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Final state-selected spectra in unimolecular decomposition are obtained by a random matrix version
of Feshbach’s optical model. The number of final states which are independently coupled to the
molecular quasibound states is identified with the number of states at the dividing surface of
transition state theoryTST). The coupling of the transition state to the molecular complex is
modeled via a universal random matrix effective Hamiltonian which is characterized by its
resonance eigenstates and provides the correct average unimolecular decay rate. The transition from
nonoverlapping resonances which are associated with isolated Lorentzian spectral peaks, to
overlapping resonances, associated with more complex spectra, is characterized in terms of
deviations from ay?-like distribution of the resonance widths and the approach to a random
phase-distribution of the resonance scattering amplitudes. The evolution of the system from a tight
transition state to reaction products is treated explicitly as a scattering process where specific
dynamics can be incorporated. Comparisons with recently measured final state-selected spectra and
rotational distributions for the unimolecular reaction of Néhow that the present model provides

a useful new approach for understanding and interpreting experimental results which are dominated
by overlapping resonances. €95 American Institute of Physics.

I. INTRODUCTION <[‘>

g (=1 (1.1

Transition-state-based statistical theoriesy., RRKM

have been successful in describing the unimolecular readThese averages are with respect to a set of strongly mixed
tions of a large number of molecules, especially under conmetastable states in a relatively narrow energy region char-
ditions of extensive averaging, e.g., over initial reactanticterized by the density of molecular statesSimple esti-
states and final product states. In the last decade, however,Ttates of state densities and widths demonstrate that overlap-
has become possible to study unimolecular decomposition dfing resonances are prevalent under typical conditions
small molecules under conditions of monochromatic excitalréated by TST/RRKM, especially in bond fission reactions
tion and state-specific product detectfoffor small mol-  With loose transition states. For N@ne has[’)p~1-10 at

ecules, even when IVR is complete, averaging is intrinsicallyEXcesS energies betweenif and 2000]0?71'2” NCNO
less extensive and it is possible to observe, under favorab&€a’ threshold{I')~0.1 cm * and p~300/cm ~,” and thus

conditions, quantities for which only the average values havéwp%?’()' exhibiting even stronger overlap. For larger .mol-
heretofore been available. For example, the distribution O?CUIeS’ the resonances always overlap except at energies very

- _— near dissociation threshold.
state-specific decay rates about the statistical average has : . :
Until recently no clear experimental demonstration of

been observed experimentally for formaldehyde in the tun- : . : . _
overlapping resonances in unimolecular reactions existed,

neling regime and compareq_wnh the predlct|0r125 of a "aMbut in a series of experiments on the unimolecular reaction of
dom matrix model and transition state the@RST).

! L . expansion-cooled Nat excess energies from 0 to 3030
_ qu most dlssomatlng molecules a_bove the tunneling "®em™, it was observed that the spectral features obtained by
gime (i.e., when the excitation energy is well above the dis-qnitoring selected final states while scanning the photolysis
sociation threshold the coupling between the molecular gnergy are different not only in their intensity but also in line

complex and the continuum is strong and the density Ofhapes and positiotd=2° Such final state selected spectra,
strongly mixed molecular states is large, so that the unimoz|sq known as photofragment yiglBHOFRY) or photofrag-
lecular decay is characterized by overlapping resonancgent excitatiof PHOFEX spectra: provide a sensitive tool
states. These states are associated with complex energigs studying unimolecular decomposition and can reveal fea-
{E/—iI'/2} which are the eigenvalues of the time- tyres relating to resonance overlap and the nature of the tran-
independent Schdinger equation with outgoing wave sijtion state’® Reisler and co-workers suggested that the
boundary conditiongSiegert eigenvalugs The resonances  state-specific photofragment yield spectra are a manifestation
are overlapping when the average resonance w{blthis of the so called “Ericson fluctuations” in nuclear
larger than the average energy spacing between resonanaesctions’® Ericson proposed that in the case of overlapping
AE, i.e., resonances the cross sections into specific final states will
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fluctuate as a function of energy and these fluctuations wilkcription of the molecular complex with a reaction-specific
not diminish with increasing excess enefgyovided that the dynamical description of the propagation from the transition
density of states is not too highbut rather become more state to the products.
randomt? The general formulation of the TST-based optical model
The interpretation of the final-state selected spectraand its application to simulate final state-selected spectra is
however, is not always a simple task. When the couplindirst presented in Sec. Il. The special case of a “loose” tran-
between each metastable molecular state and the continuwsttion state(resembling product statess discussed in Sec.
into which it decays is weak, the spectra are well characterHl, and then applied to a triatomic molecule resembling the
ized by Lorentzian line shapes, unimolecular decay of NOnear dissociation threshold. In
particular, final state selected spectra are shown for varying
degrees of overlap and compared qualitatively with experi-
mental results. In Sec. IV, “tight” transition states are con-
sidered, and the specific case of a bond fission reaction of a
each corresponding to an exponentially decaying resonanggatomic molecule over a barrier is discussed in some detail.
(quasiboungi state. The energy of the quasibound st&ig, |justrative examples of final state distributions are given for
defines its spectral location along the energy axis, and thgis model system. Finally, in Sec. V we present concluding
width of the Lorentzian peak corresponds to the decay rate Gemarks regarding the generality of the results and their re-
that state, lationship to experimental observations.

k|:F|/ﬁ. (13)

2

) (1.2

P(E)=cons

E—E+il,/2

. . . Il. ATST-BASED RANDOM MATRIX OPTICAL MODEL
This clear and well established picture holds as long as the

resonances are isolatéor nonoverlappiny i.e., when A. General formalism

Within the Franck—Condon approximatidiq. (1.5)],
the nuclear wave function of the metastable excited molecule

