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Final state-selected spectra in unimolecular decomposition are obtained by a random matrix version
of Feshbach’s optical model. The number of final states which are independently coupled to the
molecular quasibound states is identified with the number of states at the dividing surface of
transition state theory~TST!. The coupling of the transition state to the molecular complex is
modeled via a universal random matrix effective Hamiltonian which is characterized by its
resonance eigenstates and provides the correct average unimolecular decay rate. The transition from
nonoverlapping resonances which are associated with isolated Lorentzian spectral peaks, to
overlapping resonances, associated with more complex spectra, is characterized in terms of
deviations from ax2-like distribution of the resonance widths and the approach to a random
phase-distribution of the resonance scattering amplitudes. The evolution of the system from a tight
transition state to reaction products is treated explicitly as a scattering process where specific
dynamics can be incorporated. Comparisons with recently measured final state-selected spectra and
rotational distributions for the unimolecular reaction of NO2 show that the present model provides
a useful new approach for understanding and interpreting experimental results which are dominated
by overlapping resonances. ©1995 American Institute of Physics.
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I. INTRODUCTION

Transition-state-based statistical theories~e.g., RRKM!
have been successful in describing the unimolecular re
tions of a large number of molecules, especially under c
ditions of extensive averaging, e.g., over initial reacta
states and final product states. In the last decade, howev
has become possible to study unimolecular decomposition
small molecules under conditions of monochromatic exci
tion and state-specific product detection.1 For small mol-
ecules, even when IVR is complete, averaging is intrinsica
less extensive and it is possible to observe, under favora
conditions, quantities for which only the average values ha
heretofore been available. For example, the distribution
state-specific decay rates about the statistical average
been observed experimentally for formaldehyde in the tu
neling regime and compared with the predictions of a ra
dom matrix model and transition state theory~TST!.2

For most dissociating molecules above the tunneling
gime ~i.e., when the excitation energy is well above the d
sociation threshold!, the coupling between the molecula
complex and the continuum is strong and the density
strongly mixed molecular states is large, so that the unim
lecular decay is characterized by overlapping resona
states. These states are associated with complex ene
$El2 iG l /2% which are the eigenvalues of the time
independent Schro¨dinger equation with outgoing wave
boundary conditions~Siegert eigenvalues!.3 The resonances
are overlapping when the average resonance width^G& is
larger than the average energy spacing between resona
DE, i.e.,
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5^G&r.1. ~1.1!

~These averages are with respect to a set of strongly mix
metastable states in a relatively narrow energy region ch
acterized by the density of molecular statesr.! Simple esti-
mates of state densities and widths demonstrate that over
ping resonances are prevalent under typical conditio
treated by TST/RRKM, especially in bond fission reaction
with loose transition states. For NO2 one haŝG&r'1–10 at
excess energies between 5 and 2000 cm21.4,5 For NCNO
near threshold,̂G&'0.1 cm21 and r'300/cm21,6 and thus
^G&r'30, exhibiting even stronger overlap. For larger mo
ecules, the resonances always overlap except at energies
near dissociation threshold.

Until recently no clear experimental demonstration o
overlapping resonances in unimolecular reactions exist
but in a series of experiments on the unimolecular reaction
expansion-cooled NO2 at excess energies from 0 to 303
cm21, it was observed that the spectral features obtained
monitoring selected final states while scanning the photoly
energy are different not only in their intensity but also in lin
shapes and positions.4,7–10 Such final state selected spectra
also known as photofragment yield~PHOFRY! or photofrag-
ment excitation~PHOFEX! spectra,1 provide a sensitive tool
for studying unimolecular decomposition and can reveal fe
tures relating to resonance overlap and the nature of the tr
sition state.7,8 Reisler and co-workers suggested that th
state-specific photofragment yield spectra are a manifestat
of the so called ‘‘Ericson fluctuations’’ in nuclear
reactions.7,8 Ericson proposed that in the case of overlappin
resonances the cross sections into specific final states
5/102(22)/8874/13/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8875Peskin, Miller, and Reisler: Final state-selected spectra
fluctuate as a function of energy and these fluctuations w
not diminish with increasing excess energy~provided that the
density of states is not too high!, but rather become more
random.11

The interpretation of the final-state selected spec
however, is not always a simple task. When the coupli
between each metastable molecular state and the contin
into which it decays is weak, the spectra are well charac
ized by Lorentzian line shapes,

P~E!'constU 1

E2El1 iG l /2
U2, ~1.2!

each corresponding to an exponentially decaying resona
~quasibound! state. The energy of the quasibound state,El ,
defines its spectral location along the energy axis, and
width of the Lorentzian peak corresponds to the decay rate
that state,

kl5G l /\. ~1.3!

This clear and well established picture holds as long as
resonances are isolated~or nonoverlapping!, i.e., when

^G&r,1. ~1.4!

When the resonances overlap, isolated Lorentzian pe
are not observed, and the Siegert eigenvalues are not re
to the spectrum in a direct fashion.12 Therefore, a more de-
tailed analysis of the final state-selected spectra is neede
order to gain insight into the unimolecular decay mechanis
For typical optical excitation, the probability of observing
final statej at energyE is given within the Franck–Condon
dipole approximation as

Pj~E!5um^F0uc j ,E&u2, ~1.5!

whereE is the excess energy above the dissociation thre
old, uF0& is the nuclear ground state of the molecule, andm is
the electronic transition dipole matrix element.uc j ,E& is an
exact continuum eigenstate of the molecular~nuclear!
Hamiltonian whose asymptotic wave functionu j ,E& repre-
sents the free fragments.

