as a

respectively, the high- and low-intensity parts of the image.weighted average of four surrounding points on the image.
Figures 3a) and 3b) present 2D cuts of the recon- Additionally, in the BASEX method, the basis functions

structed images obtained by using the BASEX method andould be integrated analytically using Ed7), and therefore

the Fourier—Hankel transform, respectively. Figurés and  the speed distribution is given by tleactequation

3(d) show the same images with emphasized low-intensity

regions. As seen in Figs.(® and 3d), even in this noise- 1 Ko1Kl
free case, the Fourier—Hankel transform method produces P(v)= 2

! v)= vCmbPrmRmz+k2(v), 19
artificial structures, evident most prominently close to the @) P max kgo mEZO rPrnRime +i2(v) 9

center of the image. These structures, however, affect not
only the central part of the reconstructed image but ar . - L2
spread throughout the entire image area. The BASE hezrekzit],zn are kzthez xpansion cokeszlczlegztsbkm—{(k
method [Figs. 3a) and 3c)] does not generate artificial +m°) I1(K%) (m2) BHZa(1-)()™d7,  and
structures and treats successfully signals of both low an&n(v)=(€/ n)"w?"e"*". The coefficientsb,, are evaluated
high intensities. We have also used the BASEX method iiumerically. The two approaches were found to produce
reconstructing synthetic images with extremely high inten-Similar speed distributions, with the distribution obtained
sity at the center, a situation for which the regular Fourier-With Eq. (19) having a slightly better resolution.

Hankel transform fails completely. Even for this difficult ~ The lower panel of Fig. 4 shows the differences between

case, the new method produces high quality images. the speed distribution computed for the synthetic image and
A different perspective is shown in Fig. 4. The upperthose obtained from the two reconstructed images shown in
panel shows the generated speed distributions Fig. 3. The solid line shows the difference with the distribu-

tion obtained using the BASEX method, and the dotted line

is the corresponding difference for the Fourier—Hankel trans-
form method. The speed distribution obtained for the image

reconstructed using the BASEX method essentially coincides
with the one obtained directly from the synthetic image. The

speed distribution extracted using the Fourier—Hankel

i.e., the signal integrated over angle at each particular radiusiethod has a poorer resolution due to contributions from the
R. Here, Pma) 1 is the normalization constant, and the par-reconstruction artifacts. Since these artifacts have intensities
ticle speed is given by =kR (k is chosen to be unity for comparable to those of the broad central ring, the latter is
simplicity, so that(v,6) corresponds taR,6) as defined hard to identify.

above. Two different approaches were used in deriving the  The difference between the two methods is even more
speed distribution. In the first approach it was obtained bypronounced in the angular distributions, which are character-
using the approximate equation, ized by the anisotropy parametgrt’ given by

1 T
P(v)==— I(v,0)v?sin6de, (17

P max
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FIG. 3. (Color) (a) 2D cut of the image reconstructed from the projection of

the synthetic image shown in Fig. 2 by using the BASEX method and
; : plotted on the same scale as in Figa)2 (b) 2D cut of the image recon-

0 50 100 : structed using the Fourier—Hankel meth@kf. 15. (c) and (d) show the

same images as i@ and (b), respectively, but plotted on the scale of Fig.

FIG. 2. (Color) (a) A synthetic image plotted in false-color scgkhown 2(b).