When the resonances overlap, isolated Lorentzian peak§ initially localized in the bound region of the molecular
are not observed, and the Siegert eigenvalues are not relatgfPund state(the Franck—Condon regipnTherefore, it is
to the spectrum in a direct fashidhTherefore, a more de- Sufficient to evaluate the scattering wave functiah,E)
tailed analysis of the final state-selected spectra is needed MY in this region. A useful approach for this purpose is the
order to gain insight into the unimolecular decay mechanismf-€shbach—Ledin partitioning of Hilbert space into two
For typical optical excitation, the probability of observing a COmplementary subspaces spanned by two orthogonal pro-

final statej at energyE is given within the Franck—Condon €ction operatlgrs,P_ and Q (P+Q=I, PP=P, QQ=Q,
dipole approximation as PQ=QP=0).” Q is defined by a set of basis functions

which span the bound-state space, &hgrojects onto the
Py(E)=|u(Pol¢; ,E)|?, (1.5  dissociative continuum to which it is coupled and decays.
The projection 0f|1//]- ,E) onto theQ space is rigorously
whereE is the excess energy above the dissociation threshyiven in terms of a “Lippman—Schwinger” equation with an
old, |®y) is the nuclear ground state of the molecule, arid  effective Hamiltoniart3 i.e.,
the electronic transition dipole matrix elemeht; ,E) is an

(TYp<1. (1.4)

: ; 1
exact continuum eigenstate of the moleculaucleay CE)= HPli E 2.1
Hamiltonian whose asymptotic wave functiohE) repre- Qlv; ) E—H®Y(E) QHPIJ.E),
sents the free fragments. whereH is the full (nucleay Hamiltonian, andH®(E) is a

The purpose of the present work is to introduce a simpl&,on-HermitianQ-space operator, defined as
model based on a random matrix version of Feshbach’s op-

tical model® for simulating final state-selected spectra in ff :

. . . - H®(E)=QHQ+ lim QHP —————= PHQ.
unimolecular reactions in cases of both isolated and overlap- (E)=QHQ cs0 Q E+ie—PHP Q
ping resonances. Such a model is especially useful when (2.2)
accurate potential energy surfad®ES for the reaction are

unavailable and exact dynamical calculations are beyond [N order to simulate the final state-selected spectra we
reach. The random matrix version of Feshbach's opticaf'rSt adopt the standard random matrix representation of the

: ; H ,15,16 H
model, which will be described in detail here, was recentlyeffective Hamiltoniar. Assuming thatM molecular

shown to be consistent with TST in simulating correctly theStates{|m>}, in the Q space are strongly mixegrgodio,
average unimolecular decay rates in the regimes of isolate® ffective Hamiltonian matrix is given by

and overlapping resonances alieUnlike the TST decay N;
rate, the final state-selected spectra depend also on the evo- [H®"(E)],m = Emﬁm,m,—in (m[H[]j,E)
lution of the system beyond the transition state dividing sur- j=1

face towards the free products. We, therefore, modified the w(j EIH|m’) 2.3
standard optical model by introducing “dynamical” coupling ) ' '
matrix elements that explicitly account for that evolution. for mm’=1,... M. The E,, values are chosen from a
This mixed approach combines a universal statistical deWigner distribution of nearest neighbor level spacihgs,
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TSm - 2ias 2 Averaging T over the distribution of coupling matrix ele-
f(Sm) = 2052 e (S 4Sm"), (243 ments[Eq. (2.50] gives
where the spacings are defined®s=E,,— E,,_;. The av- (N)y=2ma"N;. (2.70

erage spacing is associated with the density of strongly \yhen the resonances overlap

¢ however, the average uni-
mixed molecular states

molecular decay rate is not related to the average resonance
1 width in such a simple fashion as in E@.6). In a recent
(Sm)=AE=—, (2.4b  papert* we have given a TST interpretation to the optical
P model which predicts quite accurately the act{ginulated
andW is the average energy range covered by theno-  decay rates of randomly chosen states inQhgpace for both

lecular states, isolated and overlapping resonances. Within this interpreta-
M tion, the number of states which are independently coupled
W= —=M(S,). (2.4¢  totheQ space is identified wittN, the number of energeti-
p

cally (classically accessible states of the activated complex
We denote byN; the number of final statef$j,E)} which are (the molecule with the reaction coordinate degree of freedom
energetically accessibl@e., the number of open channgls removed?®) at the transition state dividing surface. The effec-
and it is assumed in the present version of the random matritve Hamiltonian takes the forrtsee Ref. 13
model that all open channels are independently coupled to
the states in th€-space. The coupling matrix elements be-
tween each final state and the molecular states, i.e.
{(j,E|H|m)}, are taken to be real and energy independent,
which is not a severe approximation if the energy raWgs  and the TST expression for the decay rate associated with
sufficiently narrow. The effective Hamiltonian matrix can this effective Hamiltonian #§
therefore be written as

N
(H) mm' =EmOmm =172 VinVin n (2.9

n=1

N
Ni (krsn=5—=(P), (2.9a
. 2mph
(H) o = EmOma — 172 U Oy (2.5 P
j=1 where(P) is the average transmission probability per state at
: the dividing surface,
with
- 772(7'2 — — LT r
om;=(i,E/H|m). (2.5 (Py=1—e *mP=1—e 2mDIP/N, (2.9
Within the “ergodic” (complete IVR model, the coupling The TST-dividing surface is associated with the point of lo-
matrix elements are chosen from a Gaussi@rma) distri- cal minimum flux along the reaction coordinate, and the
bution with the standard deviatiomt and a mean value 0, number of states of the activated complé, is typically
such that smaller than the number of final states for a given total en-
) ergy, i.e.,
<Uj,mUj’,m’>: 5m,m’5j,j’0' , (2.50
N<N;, (2.10

where(--+) stands for the statistical averatfeOther choices
of the coupling matrix elements which avoid the completeequality maintaining in the limit of a “loose transition state,”
IVR assumption are also possite® but will not be con-  where the point of minimal flux is in the asymptotic region.
sidered here. The other limiting caseN<N; refers to a “tight transition
The effective Hamiltonian matrix is complex symmetric state” and is usually associated with a reaction batfier.