The purpose of the present work is to introduce a sim
model based on a random matrix version of Feshbach’s
tical model13 for simulating final state-selected spectra
unimolecular reactions in cases of both isolated and overl
ping resonances. Such a model is especially useful w
accurate potential energy surfaces~PES! for the reaction are
unavailable and exact dynamical calculations are beyo
reach. The random matrix version of Feshbach’s opti
model, which will be described in detail here, was recen
shown to be consistent with TST in simulating correctly th
average unimolecular decay rates in the regimes of isola
and overlapping resonances alike.14 Unlike the TST decay
rate, the final state-selected spectra depend also on the
lution of the system beyond the transition state dividing s
face towards the free products. We, therefore, modified
standard optical model by introducing ‘‘dynamical’’ couplin
matrix elements that explicitly account for that evolutio
This mixed approach combines a universal statistical
J. Chem. Phys., Vol. 102Downloaded¬14¬Jul¬2010¬to¬128.125.205.65.¬Redistribution¬subject
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scription of the molecular complex with a reaction-specifi
dynamical description of the propagation from the transitio
state to the products.

The general formulation of the TST-based optical mod
and its application to simulate final state-selected spectra
first presented in Sec. II. The special case of a ‘‘loose’’ tra
sition state~resembling product states! is discussed in Sec.
III, and then applied to a triatomic molecule resembling th
unimolecular decay of NO2 near dissociation threshold. In
particular, final state selected spectra are shown for vary
degrees of overlap and compared qualitatively with expe
mental results. In Sec. IV, ‘‘tight’’ transition states are con
sidered, and the specific case of a bond fission reaction o
triatomic molecule over a barrier is discussed in some deta
Illustrative examples of final state distributions are given fo
this model system. Finally, in Sec. V we present concludin
remarks regarding the generality of the results and their
lationship to experimental observations.

II. A TST-BASED RANDOM MATRIX OPTICAL MODEL

A. General formalism

Within the Franck–Condon approximation@Eq. ~1.5!#,
the nuclear wave function of the metastable excited molec
is initially localized in the bound region of the molecula
ground state~the Franck–Condon region!. Therefore, it is
sufficient to evaluate the scattering wave functionuc j ,E&
only in this region. A useful approach for this purpose is th
Feshbach–Lo¨wdin partitioning of Hilbert space into two
complementary subspaces spanned by two orthogonal p
jection operators,P and Q ~P1Q5I , PP5P, QQ5Q,
PQ5QP50!.13 Q is defined by a set of basis functions
which span the bound-state space, andP projects onto the
dissociative continuum to which it is coupled and decay
The projection ofuc j ,E& onto theQ space is rigorously
given in terms of a ‘‘Lippman–Schwinger’’ equation with an
effective Hamiltonian,13 i.e.,

Quc j ,E&5
1

E2Heff~E!
QHPu j ,E&, ~2.1!

whereH is the full ~nuclear! Hamiltonian, andHeff(E) is a
non-HermitianQ-space operator, defined as

Heff~E!5QHQ1 lim
e→0

QHP
1

E1 i e2PHP
PHQ.

(2.2)

In order to simulate the final state-selected spectra
first adopt the standard random matrix representation of t
effective Hamiltonian.2,15,16 Assuming thatM molecular
states,$um.%, in theQ space are strongly mixed~ergodic!,
the effective Hamiltonian matrix is given by

@Heff~E!#m,m85Emdm,m82 ip(
j51

Nj

^muHu j ,E&

3^ j ,EuHum8&, ~2.3!

for m,m851,...,M . The Em values are chosen from a
Wigner distribution of nearest neighbor level spacings,17
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8876 Peskin, Miller, and Reisler: Final state-selected spectra
f ~Sm!5
pSm
2^Sm&2

e2~pSm
2 /4^Sm&2!, ~2.4a!

where the spacings are defined asSm5Em2Em21. The av-
erage spacing is associated with the density of stron
mixed molecular states

^Sm&[DE5
1

r
, ~2.4b!

andW is the average energy range covered by theM mo-
lecular states,

W5
M

r
5M ^Sm&. ~2.4c!

We denote byNj the number of final states$u j ,E&% which are
energetically accessible~i.e., the number of open channels!,
and it is assumed in the present version of the random ma
model that all open channels are independently coupled
the states in theQ-space. The coupling matrix elements b
tween each final state and the molecular states,
$^ j ,EuHum&%, are taken to be real and energy independe
which is not a severe approximation if the energy rangeW is
sufficiently narrow. The effective Hamiltonian matrix ca
therefore be written as

~Heff!m,m85Emdm,m82 ip(
j51

Nj

vm, jvm8, j , ~2.5a!

with

vm, j[^ j ,EuHum&. ~2.5b!

Within the ‘‘ergodic’’ ~complete IVR! model, the coupling
matrix elements are chosen from a Gaussian~normal! distri-
bution with the standard deviations and a mean value 0
such that

^v j ,mv j 8,m8&5dm,m8d j , j 8s
2, ~2.5c!

where^•••& stands for the statistical average.14 Other choices
of the coupling matrix elements which avoid the comple
IVR assumption are also possible14,16~b! but will not be con-
sidered here.

The effective Hamiltonian matrix is complex symmetr
~non-Hermitian! and therefore its eigenvalues are comple
$El2 iG l /2%. The corresponding eigenvectors are the re
nance states of the system. In the case of isolated resona
~the weak coupling limit,s→0! these states characterize th
unimolecular decay process in terms of Lorentzian spec
line shapes@Eq. ~1.2!#, and also provide the average unimo
lecular decay rate,k̄, via Eq. ~1.3!,14 i.e.

k̄5
Ḡ

\
, ~2.6!

whereḠ is the average resonance width for a given realiz
tion of the effective Hamiltonian matrix,

Ḡ5
1

M (
l51

M

G l5
22

M
tr@ Im~Heff!#5

2p

M (
m51

M

(
j51

Nj

vm, j
2 .