with the corresponding numerical scaléh) Same image plotted on a dif-

ferent color scale that emphasizes the low-intensity parts. tection of C|(2 P4, photofragments obtained in the photodis-
sociation of the CHCI radical at 266 nnt® The recon-
1 structed image should exhibit a high-intensity narrow ring
P(0)x 7—[1+B-Py(coso)]. (200 with B=—1 located at a large distance from the center, fol-
lowed by additional, lower-intensity rings at larger radii.
As shown in Fig. 5, while the3(v) values extracted These rings correspond to dissociation of ground state and
from the image reconstructed using the BASEX method ar&ibrationally excited(“hot band”) CH,CI radicals. The ex-
identical to those of the synthetic image, the values obtaine@erimental image contains, however, additional ion signals
by using the Fourier—Hankel transform exhibit large devia-not related to the dissociation of G&I at 266 nm. These
tions, especially in regions where the signal intensity is lowsignals includeii) a bright central spot arising from CI at-
For example, while the broad feature underlying the middleoms with no translational energy produced by pyrolysis in
cluster of three sharp peaks hgs-=0, the Fourier—Hankel the radical source along with GBI; (ii) a broad distribution
method gives large negative values. of low-speed Cl atoms, which are likely produced by photo-
dissociation of species in the beam other than,ClH4 and
(iii) Cl atoms with a very broad speed distribution arising
from the photodissociation of CGI€l by the probe laser
The BASEX method was also applied to the reconstruc{235.34 nn). In addition to these background signals, the
tion of 3D images from experimentally obtained projectionsexperimental image, which is of low overall intensity, in-
that cover a large dynamic range and display different typesludes non-Abel-transformable statistical noise. In order to
and levels of noise. As input, we used projections obtained imbserve the signal of interest on top of the large background
our own experiments by monitoring photofragment ions, asignals, it is crucial that the reconstruction algorithm remains
well as those sent to us by other investigators. We had netable with respect to noise and achieves the highest resolu-
problem analyzing any Abel-transformable image that couldion in separating the contributions from the outer “hot
be inverted by another method, such as those described band” rings.
Sec. I. Figures 6a) and &b) show 2D cuts of the images recon-
Here we discuss two examples. The first is an imagestructed from the experimental projection using the BASEX
obtained by resonantly enhanced multiphoton ionization deand Fourier—Hankel methods, respectively, and Fig. 7 shows

B. Reconstruction of experimental images
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FIG. 6. 2D cuts of images reconstructed from an experimental projection
obtained by monitoring CHP4,) produced by 266 nm photodissociation of
CH,CI and detected at 235.34 nm by usif®) the BASEX (¢=1) and(b)

0.0 T T T

0 20 40 60 80 100 120 140 160 180 the Fourier—Hankel methotRef. 15. The intensity scale was chosen to
v, pixels allow observation of the faint outer rings.
AP(V‘))‘3°' the corrgspondin_g s_peed distribution_s. Evident_ly, the new
0.25- method is superior in terms of treating the noise and the
achievable resolutiofisee in particular the region of pixels
0.204 80-120.
0.154 As a second example, we show an experimental photo-
ion image(projection obtained by monitoring O ions from
0109 the dissociative photoionization of,QFig. 8a)].1° This pro-
0.054 jection was obtained by using the event-counting technique.
0,001 In this method, detection of a single electron or ion followed
‘ by thresholdingdisregarding signals with intensities smaller
-0.054 than a specified threshold va)uend centroidingfinding the
010 ' . exact position of the “center of mass” of the spot from each

0 20 40 60 80 100 120 140 160 180 electron or ion gives increased resolution and eliminates
v, pixels noise produced by the data acquisition system. However, be-

FIG. 4. T ' Soeed distributi btained from th thetic | cause of the necessity to work at low signal levels, such
. 4. Top panel: Speed distributions obtained from the synthetic imag . L . .
(solid line), the image reconstructed using the BASEX mett{ddshed ‘?mages possess a high level of statistical noise, i.e., they can

line), and the Fourier—Hankel methedotted lind. Notice that the solid and ~have large point-to-point fluctuations in the signal. This is in
dashed curves coincide. Bottom panel: The differences between the speedntrast with multiple-ion detection schemes, which usually

distributions obtained for the image reconstructed using the BASEX memo‘f)roduce smooth and continuous images. In order to recon-
and the synthetic image are shown by the solid line, and the correspondin

differences between the Fourier—Hankel method and the synthetic image ageIrUCt SUCh_ Images, some type of smoothing _Of the experi-
shown by the dotted line. mental projection is usually needéelg., broadening of each

spot of the projection by a Gaussian function prior to recon-
struction, combining several adjacent pixels, )etchis

smoothing procedure may result in some distortion of the
true image. It is noteworthy, therefore, that the BASEX
method can handle images with large point-to-point fluctua-