(non-Hermitian and therefore its eigenvalues are complex,  To maintain consistency with the TST result for the av-
{E,—iT'/2}. The corresponding eigenvectors are the resoerage decay rate, the standard effective Hamiltoriiaq.
nance states of the system. In the case of isolated resonand@s53] should be replaced by the TST-based effective Hamil-
(the weak coupling limito—0) these states characterize the tonian[Eq. (2.8)]. This can be done rigorously according to
unimolecular decay process in terms of Lorentzian spectradhe following derivation. Let us first introduce a set Nf
line shapes$Eq. (1.2)], and also provide the average unimo- activated complex state¢|n,E)}. Each state is associated

lecular decay ratek, via Eq.(1.3,*i.e. with a total energ\E, a set of good quantum numbens,for
— its “internal” degrees of freedoni.e., excluding the reaction
K= E ' (2.6) coordinate, and a free(separable motion towards the

fi “products” along the reaction coordinatgin,E)} are there-

fore the eigenstates of the full nuclear Hamiltonian at the
dividing surface, defined by a fixed value of the reaction
coordinate on the potential energy surface. Our derivation

wherel is the average resonance width for a given realiza
tion of the effective Hamiltonian matrix,

M 5 om M N starts with the asymptotic completeness assumption; i.e., we
=+ > Ii=—timHN]=— > > v .. assume that each final stajeE) is obtained asymptotically
M M M o j=1 from the time evolution of the set ™ intermediate states at

(2.73  the TST dividing surface. This formally reads
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N
lime EVA|j E)=1lim X a .(E)e M|nE). (2.11

t—oo t—o n=1

It is convenient to rewrite Eq(2.11) in terms of a Mdler
wave operatdf

N

i.E)=2 aj4(E)Q(E)|n.E), (2.123
n=1
where the Mtler operator is defined as
Q(E) = lime*iEVRg=iHUA, (2.12b

t—oo

Making use of Eq(2.12) for the final states, we can rewrite

the original effective Hamiltonian matripEq. (2.3)] as
[Heﬁ(E)]m,m’ = Em‘sm,m’ —im

X (m[HQ(E)|n,E)ay o(E)al,,(E)

x(n’,E|QTE)H|m"), (2.13

8877

Vinn=(mHQ(E)|n,E), (2.19

are assumed to be energy independent, real, and normally
distributed around 0 with a standard deviati@nWithin the
random matrix assumptions, E¢(R.18 is identical to Eq.
(2.5 with N; replaced byN. The physical basis for the
present assumption is that the molecular states are strongly
mixed (i.e., correspond to ergodic motion in the classical
limit) only from the reactant Franck—Condon region to the
transition state dividing surface.

B. Final state-selected spectra

An explicit expression for the final state-selected spectra
can be written in terms of the effective Hamiltonian matrix.
By using Eq.(2.1) and Eq.(2.123 in Eq. (1.5 for the final
state-selected probability, we obtain

Pi(E)=| u(®l(E—HIQHP

N
X 2, ajo(E)UE)|n,E)

n=1

(2.20

which can be simplified by assuming asymptotic completeWithin the finite basis set representation of the effective
ness for the final states; i.e., each intermediate state evolvétamiltonian matrix as given in Eq$2.8), (2.19, Eq. (2.20

asymptotically in time to the set i, final states
. Nj
lime MY, E)=1im X, b, ;(E)e EV4|j,E), (2.14
t—oo too)=1
or, in terms of the Mber operator

N;

In,Ey="2 b, ;(E)QN(E)|j,E). (2.15
j=1
Using Egs.(2.12, (2.15 one has
b j(E)={j,E|QE)|n,E)=a’(E). (2.16

Multipling Eq. (2.15 from the left by(n’,E| and using Eq.

(2.16), one obtains the isometry of the Mer operator, i.el?
Nj

S =2 by (E)b}, (E)=
j=1 i

Nj
afn(E)aj,n’(E),
1

(2.17

which, when used in Eq2.13, gives

N
[H(E) I = EmOmm —i 7 > (M[HQ(E)|n,E)
n=1

x(n,E|QT(E)H|m’). (2.18

The effective Hamiltonian in Eq2.18) is expressed in terms
of coupling matrix elements between the molecular states,
{Im)}, andN specific linear combinations of the final states,

each one given bf)(E)|n,E) for n=1,...N. The crucial

can be rewritten as

M M
P(E)=|pn> ®om> [(EI-HMH1] 0

m=1 m'=1

N 2

XE aj,n(E)Vm’,n ’
n=1

(2.29

where H*" is the effective Hamiltonian matrix, and
(=(d,|m)) is the projection of the initial state onto the mo-
lecular statém). Without loss of generality, we shall assume
that the molecular basis states are excited uniformly, such
that ®q o, = 1/\JM. As seen from Eq(2.21), P;(E) de-
pends on the random matrix elemefis,, .} for the cou-
pling between the molecular states and the activated com-
plex, and on “dynamical” matrix elementsa; ,(E)} for the
coupling between the activated complex and the dissociation
products. The present approach combines, therefore, a uni-
versal statistical description of the molecular system and a
molecule-specific dynamical description of the propagation
from the transition state to the products. We shall come to
this point again later.

It is useful to rewrite Eq(2.21) in terms of the reso-
nance eigenvalues and eigenvectors of the effective Hamil-
tonian. By diagonalizing the effective Hamiltonian matrix
numerically one has,

[
TT

_ geffy— = - = A~
[(EI=H"Tnm =2 E=E 57775

(2.22

assumption in our derivation is that the random matrix aswhere{u'} are the eigenvectors df®" associated with the
sumptions are imposed on these coupling matrix elementgcompleX resonance eigenvaluelE,—il"}/2}. Note that

i.e., we identify Eq.(2.18 with Eq. (2.8), where

sinceH®" is a complex symmetric matrix, its right and left
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eigenvectors are identicéle., the left vector is not the com-
plex conjugate of the right vectpt® By substituting Eq.
(2.22 into Eq. (2.21), the standard representation of the
spectrum as a summation over Lorentzian-amplitudes with
complex coefficients is obtained,

2

Intensity

Cl(E)ei4i(®

El E—E,+il,/2

P,(E)= (2.233

The complex coefficients, which are characterized by their
real amplitude§C}(E)} and phase$¢|(E)}, are given by