~2.7a!
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Averaging Ḡ over the distribution of coupling matrix ele-
ments@Eq. ~2.5c!# gives

^Ḡ&52ps2Nj . ~2.7b!

When the resonances overlap, however, the average u
molecular decay rate is not related to the average resona
width in such a simple fashion as in Eq.~2.6!. In a recent
paper,14 we have given a TST interpretation to the optica
model which predicts quite accurately the actual~simulated!
decay rates of randomly chosen states in theQ space for both
isolated and overlapping resonances. Within this interpret
tion, the number of states which are independently coupl
to theQ space is identified withN, the number of energeti-
cally ~classically! accessible states of the activated comple
~the molecule with the reaction coordinate degree of freedo
removed18! at the transition state dividing surface. The effec
tive Hamiltonian takes the form~see Ref. 14!

~Heff!m,m85Emdm,m82 ip (
n51

N

Vm,nVm8,n , ~2.8!

and the TST expression for the decay rate associated w
this effective Hamiltonian is14

^kTST&5
N

2pr\
^P&, ~2.9a!

where^P& is the average transmission probability per state
the dividing surface,

^P&512e24p2s2r512e22p^Ḡ&r/N. ~2.9b!

The TST-dividing surface is associated with the point of lo
cal minimum flux along the reaction coordinate, and th
number of states of the activated complex,N, is typically
smaller than the number of final states for a given total e
ergy, i.e.,

N<Nj , ~2.10!

equality maintaining in the limit of a ‘‘loose transition state,’’
where the point of minimal flux is in the asymptotic region
The other limiting case,N!Nj refers to a ‘‘tight transition
state’’ and is usually associated with a reaction barrier.18

To maintain consistency with the TST result for the av
erage decay rate, the standard effective Hamiltonian@Eq.
~2.5a!# should be replaced by the TST-based effective Ham
tonian @Eq. ~2.8!#. This can be done rigorously according to
the following derivation. Let us first introduce a set ofN
activated complex states,$un,E&%. Each state is associated
with a total energyE, a set of good quantum numbers,n, for
its ‘‘internal’’ degrees of freedom~i.e., excluding the reaction
coordinate!, and a free ~separable! motion towards the
‘‘products’’ along the reaction coordinate.$un,E&% are there-
fore the eigenstates of the full nuclear Hamiltonian at th
dividing surface, defined by a fixed value of the reactio
coordinate on the potential energy surface. Our derivatio
starts with the asymptotic completeness assumption; i.e.,
assume that each final stateu j ,E& is obtained asymptotically
from the time evolution of the set ofN intermediate states at
the TST dividing surface. This formally reads
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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lim
t→`

e2 iEt/\u j ,E&5 lim
t→`

(
n51

N

aj ,n~E!e2 iHt /\un,E&. ~2.11!

It is convenient to rewrite Eq.~2.11! in terms of a Mo¨ller
wave operator12

u j ,E&5 (
n51

N

aj ,n~E!V̂~E!un,E&, ~2.12a!

where the Mo¨ller operator is defined as

V̂~E!5 lim
t→`

e1 iEt/\e2 iHt /\. ~2.12b!

Making use of Eq.~2.12! for the final states, we can rewrite
the original effective Hamiltonian matrix@Eq. ~2.3!# as

@Heff~E!#m,m85Emdm,m82 ip(
j51

Nj

(
n51

N

(
n851

N

3^muHV̂~E!un,E&aj ,n~E!aj ,n8
* ~E!

3^n8,EuV̂†~E!Hum8&, ~2.13!

which can be simplified by assuming asymptotic complet
ness for the final states; i.e., each intermediate state evol
asymptotically in time to the set ofNj final states

lim
t→`

e2 iĤ t/\un,E&5 lim
t→`

(
j51

Nj

bn, j~E!e2 iEt/\u j ,E&, ~2.14!

or, in terms of the Mo¨ller operator

un,E&5(
j51

Nj

bn, j~E!V̂†~E!u j ,E&. ~2.15!

Using Eqs.~2.12!, ~2.15! one has

bn, j~E!5^ j ,EuV̂~E!un,E&5aj ,n* ~E!. ~2.16!

Multipling Eq. ~2.15! from the left by^n8,Eu and using Eq.
~2.16!, one obtains the isometry of the Mo¨ller operator, i.e.,12

dn,n85(
j51

Nj

bn, j~E!bn8, j
* ~E!5(

j51

Nj

aj ,n* ~E!aj ,n8~E!,

~2.17!

which, when used in Eq.~2.13!, gives

@Heff~E!#m,m85Emdm,m82 ip (
n51

N

^muHV̂~E!un,E&

3^n,EuV̂†~E!Hum8&. ~2.18!

The effective Hamiltonian in Eq.~2.18! is expressed in terms
of coupling matrix elements between the molecular state
$um&%, andN specific linear combinations of the final states
each one given byV̂(E)un,E& for n51,...,N. The crucial
assumption in our derivation is that the random matrix a
sumptions are imposed on these coupling matrix elemen
i.e., we identify Eq.~2.18! with Eq. ~2.8!, where
J. Chem. Phys., Vol. 102Downloaded¬14¬Jul¬2010¬to¬128.125.205.65.¬Redistribution¬subject¬
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Vm,n[^muHV̂~E!un,E&, ~2.19!

are assumed to be energy independent, real, and normall
distributed around 0 with a standard deviations. Within the
random matrix assumptions, Eq.~2.18! is identical to Eq.
~2.5a! with Nj replaced byN. The physical basis for the
present assumption is that the molecular states are strongl
mixed ~i.e., correspond to ergodic motion in the classical
limit ! only from the reactant Franck–Condon region to the
transition state dividing surface.