1.0
Pv)

0.8+

e

W~

~o-,

4o 60 80 100 120 140 160 180 0.0
v, pixels 0o 20 4

60 80 100 120 140 160 180

v, pixels
FIG. 5. Anisotropy parametep(v), distributions for the synthetic image
(solid line), image reconstructed using the BASEX methedlid squares;  FIG. 7. Speed distributions obtained from the 4Bl¢,;) images shown in
indistinguishable from the synthetic image valyesd image reconstructed Fig. 6 reconstructed using the BASEX0lid line) and Fourier—Hankeldot-
using the Fourier—Hankel methgdpen circles connected by line ted line methods.
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FIG. 9. Speed distributions obtained from the images shown in Fig. 8, re-
constructed by using the BASEolid line) and the Fourier—Hanketot-

ted line method. The inset demonstrates the presence of low-intensity peaks
(e.g., at pixels 95, 115, 190, and 22Which are revealed by the BASEX
method, but are almost totally obscured by the noise generated in the
Fourier—Hankel method.

tions, the BASEX method reconstructs an essentially exact
and artifact-free image. This is in contrast to methods such as
Fourier—Hankel, “onion peeling,” or iteration, which can
converge to the exact solution only in the case of a continu-
FIG. 8. (Color) (a) Experimental imagéprojection obtained by monitoring  ous projection. In order to reconstruct the distribution from a
0" ffotnr: the diISSF’Cia“VG F:,hOt‘:iO”r:Z?“O“ ?le‘i’“ugipggtontatfzf-‘?i nm  discrete projection, these methods use interpolation proce-
lrJesér(])?]strﬁc?endgferoI%ntﬁzuggggrir(?ﬁ(;nrt‘gu;’ﬁjéct?érf L)Jsingct%eoBAS?EIX iﬁlsthoodures’ thereby introducing addItIOI.’Ia| errors Or, assumptions.
(o=2), without prior smoothing of the datéc) 2D cut of the image recon- Second, the BASEX method is computationally cheap,
structed using the Fourier—Hankel meth@&ef. 1) after smoothing the ex-  as it requires only matrix multiplications, while the basis sets
perimental data by combining every four pixels of the image into one pixel.5ra generated and stored on a disk prior to image reconstruc-
tion. More precisely, for each basis set, the corresponding
tions without prior smoothing, and still exhibit very good matrix needs to be calculated only once and stored in a sepa-
resolution. rate file, which is called when reconstructing the experimen-
Shown in Fig. 8b) is a 2D cut of the photoion image tal images. For example, on a computer with a Pentium II-
reconstructed from the projection in Fig(a8 by using the 300 MHz processor, reconstruction of the images with basis
BASEX method without prior smoothing of the data. In or- sets of 226226 or 251 251 functions takes 1 to 2 min,
der to obtain a reliable reconstruction of this image with thewith no effort to optimize the time performance.
Fourier—Hankel method, it was necessary to decrease the Third, since the basis set used in the current work con-
point-to-point fluctuations by combining every four adjacentsists of functions that are localized and cover the space uni-
pixels into one pixelthereby reducing the size of the image formly (see Sec. 11B and Fig.)1the reconstruction proce-
by a factor of 2 in each dimensipi A 2D cut of the image  dure does not accumulate noise in any specific region of the
reconstructed in this way is presented in Fi¢c)8lt is ob-  reconstructed image. Noise in the image appears only when
vious that the reconstruction quality obtained by using thet exists in the projection; it is not generated by the inversion
BASEX method is better. Figure 9 shows the correspondingrocedure. However, it is important to realize that each point
speed distributions, which demonstrate that the BASEXof the original 3D image, located at a distangefrom the
method is capable of reconstructing weak features adjacesiis of cylindrical symmetry, contributes only to points with
to intense ones$see the ins¢t These weak features are par- x<r in the projectior{this can be easily seen from Ed)].
tially or totally obscured when using the Fourier—HankelThus the projection contains less information about regions
method because of the excessive reconstruction artifacts. of the image closer to the symmetry axis compared to those
farther from the axis. In particular, only the=0 points in
IV. DISCUSSION the projection contain information about the center-ling (
=0) of the original image, while information about points
with ro=r . iS contained in every point of the projection.
The approach presented in this article features severd&ince the noise is usually distributed evenly throughout the
advantages over the other methods commonly used for reneasured projection, the signal-to-noise ratio in the recon-
construction of 3D, cylindrically symmetric images from structed image decreases towards the centerline. This is es-
their projections. First, for synthesized noise-free projecpecially noticeable in images reconstructed with the Fourier—