395 405 415

M (a) E(em’)

2l
ClE)EU B =u D Doy 2 Uy 2 8jn(E)Vi -

m=1 m'=1 n=1

M=

(2.23b

We end this section by considering some limitations on

the inputs of the model for the effective Hamiltonian. The
input parameters are the density of molecular statethe
energy rangaV, the number of independent open channels
N, and the coupling strengtlr. The dimension ofQ,
M =pW, should be taken large enough to provide statisti-
cally meaningful results. For a fixéd , the minimal value of %
W should be of the order of the maximal resonance width, 385 e 05 ~ s
such that all the resonance widths will be sampled correctly (o) E(cm”)
within the energy range. This condition implies tiis¢e Ref.
14)

(TYp<N. (2.24

An upper bound foW is usually imposed by the physical

conditions. The application of the model is limited to an
energy rangaV for which the effective Hamiltonian is en-

ergy independent angd, o, N;, andN can reasonably as-

sumed to be constants.

Intensity

Intensity

lll. “LOOSE” TRANSITION STATES

385‘ '" ‘395 4 405 415
We first consider the limiting case of a loose transition () E(em )

state where the activated complex is associated with an as-

ymptotic value of the reaction coordinate. Physically, thisFIG. 1. (a) Final state-selected spectPg(E) for j=1 (solid ling) andj=3
case corresponds to the ergodic evolution of the excited mof-disggg I'iI”fNTf‘iGeﬁegﬁ"e Hamiltonian parameters afe-t ‘imfg'
ecule from the Franck—Condon region to the asymptotic finaﬁflh_e same for Ejr;zN:a;O_?g) ?r\;]e:"sg;n;e?;ng?fz?\liv'lo_o_ =0.1.()
states(products. Such a transition state is invoked, for ex-
ample, in the phase space thedST) of unimolecular
decay?® The probability of obtaining a specific final stgtat

| -¢I 2
a given energy, should, therefore, ihdependent of the iden- ey 2 Cje'
: _ ou! nadent Pi(E)= — : (3.3a
tity of this state. Within the random matrix optical model, all o E-E+il /2
the open channels are independently and randomly coupled
to the molecular state@.e., theQ-space, so that where the complex coefficients are energy-independent and
are statistically identical for all the final statéd,
N=N;. (3.
M M
The TST interpretation of the model implies that the final i _ | | .
states are identified with the states of the activated complex. Ce _’uzl (I)O'mumm%l Uy V' - (339

In this case, therefore, the “dynamical” coupling matrix el-
ementsa, ; as defined in Eq(2.16 are a Kronecker delta Equation(3.3) implies thatP;(E) depends only on the effec-
a, n(E)=6, 1. (3.2 tive Hamiltonian matrix and not on any exit channel dynam-

ics.
By substituting Eqs(3.1), (3.2) into Eq. (2.23, the expres- In Fig. 1 typical spectra are presented, which illustrate
sion for the final state-selected spectra for a loose transitiothe transition from the weak couplingnonoverlapping re-
state is obtained, gime to the strong couplinfpverlapping regime. When the
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FIG. 3. (a) Probability distribution of the phases', as defined by Eq.
FIG. 2. (@ Solid line, x? distribution function with 16 degrees of freedom. (3.3 for the effective Hamiltonian with the parameters of Figa)1(b) The
The histograms represent the probability distribution of the normalized resosame, for the parameters of FigbL (c) The same, for the parameters of
nance widths ['/T") as obtained by diagonalizing the effective Hamiltonian, Fig. 1(c).
with the parameters of Fig.(d). (b) The same, for the parameters of Fig.
1(b). (c) The same, for the parameters of Figc)1

_ decay rategand also resonance widihs expected to be
degree of resonance overlap is sméll)p=0.1 as in Fig.  x*like with N degrees of freedom, according to the “Golden
1(a)], Lorentzian peaks are observed and the spectra for difRule” (perturbative limit of the random matrix modet?*
ferent| states have different intensities, but similar line po-and indeed this is found in our simulations as illustrated in
sitions and widths. As the overlap increagEfgs. 1b) and  Fig. 2(a). As the overlap increases, not only does the average
1(c)], the peaks are shifted, mixed, and broadened, and theidth increase, but the distribution of widths increasingly
spectra for differenj states begin to differ also in their line deviates from a/?-like distribution. The deviations are asso-
positions and widths, a result of state-specific interferenceiated with an increasingly longer tail, as can be seen in Figs.
between the resonance amplitudes. The behavior shown B(b), 2(c) [and see also Ref. ®]. In Fig. 2, the bars rep-
Figs. b) and Xc) is qualitatively similar to that observed in resent the distribution obtained in the present simulations,
the state-selected spectra obtained for,NQhe near thresh-  while the solid line is the corresponding distribution.
old regiorf and atE=2000-2500 cri?, respectively The shapes of the spectral features are directly related to

Figure 2 shows the distributions of resonance widths thathe interference between different resonance amplittifes.
are associated with each spectrum in Fig. 1. In the nonoveiFhe interference is well characterized in terms of the phases
lapping regime the distribution of state-specific unimolecular{¢'} in Eq. (3.3). In Fig. 3 the distributions of phases which
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8880 Peskin, Miller, and Reisler: Final state-selected spectra

correspond to the spectra in Fig. 1 are plotted. It is clear that
in the weak coupling regime, the phases are strongly peaked 0.2
around integer multiplies ofr, indicating that the coeffi-
cients in Eq.(3.3b (the residuesare approximately real.
This is directly related to the fact that in this limit the reso-
nance eigenvectors of the effective Hamiltonida'}, are
simply the zeroth basi§lm)} itself, i.e., ul,~ S .m- As the
coupling increases the coefficients become complex and
eventually [see Fig. &)] their phases become uniformly
(and randomly distributed between 0 to72 justifying a sta-
tistical treatment of overlapping resonances as is done in
theories of nuclear reactiods* The random phases eventu-
ally result in the disappearance of the resonance structures in
the spectrdsee Fig. {c)], a result characteristic of dissocia-
tion in the strong coupling limite.g., a direct reaction I A .
Simulations such as the ones presented above provide a 0'00_0 10 20 30 40 50
useful way of qualitatively interpreting experimentally mea- (@) E (cm 1)
sured spectra when dynamical calculations are computation-
ally beyond reach and a statistical description of the process 0.2
is justified. The spectra depend, via the effective Hamiltonian
matrix, on three independent parameters; the molecular den-
sity of statesp, the number of independent open chanméls
and the average coupling strength betweenRkepace and
the Q-spaceo. For a loose transition stath, is equal to the
number of final states and is usually well known for a given
energy. Therefore, a comparison between simulated and ex-
perimental spectra can be useful in estimajing, and also
the average unimolecular reaction rate via EQ9). |
As an illustrative example consider the near-threshold i
unimolecular reaction of NQat access energies 0—-13 ¢t i V\