B. Final state-selected spectra

An explicit expression for the final state-selected spectra
can be written in terms of the effective Hamiltonian matrix.
By using Eq.~2.1! and Eq.~2.12a! in Eq. ~1.5! for the final
state-selected probability, we obtain

Pj~E!5Um^F0u~E2Heff!21QHP

3 (
n51

N

aj ,n~E!V̂~E!un,E&U2. ~2.20!

Within the finite basis set representation of the effective
Hamiltonian matrix as given in Eqs.~2.8!, ~2.19!, Eq. ~2.20!
can be rewritten as

Pj~E!5Um (
m51

M

F0,m (
m851

M

@~EI2Heff!21#m,m8

3 (
n51

N

aj ,n~E!Vm8,nU2, ~2.21!

whereHeff is the effective Hamiltonian matrix, andF0,m
([^F0um&) is the projection of the initial state onto the mo-
lecular stateum&. Without loss of generality, we shall assume
that the molecular basis states are excited uniformly, such
that F0,m 5 1/AM . As seen from Eq.~2.21!, Pj (E) de-
pends on the random matrix elements$Vm8,n% for the cou-
pling between the molecular states and the activated com
plex, and on ‘‘dynamical’’ matrix elements$aj ,n(E)% for the
coupling between the activated complex and the dissociation
products. The present approach combines, therefore, a un
versal statistical description of the molecular system and a
molecule-specific dynamical description of the propagation
from the transition state to the products. We shall come to
this point again later.

It is useful to rewrite Eq.~2.21! in terms of the reso-
nance eigenvalues and eigenvectors of the effective Hamil
tonian. By diagonalizing the effective Hamiltonian matrix
numerically one has,

@~EI2Heff!21#m,m85(
l

um
l um8

l

E2El1 iG l /2
, ~2.22!

where $ul% are the eigenvectors ofHeff associated with the
~complex! resonance eigenvalues$El2 iG l /2%. Note that
sinceHeff is a complex symmetric matrix, its right and left
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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eigenvectors are identical~i.e., the left vector is not the com
plex conjugate of the right vector!.19 By substituting Eq.
~2.22! into Eq. ~2.21!, the standard representation of th
spectrum as a summation over Lorentzian-amplitudes w
complex coefficients is obtained,

Pj~E!5U(
l

Cj
l ~E!eif j

l
~E!

E2El1 iG l /2U
2

. ~2.23a!

The complex coefficients, which are characterized by th
real amplitudes$Cj

l (E)% and phases$f j
l (E)%, are given by

Cj
l ~E!eif j

l
~E!5m (

m51

M

F0,mum
l (
m851

M

um8
l (

n51

N

aj ,n~E!Vm8,n .

~2.23b!

We end this section by considering some limitations
the inputs of the model for the effective Hamiltonian. Th
input parameters are the density of molecular statesr, the
energy rangeW, the number of independent open channe
N, and the coupling strengths. The dimension ofQ,
M5rW, should be taken large enough to provide statis
cally meaningful results. For a fixedM , the minimal value of
W should be of the order of the maximal resonance wid
such that all the resonance widths will be sampled correc
within the energy range. This condition implies that~see Ref.
14!

^G&r,N. ~2.24!

An upper bound forW is usually imposed by the physica
conditions. The application of the model is limited to a
energy rangeW for which the effective Hamiltonian is en-
ergy independent andr, s, Nj , andN can reasonably as-
sumed to be constants.

III. ‘‘LOOSE’’ TRANSITION STATES

We first consider the limiting case of a loose transitio
state where the activated complex is associated with an
ymptotic value of the reaction coordinate. Physically, th
case corresponds to the ergodic evolution of the excited m
ecule from the Franck–Condon region to the asymptotic fi
states~products!. Such a transition state is invoked, for ex
ample, in the phase space theory~PST! of unimolecular
decay.20 The probability of obtaining a specific final statej at
a given energy, should, therefore, beindependent of the iden-
tity of this state. Within the random matrix optical model, a
the open channels are independently and randomly coup
to the molecular states~i.e., theQ-space!, so that

N[Nj . ~3.1!

The TST interpretation of the model implies that the fin
states are identified with the states of the activated comp
In this case, therefore, the ‘‘dynamical’’ coupling matrix e
ementsan, j as defined in Eq.~2.16! are a Kronecker delta

aj ,n~E!5d j ,n . ~3.2!

By substituting Eqs.~3.1!, ~3.2! into Eq. ~2.23!, the expres-
sion for the final state-selected spectra for a loose transi
state is obtained,
J. Chem. Phys., Vol. 10Downloaded¬14¬Jul¬2010¬to¬128.125.205.65.¬Redistribution¬subjec
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Pj~E!5U(
l

Cj
l eif

l

E2El1 iG l /2U
2

, ~3.3a!

where the complex coefficients are energy-independent an
are statistically identical for all the final states$ j %,

Cj
l eif

l
5m (

m51

M

F0,mum
l (
m851

M

um8
l Vm8, j . ~3.3b!

Equation~3.3! implies thatPj (E) depends only on the effec-
tive Hamiltonian matrix and not on any exit channel dynam-
ics.