———
1] 00

A. Advantages of the BASEX method
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Hankel method. Employing Tikhonov regularization in the A.P. Sloan Research Fellow. H.R. would like to thank the
BASEX method enables us to reduce significantly this cenbDepartments of Chemistry and Physics at the University of
terline noise without affecting the reconstruction quality.  California, Irvine, and in particular Professor Wilson Ho, for
Fourth, the resolution in the reconstructed image is sutheir hospitality during her sabbatical leave.
perior to that obtained with the Fourier—Hankel method, par-
ticularly for noisy projections. The reason is that the basis
functions used are sufficiently narrow, and thus are capabIéPPENDIX
of reproducing even the sharpest features obtained with cur- |n the numerical evaluation g (r) and y,(x), prob-
rent imaging technology. Note, however, that since th@ems may be encountered when dealing simultaneously with
Gaussian basis set was specifically constructed for imagesktremely large and small numbers. In addition, the calcula-
that have a well-defined center, centering the image is crucialon of y,(x) can be time-consuming since, according to Eq.
for obtaining maximum resolution; e.g., a deviation of even(15), the number of terms in the summation increasek?as
one pixel from the center causes a decrease in resolution. Below we describe a procedure to overcome these difficul-
fact, this feature can be used to find the exact center of thges.

image. Let us define the function
Fifth, the image reconstructed using the BASEX method n
has an exact analytical expression and thus allows an ana- Rn(u)=<g) u2ne—v? (A1)
lytical calculation of the speed distribution, which gives a n
better-resolved speed distribution than the one obtained from u2
the discrete image in other methods. This is achieved without = exp{ n—u+nin —) . (A2)
increasing the computation time. n
With this notationp,(r) =Ry2(r/ o). ExpressiorfA2) can be
B. Improvements and extensions used to evaluat®,(u) at anyu. Note that the argument of

the exponent is1—u?+nIn(u?n)<0 and is exactly zero at
u=+/n. Furthermore, to a very good approximatidg,(u)
*2(”*@2, which can be seen by expanding the logarithm
Taylor series around= /n:

The reconstruction algorithm described in this article is
flexible and allows modifications that can further improve its
performance in specific applications. The Gaussian basis sét®
used in the present work does not assume any special profit &

erties of the image, except the existence of cylindrical sym- u? u’—=n\ u®-n (u®’-n)?2 Uu?>-n
metry. It is thus most appropriate for general applications N[ —|=In| 1+ )* n o2 n
without requiring input from the user. However, for particu-

lar sets of problems, special types of basis sets containing (u—Vnm2(u+Vn?2 u2-n 2(u—+n)?
functions with properties resembling those of the recon- N 2n2 ~ T n :

structed images can be used without loss of fidelity. This can

reduce the number of basis functions needed to describe tH1€reforeRa(u) is essentially zero outside some small inter-
image and may improve the quality of the fit. val aroundu= \/n and needs to be computed only inside this

In addition, although Tikhonov regularization was found Interval. o
to provide considerable improvement in the quality of the The Abel transform oR,(u) is given by
reconstruction near the symmetry axis for all images pro- " g
cessed, other regularization techniq%ﬂeeay be found to be Xn(u)=2yn2 —R,_(u), (A3)
more efficient in treating noisy signals in specific cases. =0 ¥n—

The method has been used successfully by the authors {gith
analyze a wide variety of images, and the code and examples T
are available upon request. n= (e,

and
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