Intensity

Intensity

The NO state-selected spectra in this energy range were mea-

sured by Miyawakiet al* Just above threshold, i.e., for ac- |

cess energies OE<5 cm !, the number of independent 0.0 2

open dissociation channels Nh 4. The final state selected (b) T E

spectra are characterized by sharp peaks with an average

width which is much smaller than 1 C_rﬁ (See Fig 4in Ref FIG. 4. (a) Simulated final state-selected spectré{E) for j=1 (SO|Id)

4). The average spectral width increases above 5%m and j=2 (dashedl The effective Hamiltonian parameters gre-6/cm 2,

where another rotational state of NO opens up, so that th¥ =30,N=4 and an average resonance width&@N=0.1. (b) The same

total number of open channels ié=8.% For the entire en- for 2mo"N=0.5.

ergy interval 0—13 crm', the spectra obtained by monitoring

differentfinal NO quantum states exhibit differences in the _

positions, widths, and heights of the spectral features. Hownance width paramete(,l“>327rNoz. For example, Figs.

ever, each one of the two subintervals associated Witd  4(a) and 4b) correspond tqI')p=0.6 and 3.0, respectively.

andN=8 is characterized by a typical distribution of peak In each figure, spectra of two different dissociation channels

widths, and positions that are clustered around the zero-ordeire presentedichosen arbitrarily ag=1,2 in Eq.(3.33].

states. Comparing the simulations to the experimental spectra in
A guantitative peak-to-peak fitting of a random matrix Ref. 4, we conclude by inspection that the spectra displayed

simulation of the experimental measurements is neither posa Fig. 4(b) fits better the experimental results in terms of the

sible nor is it the goal of the present work. Rather, a quali-distribution of peak widths and overlap, and the dynamic

tative comparison of trends in the simulated and experimenrange of the intensitiegpeak heights Our simulations indi-

tal spectra can be used to estimate the ranges of moleculaate that the decaying molecular complex is characterized by

parameters and aid in the interpretation of the experimentalverlapping resonances, a fact that is reflected in the pro-

spectra. Near threshold, the number of open charlHeils  nounced differences between spectra obtained when monitor-

well defined(4 or 8 in the present casd-rom the molecular ing different open channelgn both the measured and simu-

absorption spectrum judielow thresholdwe estimate the lated spectra The degree of resonance overlap can be

density of statep at 510 states per wave numB&Fixing  roughly estimated afl')p~3, based on these simulations.

N=4 andp=6 in the simulations, as well as the positions of In Fig. 5, simulated spectra for the rangecE<<13

the zero order states, we obtain final state selected spectraah ! are plotted, where- andp are assumed to be the same

different appearance by using different values of the resoas in the first energy interval. Compared to the plot in Fig.
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0.2 : ‘ N<N,;. (4.2

Although we invoke a random matrix model for the evolu-
tion of the system from the Franck—Condon region to the
transition statéassuming ergodic dynamics, i.e., strong mix-
ing of the molecular statgsthe coupling of the transition
state to the final states is evaluated explicitly, and thus the
final states are identified within the model. As an example,
we evaluate the dynamic coupling matrix elements and simu-
late the final state distributions for a simple specific case of a
bond-fission reaction of a triatomic moleculdBC— A
+BCQC).

Intensity

90_, 110 Ty
E(em™)
FIG. 5. Simulated final state-selected specti[(E) for j=1 (solid) and . o . .
j=2 (dasheil The effective Hamiltonian parameters ape=6/cm 3, We consider the photoinitiated unimolecular decomposi-
M=48,N=8 and an average resonance widn&N=1.0. tion of a triatomic moleculé& BC— A+ BC with total angu-
lar momentumJ=0 and total energ¥. The PES in Jacobi
coordinates is given in terms of the distarRebetweenA
4(b), a reduction in average intensity and further broadeningnd theBC center of mass, the angie between the bond
of the spectral features are obtained, in accord with the exaxis of the diatom and the axis defined Byand theBC
perimental observatiof€-1° The reduction in intensity in center of mass, and, the BC distance. The molecular
the state selected spectra at the higher energy range refle¢ig@miltonian for totalJ=0 is

Y50 7.0

A. Dynamical coupling matrix elements

the lower fractional population of each open channel. Note 1 _52 g2 sz
also that here again, in agreement with the degree of reso- H(R,r,0)= 5 (T R? R+ Y
nance overlap, different final state-selected spectra exhibit HA-BC
differences in spectral widths and peak positions. 1 —h2 52 ]2
The simulations also enable us to estimate the average + 2 (TW r+ r—z) +V(R,r,0),
unimolecular rate constant. The average width of the spectral BC
features measured in this wavelength region is 0.1-0.2 (4.2

cm™~* However, this value cannot be used directly to esti-where, asR—, V(R,r,8)— V,(r). The asymptotic Hamil-
mate the decay rate in the regime of overlappingtonian defines the possible final states of the dissociation
resonanceTo estimate the near threshold rate we can userocess. These are the rovibrational stateB 6f

the density of states and the degree of resonance overlap,

according to Eq(2.9b). The average transmission probability (R, 6, E)=Y,,0(0) $,,(N Xy, £(R), (4.39
is [see Eq{(2.9b], where the rotational functions are the spherical harmonics
(Py=1—e 27%3/4~0 99, 12Y; 0(0)=%2)(j+1)Y, o(6), (4.3

which is very close to the classical RRKM limiting result ¢, ,(r) are the vibrational functions which are the solutions
(i.e., (P)=1). The average unimolecular decay width nearof the asymptotic Schobnger equation
threshold(i.e., forN=4) estimated according to E¢R.99 is