In Fig. 1 typical spectra are presented, which illustrate
the transition from the weak coupling~nonoverlapping! re-
gime to the strong coupling~overlapping! regime. When the

FIG. 1. ~a! Final state-selected spectraPj (E) for j51 ~solid line! and j53
~dashed line!. The effective Hamiltonian parameters arer51 cm21,
M5800, N5Nj516 and an average resonance width 2ps2N50.1. ~b!
The same for 2ps2N52.0. ~c! The same for 2ps2N510.0.
2, No. 22, 8 June 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8879Peskin, Miller, and Reisler: Final state-selected spectra
degree of resonance overlap is small@^Ḡ&r50.1 as in Fig.
1~a!#, Lorentzian peaks are observed and the spectra for
ferent j states have different intensities, but similar line p
sitions and widths. As the overlap increases@Figs. 1~b! and
1~c!#, the peaks are shifted, mixed, and broadened, and
spectra for differentj states begin to differ also in their line
positions and widths, a result of state-specific interferen
between the resonance amplitudes. The behavior show
Figs. 1~b! and 1~c! is qualitatively similar to that observed in
the state-selected spectra obtained for NO2 in the near thresh-
old region4 and atE52000–2500 cm21, respectively.8

Figure 2 shows the distributions of resonance widths t
are associated with each spectrum in Fig. 1. In the nonov
lapping regime the distribution of state-specific unimolecu

FIG. 2. ~a! Solid line,x2 distribution function with 16 degrees of freedom
The histograms represent the probability distribution of the normalized re
nance widths (G/Ḡ) as obtained by diagonalizing the effective Hamiltonia
with the parameters of Fig. 1~a!. ~b! The same, for the parameters of Fig
1~b!. ~c! The same, for the parameters of Fig. 1~c!.
J. Chem. Phys., Vol. 102Downloaded¬14¬Jul¬2010¬to¬128.125.205.65.¬Redistribution¬subject
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decay rates~and also resonance widths! is expected to be
x2-like with N degrees of freedom, according to the ‘‘Golden
Rule’’ ~perturbative! limit of the random matrix model,2,21

and indeed this is found in our simulations as illustrated in
Fig. 2~a!. As the overlap increases, not only does the averag
width increase, but the distribution of widths increasingly
deviates from ax2-like distribution. The deviations are asso-
ciated with an increasingly longer tail, as can be seen in Figs
2~b!, 2~c! @and see also Ref. 16~a!#. In Fig. 2, the bars rep-
resent the distribution obtained in the present simulations
while the solid line is the correspondingx2 distribution.

The shapes of the spectral features are directly related t
the interference between different resonance amplitudes.8,11

The interference is well characterized in terms of the phase
$f l% in Eq. ~3.3!. In Fig. 3 the distributions of phases which

o-
,

FIG. 3. ~a! Probability distribution of the phases,f l , as defined by Eq.
~3.3b! for the effective Hamiltonian with the parameters of Fig. 1~a!. ~b! The
same, for the parameters of Fig. 1~b!. ~c! The same, for the parameters of
Fig. 1~c!.
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8880 Peskin, Miller, and Reisler: Final state-selected spectra
correspond to the spectra in Fig. 1 are plotted. It is clear th
in the weak coupling regime, the phases are strongly peak
around integer multiplies ofp, indicating that the coeffi-
cients in Eq.~3.3b! ~the residues! are approximately real.
This is directly related to the fact that in this limit the reso
nance eigenvectors of the effective Hamiltonian,$ul%, are
simply the zeroth basis$um&% itself, i.e., um

l 'd l ,m . As the
coupling increases the coefficients become complex a
eventually @see Fig. 3~c!# their phases become uniformly
~and randomly! distributed between 0 to 2p, justifying a sta-
tistical treatment of overlapping resonances as is done
theories of nuclear reactions.11,13The random phases eventu
ally result in the disappearance of the resonance structure
the spectra@see Fig. 1~c!#, a result characteristic of dissocia-
tion in the strong coupling limit~e.g., a direct reaction!.

Simulations such as the ones presented above provid
useful way of qualitatively interpreting experimentally mea
sured spectra when dynamical calculations are computati
ally beyond reach and a statistical description of the proce
is justified. The spectra depend, via the effective Hamiltonia
matrix, on three independent parameters; the molecular d
sity of statesr, the number of independent open channelsN,
and the average coupling strength between theP-space and
theQ-space,s. For a loose transition state,N is equal to the
number of final states and is usually well known for a give
energy. Therefore, a comparison between simulated and
perimental spectra can be useful in estimatingr, s, and also
the average unimolecular reaction rate via Eq.~2.9!.

As an illustrative example consider the near-thresho
unimolecular reaction of NO2 at access energies 0–13 cm

21.
The NO state-selected spectra in this energy range were m
sured by Miyawakiet al.4 Just above threshold, i.e., for ac
cess energies 0,E,5 cm21, the number of independent
open dissociation channels inN54. The final state selected
spectra are characterized by sharp peaks with an aver
width which is much smaller than 1 cm21 ~see Fig. 4 in Ref.
4!. The average spectral width increases above 5 cm21,
where another rotational state of NO opens up, so that t
total number of open channels isN58.4 For the entire en-
ergy interval 0–13 cm21, the spectra obtained by monitoring
different final NO quantum states exhibit differences in th
positions, widths, and heights of the spectral features. Ho
ever, each one of the two subintervals associated withN54
andN58 is characterized by a typical distribution of pea
widths, and positions that are clustered around the zero-or
states.