2 [—1 92 j(j+1)
therefore {ZMBC o2 Tt |+ V() #,(r)
_ ~ ~1 4.3

i{krsn)=(P)X5—~~0.105 cm?, —E, by;(1), (4.39

which correspond to a decay rate of andy, j e(R) are the solutions of the radial equationRn
2 2 Y
(krsr)=0.0188 ps™. L B Y LS SV
2un sc| R ORZ RZ |[XviE

IV. TIGHT TRANSITION STATES IN BOND FISSION el E . (4.30
REACTIONS (E=E, )X.je(R).

] » ] ) The transition state is defined by the center of mass co-
Tight transition states usually arise when a real ba”'erordinateR:RO along the PESthe dividing surfack It is
exists in the exit channge.g., due to avoided crossﬁﬁ%zj,. assumed here that the motion along the dividing surface is
or in the absence of a such a fixed barrier, when the point ofycoupled from the motion along the reaction coordinate

minimum flux along the reaction coordinate is in the “inte- {om the transition state R=R,) to the product region

iAr” P H -25 q;
rior” region of the potential _surfac%?. Since such a fran- (g, ) The Hamiltonian at the transition state is therefore
sition state is associated with an energetic bottleneck alongeparable

the reaction coordinate, the number of states of the activated
complex is smaller than the number of asymptotic open
channels, i.e.,

TS Wi r e — T
H (Raraa) H (r,H) ZMA_BCR 0R2 R1

(4.43
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whereH*(r, ) is the Hamiltonian of the activated complex The coupling matrix elementsy; .} can be readily obtained
(i.e., the molecule at the transition state with the reactiomumerically by diagonalizing the matrix representation of
coordinate removed H*(#) in a basis set of the spherical harmonics, i.e., Eq.

- 4.109 can be rewritten as
H¢ o 1 j2+ 1 (_ﬁZ (92 +J2) ( 3
(r.6)= 2up-Be Eg 2pugc |\ r ar? e

2 (Yol HAY oY o U =En(Yjol®r); (41D
+V(Ry,T,0). (4.4 i’

The intermediate stateg|n,E)}, are the eigenstates of or by using the definition in Eq4.9),

H*(r,6) [Eq. (4.43] defined as

2 (H¥;al, =Enal,, (4.123
(Rr,6In,E)=Wi(r,0)¢;(R), 4.5 i
where where the bending Hamiltonian matrix is defined as
H(r,0)Wi(r, )= EXWi(r, 6), @aea  (HY =Y oHY) o)
and :Briotj(j +l)5j,j'
_ﬁ2 (92 g . *
(m(;_Rf R)wﬁ,E(R>=(E—E§)¢§,E(R)- .65 +2wfo d6 Sin(8)Y* o(0)V(Ry.l o, 0)Y,r o ),
(4.120

An explicit expression for the dynamical coupling ma-
trix elements is given in terms of the asymptdfioal) states and the effective rotational constant at the transition state,

and the activation complex states according to @dL6), B, is defined as
. —i i . 2
a = lim(n,Ele EVhgiHUA|, i E). 4.7 - f 4120
rot 2 2 .
i 2ua-scRot2upcr o

The right-hand side in the last equation can be calculatedccording to Eq.(4.123 the coupling matrix elemers; , is
exactly by using numerical methods. One can propagatislentified with thejth component of theth eigenvector of
|v,j,E) in time as an initial wave packét,or apply time- the matrixH?.

independent approaches to evaluate the limit in Bd7) in

terms of a Green’s operator. One can also apply simplifyings. Rotational state distributions
?npaa:&xgr:rﬂzzfsl.nT%firrljgeessttlgl]j;tr?tljrrf r?ég?\;'ﬁg;cgggglﬁ_ In the case of a tight transition state, the number of states

mation is the sudden approximation, which is justified when-Of the activated complex in a given energy rarige., N) is

ever most of the energi is associated with the motion usually unknown except for the fact that it is smaller than the

along the reaction coordinat&?®Within this approximation, actual number of open final channgiq. (4.1). Although
; random matrix simulations cannot provide a direct means for
the matrix elements reduce to - o . o
determiningN for specific reactions, variational RRKM cal-
T P culations have done so successfully in selected cAsés.
a(j,w,n”z”fo S'”(‘Q)deﬁxr drwa(r,0)é,,;(r)Y;o(6), The random matrix model that we present here describes,
(4.8  however, the general dependence of the final state distribu-
. o tions onN (i.e., on excess energyAs an illustrative example
which are the rovibrational Franck—Condon factdr we consider the model triatomic system for bond-fission re-
A further simplification can be introduced when the ex- actions as described above. The transition state is character-
cess energy of.the molecular complex is not suff|C|er)t t9zed by a barrier height of 3000 crhabove the dissociation
excite the vibration oBC. In this caseBC can be approxi- threshold and is located ®,=2.5 A. The diatomBC is
mated as a rigid rotor at the nuclear separatiprRepeating  modeled as a rigid rotor and the effective rotational constant
the derivationEgs. (4.2—(4.8)] for this case, one has [see Eq(4.129] is taken asB}, = 2 cm L. An anharmonic
- potential is assumed for the bending motion at the transition
aj,n~zwf sin(0)dgVi(0)Y; o O=(V]|Y; o), (4.9  state,
0

%6,27

where{W (6)} are the eigenfunctions of the bending Hamil- ~ V(Ro.r¢,0)=v(6)= >, Cy cos(6). (4.13
tonianH*(#4), k

Hi(a)q,ﬁ( 0)=En\1f§(0), (4.103 In Fig. 6, the bending potential and the Hamiltonian eigen-

functions of the activated complérbtained numerically ac-
and cording to Eq.(4.12] are plotted.
%5 %5 Consider first the limiting case of a tight transition state
H¥* ()= J 5+ 5+V(Ry,lo,0). (4.10n  Wwith N=1.In this case all the asymptotic final states are
2ua-pcRo  2mpcro obtained from a single intermediate state, i.e., the ground
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5200

4400

Intensity

V(0) (L/em)

3600

2800
0

0 120 180
0 (deg) (@)

FIG. 6. Thick line, the bending potential at the transition staf®) as
defined in Eq(4.13. The expansion coefficien{€, ; k=0,...,7 are cor-
respondingly given by 4000, 1600900, —230, 470,—760, 1400,—780
cm L. Thin lines, probability densities, const¥ ,( 8)sin(6)|?, for the eigen-
functions of the transition statdending Hamiltonian(the base lines cor-
respond to the bending energie$he wave functions are obtained by di-
agonalizing the bending Hamiltonian in a basis of 80 spherical harmonics.

Intensity

bending level of the activated complex. It is therefore ex-
pected that, irrespective of the excited resonance(statke
distribution of final states will depend on the exit channel
dynamics from that intermediate state. In the present model
this implies thatN=1 in Eq. (2.23. Within the sudden ap- (b)
proximation the dynamical coupling matrix elements are en- -
ergy independerftEq. (4.9)] so that the state-selected prob-
ability [Eq. (2.23)] can be rewritten as

P,(E)=|f(E)|?X|a; 4|2, (4.19

and consequently the final state distribution does not depend
on excitation energy except for @independent factor,
|f(E)|2. This is illustrated in Fig. @) for the model bond-
fission reaction where the simulated rotational distributions
are obtained according to E¢R2.23 with N=1. The two
different spectra are associated with two nearby energies
separated by 2 ciit. Clearly, the two rotational distributions ©
are identicallup to a constant factorThe observed fast os-
C”Iatlgns asa fL.mCtlon of are well un.derStOOd |n.th|s S|mp|e FIG. 7. (a) Rotational distribution®;(E) for BC (ABC—A+BC), plotted
case€’® and derive from the “mapping’expansion coeffi- s the rotational quantunj, of BC. The effective Hamiltonian parameters
cientg of the activated complex bending state in terms of theare p=0.5/cm!, M=100, N=1 and an average resonance width
free rotor state&? (They are usually washed out when sev-2mo?N=0.1. The solid a_nld dasheq lines correspond to the energies
eral initial parent states are populaféd®-* . 571;21,8 ioa_g‘_’(Ecz)zTﬁgi A foﬁipsgtg/remljy.ét:);’\r:i so foN=8 and
This simple picture breaks down, however, whens
larger, as illustrated in Fig.(B) for N=8. Here the enve-
lopes of the rotational distributions associated with the twoThe last equation clearly illustrates that fi>1, the dy-
nearby energies are completely uncorrelated, and the oscill@amical coupling matrix elements connecting the different
tory patterns of the distributions are not related to the expanstates of the activated complex to a particular final statee
sion coefficientda; ,} in a direct fashion. To interpret these superimposed with energy-dependent complex coefficients,

Intensity

observations, we expre$}(E) in Eq. (2.23 as follows: so that state-specific information containedan ,} is “lost”
2 due to interference.
Pi(E)= 2 gn(B)ajnl , (4.15a Figure 7c) corresponds to a yet larger number of states
n of the activated complexN=50). As inFig. 7(b), the rota-

tional distributions are again characterized by oscillations as-
sociated with the superposition of the dynamical coupling
M M matrix elements. However, in contrast to the “intermediate”
> Ooplb X U Vo case(e.g.,N=8), the distributions for the two neighboring
m=1 m' =1 energies are strongly correlated, resembling more the results
(4.15h of Fig. 7(a) for the limiting caseN=1.

where

. M
g”(E)‘EI: E—E +iT,/2
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The increasing correlation of the rotational distributionscoefficientsg,(E) in Eq. (4.153 will not change much for
at nearby values d for increasingly largeN can be related nearby energies, even when the resonances do not overlap. In
to the increased degree of resonance overlap. The latter isthis case energy sensitive distributions will not be observed.
direct result of Eq(2.7b), i.e., Experimentally, the sensitivity of the rotational distribu-

= 5 tions to small changes in the excitation enefgyg., Fig.

(T)p=2ma’pN, (4.16 7(b)] is not expected to be observed for large molecules
which implies that the degree of resonance overlap is lineawhere the degree of resonance overlap increases rapidly with
in N. In the limit of nonoverlapping resonances, the widthsenergy due to rapid increase M The energy sensitivity of
({T'\}) are typically smaller than the energy spacing betweerthe distributions is associated with an intermediate regime, in
two nearby resonance energies. Consequently, for any energghich N is large enough so that the dissociation dynamics is
E, one resonancgfor which E,~E) dominates the contribu- different for different activated complex states, and Neis
tion to the summation ovdrin Eq. (4.15h. Moreover, each small enough so that the molecular resonances do not over-

resonance state is well approximated by a specific moleculd@p appreciably. This is expected to be the case for small
state, i.e.,u'r,', ~ 81/ m. Using these two approximations in molecules with a tight transition state. Indeed, the measure-

Eq. (4.158 one has ments of Reisler and co-workers have shown that for the
unimolecular decay of N©in the range of 2000—3000 ¢rh
On(Ejr)~constX ®q 1V (4.17  above dissociation threshold, the NO rotational distributions

obtained at nearby excitation energies are diffefémb ini-

tio calculationd® as well as variational RRKM calculatioffs
onfirm that the transition state of NGightens rapidly as

the energy increases, which implies tihatas well asp and

o) is relatively small even high above the dissociation

threshold.