A quantitative peak-to-peak fitting of a random matri
simulation of the experimental measurements is neither p
sible nor is it the goal of the present work. Rather, a qua
tative comparison of trends in the simulated and experime
tal spectra can be used to estimate the ranges of molec
parameters and aid in the interpretation of the experimen
spectra. Near threshold, the number of open channelsN is
well defined~4 or 8 in the present case!. From the molecular
absorption spectrum justbelow threshold, we estimate the
density of statesr at 5–10 states per wave number.4,5 Fixing
N54 andr56 in the simulations, as well as the positions o
the zero order states, we obtain final state selected spectr
different appearance by using different values of the res
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nance width parameter,̂Ḡ&52pNs2. For example, Figs.
4~a! and 4~b! correspond tôḠ&r50.6 and 3.0, respectively.
In each figure, spectra of two different dissociation channe
are presented@chosen arbitrarily asj51,2 in Eq. ~3.3a!#.
Comparing the simulations to the experimental spectra
Ref. 4, we conclude by inspection that the spectra display
in Fig. 4~b! fits better the experimental results in terms of th
distribution of peak widths and overlap, and the dynami
range of the intensities~peak heights!. Our simulations indi-
cate that the decaying molecular complex is characterized
overlapping resonances, a fact that is reflected in the pr
nounced differences between spectra obtained when monit
ing different open channels~in both the measured and simu-
lated spectra!. The degree of resonance overlap can b
roughly estimated at̂Ḡ&r'3, based on these simulations.

In Fig. 5, simulated spectra for the range 5,E,13
cm21 are plotted, wheres andr are assumed to be the same
as in the first energy interval. Compared to the plot in Fig

FIG. 4. ~a! Simulated final state-selected spectrumPj (E) for j51 ~solid!
and j52 ~dashed!. The effective Hamiltonian parameters arer56/cm21,
M530,N54 and an average resonance width 2ps2N50.1. ~b! The same
for 2ps2N50.5.
, No. 22, 8 June 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8881Peskin, Miller, and Reisler: Final state-selected spectra
4~b!, a reduction in average intensity and further broaden
of the spectral features are obtained, in accord with the
perimental observations.4,8–10 The reduction in intensity in
the state selected spectra at the higher energy range refl
the lower fractional population of each open channel. No
also that here again, in agreement with the degree of re
nance overlap, different final state-selected spectra exh
differences in spectral widths and peak positions.

The simulations also enable us to estimate the aver
unimolecular rate constant. The average width of the spec
features measured in this wavelength region is 0.1–
cm21.4 However, this value cannot be used directly to es
mate the decay rate in the regime of overlappi
resonances.8 To estimate the near threshold rate we can u
the density of states and the degree of resonance ove
according to Eq.~2.9b!. The average transmission probabilit
is @see Eq.~2.9b!#,

^P&512e22p33/4'0.99,

which is very close to the classical RRKM limiting resu
~i.e., ^P&51!. The average unimolecular decay width ne
threshold~i.e., forN54! estimated according to Eq.~2.9a! is
therefore

\^kTST&5^P&3
4

2p36
'0.105 cm21,

which correspond to a decay rate of

^kTST&50.0198 ps21.

IV. TIGHT TRANSITION STATES IN BOND FISSION
REACTIONS

Tight transition states usually arise when a real barr
exists in the exit channel~e.g., due to avoided crossings18,22!,
or in the absence of a such a fixed barrier, when the poin
minimum flux along the reaction coordinate is in the ‘‘inte
rior’’ region of the potential surface.23–25Since such a tran-
sition state is associated with an energetic bottleneck al
the reaction coordinate, the number of states of the activa
complex is smaller than the number of asymptotic op
channels, i.e.,

FIG. 5. Simulated final state-selected spectrumPj (E) for j51 ~solid! and
j52 ~dashed!. The effective Hamiltonian parameters arer56/cm21,
M548,N58 and an average resonance width 2ps2N51.0.
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N,Nj . ~4.1!

Although we invoke a random matrix model for the evolu-
tion of the system from the Franck–Condon region to the
transition state~assuming ergodic dynamics, i.e., strong mix-
ing of the molecular states!, the coupling of the transition
state to the final states is evaluated explicitly, and thus the
final states are identified within the model. As an example,
we evaluate the dynamic coupling matrix elements and simu-
late the final state distributions for a simple specific case of a
bond-fission reaction of a triatomic molecule (ABC→A
1BC).

A. Dynamical coupling matrix elements

We consider the photoinitiated unimolecular decomposi-
tion of a triatomic moleculeABC→A1BC with total angu-
lar momentumJ50 and total energyE. The PES in Jacobi
coordinates is given in terms of the distanceR betweenA
and theBC center of mass, the angleu between the bond
axis of the diatom and the axis defined byA and theBC
center of mass, andr , the BC distance. The molecular
Hamiltonian for totalJ50 is

H~R,r ,u!5
1

2mA–BC
S 2\2

R

]2

]R2 R1
ĵ 2

R2D
1

1

2mBC
S 2\2

r

]2

]r 2
r1

ĵ 2

r 2D1V~R,r ,u!,

~4.2!

where, asR→`, V(R,r ,u)→V0(r ). The asymptotic Hamil-
tonian defines the possible final states of the dissociation
process. These are the rovibrational states ofBC,

^R,r ,uun, j ,E&5Yj ,0~u!fn, j~r !xn, j ,E~R!, ~4.3a!

where the rotational functions are the spherical harmonics

ĵ 2Yj ,0~u!5\2 j ~ j11!Yj ,0~u!, ~4.3b!

fn, j (r ) are the vibrational functions which are the solutions
of the asymptotic Schro¨dinger equation

H \2

2mBC
F21

r

]2

]r 2
r1

j ~ j11!

r 2 G1V0~r !J fn, j~r !

~4.3c!
5En, jfn, j~r !,

andxn, j ,E(R) are the solutions of the radial equation inR,

H \2

2mA–BC
F21

R

]2

]R2 R1
j ~ j11!

R2 G J xn, j ,E~R!

~4.3d!
5~E2En, j !xn, j ,E~R!.

The transition state is defined by the center of mass co-
ordinateR5R0 along the PES~the dividing surface!. It is
assumed here that the motion along the dividing surface is
uncoupled from the motion along the reaction coordinate
from the transition state (R5R0) to the product region
(R→`). The Hamiltonian at the transition state is therefore
separable,

HTS~R,r ,u!5H‡~r ,u!1
2\2

2mA–BCR

]2

]R2 R, ~4.4a!
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8882 Peskin, Miller, and Reisler: Final state-selected spectra
whereH‡(r ,u) is the Hamiltonian of the activated comple
~i.e., the molecule at the transition state with the react
coordinate removed!,

H‡~r ,u!5
1

2mA–BC

ĵ 2

R0
2 1

1

2mBC
S 2\2

r

]2

]r 2
r1

ĵ 2

r 2D
1V~R0 ,r ,u!. ~4.4b!

The intermediate states,$un,E&%, are the eigenstates o
H‡(r ,u) @Eq. ~4.4a!# defined as

^R,r ,uun,E&5Cn
‡~r ,u!wn,E

‡ ~R!, ~4.5!

where

H‡~r ,u!Cn
‡~r ,u!5En

‡Cn
‡~r ,u!, ~4.6a!

and

S 2\2

2mA–BCR

]2

]R2 RDwn,E
‡ ~R!5~E2En

‡!wn,E
‡ ~R!. ~4.6b!

An explicit expression for the dynamical coupling ma
trix elements is given in terms of the asymptotic~final! states
and the activation complex states according to Eq.~2.16!,

a~ j ,n!,n5 lim
t→`

^n,Eue2 iEt/\e1 iHt /\un, j ,E&. ~4.7!

The right-hand side in the last equation can be calcula
exactly by using numerical methods. One can propag
un, j ,E& in time as an initial wave packet,22 or apply time-
independent approaches to evaluate the limit in Eq.~4.7! in
terms of a Green’s operator. One can also apply simplify
approximations in order to estimate the dynamical coupli
matrix elements. The crudest quantum mechanical appr
mation is the sudden approximation, which is justified whe
ever most of the energyE is associated with the motion
along the reaction coordinate.22,26Within this approximation,
the matrix elements reduce to

a~ j ,n!,n'2pE
0

p

sin~u!duE
2`

`

r 2drCn
‡~r ,u!fn, j~r !Yj ,0~u!,

~4.8!

which are the rovibrational Franck–Condon factors.22,26,27

A further simplification can be introduced when the e
cess energy of the molecular complex is not sufficient
excite the vibration ofBC. In this case,BC can be approxi-
mated as a rigid rotor at the nuclear separationr 0 . Repeating
the derivation@Eqs.~4.2!–~4.8!# for this case, one has

aj ,n'2pE
0

p

sin~u!duCn
‡~u!Yj ,0~u![^Cn

‡uYj ,0&, ~4.9!

where$Cn(u)% are the eigenfunctions of the bending Ham
tonianH‡(u),

H‡~u!Cn
‡~u!5EnCn

‡~u!, ~4.10a!

and

H‡~u!5
ĵ 2

2mA–BCR0
2 1

ĵ 2

2mBCr 0
2 1V~R0 ,r 0 ,u!. ~4.10b!
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The coupling matrix elements$aj ,n% can be readily obtained
numerically by diagonalizing the matrix representation o
H‡(u) in a basis set of the spherical harmonics, i.e., Eq
~4.10a! can be rewritten as

(
j 8

^Yj ,0uH‡uYj 8,0&^Yj 8,0uCn
‡&5En^Yj ,0uCn&; ~4.11!

or by using the definition in Eq.~4.9!,

(
j 8

~H‡! j , j 8aj 8,n
* 5Enaj ,n* , ~4.12a!

where the bending Hamiltonian matrix is defined as

~H‡! j , j 85^Yj ,0uH‡uYj 8,0&

5Brot
‡ j ~ j11!d j , j 8

12pE
0

p

du sin~u!Yj ,0* ~u!V~R0 ,r 0 ,u!Yj 8,0~u!,

~4.12b!

and the effective rotational constant at the transition stat
Brot
‡ , is defined as

Brot
‡ 5

\2

2mA–BCR0
212mBCr 0

2 . ~4.12c!

According to Eq.~4.12a! the coupling matrix elementaj ,n is
identified with thej th component of thenth eigenvector of
the matrixH‡.

B. Rotational state distributions

In the case of a tight transition state, the number of state
of the activated complex in a given energy range~i.e.,N! is
usually unknown except for the fact that it is smaller than th
actual number of open final channels@Eq. ~4.1!#. Although
random matrix simulations cannot provide a direct means fo
determiningN for specific reactions, variational RRKM cal-
culations have done so successfully in selected cases.23–25

The random matrix model that we present here describe
however, the general dependence of the final state distrib
tions onN ~i.e., on excess energy!. As an illustrative example
we consider the model triatomic system for bond-fission re
actions as described above. The transition state is charact
ized by a barrier height of 3000 cm21 above the dissociation
threshold and is located atR052.5 Å. The diatomBC is
modeled as a rigid rotor and the effective rotational constan
@see Eq.~4.12c!# is taken asBrot

‡ 5 2 cm21. An anharmonic
potential is assumed for the bending motion at the transitio
state,

V~R0 ,r 0 ,u![v~u!5(
k

Ck cos
k~u!. ~4.13!

In Fig. 6, the bending potential and the Hamiltonian eigen
functions of the activated complex@obtained numerically ac-
cording to Eq.~4.12!# are plotted.