In summary, fluctuations and oscillations in final state
distributions are expected in almost every system with
larger than a few states, but their variations with small
l5:_hanges irE depend on the degree of overlap and the spe-
cific dynamics. Although the random matrix and the sudden
cording to Eq.(4.16], as seen in Fig. () for N=8 and approximations used here' de§cribe only specifip limiting

Sases and real systems will display more complicated dy-

(I')p=0.4. AsN increases, the degree of resonance overla . . ;
increases so that at any photolysis energy a group of resgiamics, we believe that the trends illustrated by the present

nances typically dominates the summation in E415bH simulations are representative of real systems.
rather than a single resonance. In this case, two nearby pho-

tplysis energies which correspond appro'ximately to e'xc'itav_ DISCUSSION AND CONCLUSIONS
tion of the same group of resonances, will lead to a similar

which implies, according to Eq4.153, that for a given
photolysis energyE, P;(E) derives mainly from a single
resonance state. When the difference between the two ph
tolysis energies exceeds the average resonance Wb, (
each energy is likely to excita different resonance state
Since the coupling matrix element¥,. .} are random, the
sum in Eq.(4.153 will be different for eachE, and conse-
guently the rotational distributions will exhibit large sensitiv-
ity to the photolysis energy. For fixe@mal) values of the
density of states and the average coupling strength this sit
ation is characteristic of small’s [i.e., small overlap ac-

sum in Eq.(4.153 and correlated rotational distributions. The work presented here, as well as that in our previous
This situation is depicted in Fig.(@ for N=50 and(I")p papert* shows that a random matrix version of Feshbach’s
=2.5. optical model provides a description of unimolecular reac-

Before concluding this section we note that both the sudtions that is applicablboth to isolated and overlapping reso-
den and the random matrix approximations used in thaances Specifically, final state-selected spectra, distributions
present simulations tend to overestimate the sensitivity of thef decay widths and phases, the average decay width, and the
rotational distributions to the excitation energy for sniNil. unimolecular reaction rate can be described. Although the
Within the sudden approximation, the couplings of specificevolution of the system of resonances is treated as a scatter-
final product states to the transition stdte., {a; ,}) are  ing process, the physical interpretations of the state-selected
sensitive to the specific level of the activated compltexin ~ spectral features, rates and product state distributions are
contrast, in cases where the dissociation dynamics is domeouched in terms of statistical transition state theories. In
nated by exit channel forces beyond the transition siate  particular, the resonances are assumed to evolve to final
the sudden approximation does not app{y; ,} for differ- products via a “bottleneck” whose structure and energy lev-
ent activated complex levels may be very similar. In this casels are identified with the conventional transition state of
the summation over different-states in Eq.(4.159 may  statistical theories of unimolecular ded@yg., PST, RRKNL
lead to similar rotational distributions for nearby energies  An important advantage of the formalism presented here
also forN>1. is its ability to treat both loose and tight transition states. The

The random matrix assumptidine., ergodic dynamics evolution of the system up to the transition state is treated by
in the Q-space leads to overestimation of the sensitivity of using random coupling matrix elements and does not neces-
the rotational distributions to small changes in excitation ensitate knowledge of the PES. However, from the transition
ergy, since the couplings of different resonance states to th&tate onward, the evolution is controlled by the dynamics on
activated compleki.e.,{V,: ,} in Eq. (4.17] are random. In  each PES, and the formalism presented here includes explic-
reality, it is possible that the couplings of nearby resonancély the dynamical coupling matrix elements. We point out
states to the activated complex will be correlated so that thalso that the model is valid as long as a partitioning into the
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bound @) and continuum P) parts is possible, i.e., for example, wherp and N are known, the average width
dissociation that is not too fast. can be extracted by simulating the spectra. The simu-

The main assumption of the model lies in the use of the lated final state-selected spectra are shown to be qualita-

random matrix formalism, namely the coupling matrix ele-  tively similar to those observed in the near-threshold uni-
ments between the quasibound states of the excited molecule molecular reaction of N@by monitoring selected levels
and the transition state are random and can be chosen from a of NO.? Both experiments and simulations show spectra
Gaussian(norma) distribution. This assumption is justified that differ in line intensities, positions, and widths when
in cases when the states of the excited molecule are mixed different final states are monitored. Our model also pre-
(ergodid. Thus, the same assumption, i.e. complete intramo-  dicts trivially that the rotational state distributions at spe-
lecular vibrational redistributioflVR), that justifies the use cific photolysis energy will show random fluctuations.

of statistical theories in describing unimolecular decay, alsd4) Simulations were also carried out for dissociation over a
provides the rationale behind assigning each resonance an barrier(i.e., with a tight transition stateThe transition
equal, but random, probability for accessing all states of the State was modeled with hindered rotor wave functions,
transition state. In statistical theories, due to inherent en- and a limiting case where no final state interactions oc-
semble averaging, resonance-specific effects are expected to Cur beyond the transition state was treated expli¢itsy,
wash out. In the cases discussed here, where the initial and Py using the Franck—Condon model for dissociatidn
final states are well defined, averaging is minimized and the this case, the behavior of the rotational state distributions

assumption of random coupling matrix elements leads, for a

depends on the excess energy regime. When a modest

loose transition state, to random fluctuations in the final ~NuUmMber of transition state levels are populatedg.,

state-selected spectra and product distributions. However,
since each molecule has well defined resonance structures
and dissociates on a specific PES, in reality the coupling
matrix elements are resonance and molecule specific. Thus,
the model described here is general in that it shows features
that provide guidelines in interpreting results of state-
selected experiments in the presence of overlapping reso-
nances, but it is not intended to be applied quantitatively to a
specific molecule.

pretations are summarized below:

@

(2

3

5-20, prominent oscillatory structures appear in the ro-
tational distributions, which change sensitively with a
small change in photolysis energy. The behavior ob-
tained in this regime is quite similar to that seen in the
unimolecular reaction of NPat excess energies 2000—
3000 cm '}, where large oscillations in the NO rotational
distributions that change significantly with a small
changes in photolysis energfe.g., 5-50 cm?) are
observed When a large number of transition state levels
are populated, the simulated oscillatory structures do not
depend sensitively on photolysis energy any more. In
this regime, the degree of overlap is very large and a true
For isolated resonances or at low level of overlap, the statistical limit is reached. Here, averaging over even
distribution of decay widths obeys &-like distribution few initial states will tend to smooth the oscillatioffs>?

and the phases are clustered around the real axis. With
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