Consider first the limiting case of a tight transition state
with N51. In this case all the asymptotic final states are
obtained from a single intermediate state, i.e., the groun
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8883Peskin, Miller, and Reisler: Final state-selected spectra
bending level of the activated complex. It is therefore e
pected that, irrespective of the excited resonance state~s!, the
distribution of final states will depend on the exit chann
dynamics from that intermediate state. In the present mo
this implies thatN51 in Eq. ~2.23!. Within the sudden ap-
proximation the dynamical coupling matrix elements are e
ergy independent@Eq. ~4.9!# so that the state-selected prob
ability @Eq. ~2.23!# can be rewritten as

Pj~E!5u f ~E!u23uaj ,1u2, ~4.14!

and consequently the final state distribution does not dep
on excitation energy except for aj -independent factor,
u f (E)u2. This is illustrated in Fig. 7~a! for the model bond-
fission reaction where the simulated rotational distributio
are obtained according to Eq.~2.23! with N51. The two
different spectra are associated with two nearby energ
separated by 2 cm21. Clearly, the two rotational distributions
are identical~up to a constant factor!. The observed fast os
cillations as a function ofj are well understood in this simple
case,28 and derive from the ‘‘mapping’’~expansion coeffi-
cients! of the activated complex bending state in terms of t
free rotor states.22 ~They are usually washed out when se
eral initial parent states are populated.22,28–30!

This simple picture breaks down, however, whenN is
larger, as illustrated in Fig. 7~b! for N58. Here the enve-
lopes of the rotational distributions associated with the tw
nearby energies are completely uncorrelated, and the osc
tory patterns of the distributions are not related to the exp
sion coefficients$aj ,n% in a direct fashion. To interpret thes
observations, we expressPj (E) in Eq. ~2.23! as follows:

Pj~E!5U(
n

gn~E!aj ,nU2, ~4.15a!

where

gn~E!5(
l

m

E2El1 iG l /2
(
m51

M

F0,mum
l (
m851

M

um8
l Vm8,n .

~4.15b!

FIG. 6. Thick line, the bending potential at the transition statev(u) as
defined in Eq.~4.13!. The expansion coefficients$Ck ; k50,...,7% are cor-
respondingly given by 4000, 1600,2900,2230, 470,2760, 1400,2780
cm21. Thin lines, probability densities, const3uCn(u)sin~u!u2, for the eigen-
functions of the transition state~bending! Hamiltonian~the base lines cor-
respond to the bending energies!. The wave functions are obtained by di
agonalizing the bending Hamiltonian in a basis of 80 spherical harmon
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The last equation clearly illustrates that forN.1, the dy-
namical coupling matrix elements connecting the differen
states of the activated complex to a particular final statej are
superimposed with energy-dependent complex coefficient
so that state-specific information contained in$aj ,n% is ‘‘lost’’
due to interference.

Figure 7~c! corresponds to a yet larger number of states
of the activated complex (N550). As inFig. 7~b!, the rota-
tional distributions are again characterized by oscillations as
sociated with the superposition of the dynamical coupling
matrix elements. However, in contrast to the ‘‘intermediate’’
case~e.g.,N58!, the distributions for the two neighboring
energies are strongly correlated, resembling more the resu
of Fig. 7~a! for the limiting caseN51.

s.

FIG. 7. ~a! Rotational distributionsPj (E) for BC (ABC→A1BC), plotted
vs the rotational quantum,j , of BC. The effective Hamiltonian parameters
are r50.5/cm21, M5100, N51 and an average resonance width
2ps2N50.1. The solid and dashed lines correspond to the energies
E15102 andE25104 cm21, respectively.~b! The same forN58 and
2ps2N50.8. ~c! The same forN550 and 2ps2N55.0.
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8884 Peskin, Miller, and Reisler: Final state-selected spectra
The increasing correlation of the rotational distribution
at nearby values ofE for increasingly largerN can be related
to the increased degree of resonance overlap. The latter
direct result of Eq.~2.7b!, i.e.,

^Ḡ&r52ps2rN, ~4.16!

which implies that the degree of resonance overlap is lin
in N. In the limit of nonoverlapping resonances, the widt
($G l%) are typically smaller than the energy spacing betwe
two nearby resonance energies. Consequently, for any en
E, one resonance~for whichEl'E! dominates the contribu-
tion to the summation overl in Eq. ~4.15b!. Moreover, each
resonance state is well approximated by a specific molec

state, i.e.,um
l 8 ' d l 8,m . Using these two approximations in

Eq. ~4.15b! one has

gn~El 8!'const3F0,l 8Vl 8,n , ~4.17!

which implies, according to Eq.~4.15a!, that for a given
photolysis energyE, Pj (E) derives mainly from a single
resonance state. When the difference between the two p
tolysis energies exceeds the average resonance width (^Ḡ&),
each energy is likely to excitea different resonance state.
Since the coupling matrix elements$Vl 8,n% are random, the
sum in Eq.~4.15a! will be different for eachE, and conse-
quently the rotational distributions will exhibit large sensitiv
ity to the photolysis energy. For fixed~small! values of the
density of states and the average coupling strength this s
ation is characteristic of smallN’s @i.e., small overlap ac-
cording to Eq.~4.16!#, as seen in Fig. 7~b! for N58 and
^Ḡ&r50.4. AsN increases, the degree of resonance over
increases so that at any photolysis energy a group of re
nances typically dominates the summation in Eq.~4.15b!
rather than a single resonance. In this case, two nearby p
tolysis energies which correspond approximately to exci
tion of the same group of resonances, will lead to a simi
sum in Eq. ~4.15a! and correlated rotational distributions
This situation is depicted in Fig. 7~c! for N550 and^Ḡ&r
52.5.

Before concluding this section we note that both the su
den and the random matrix approximations used in
present simulations tend to overestimate the sensitivity of
rotational distributions to the excitation energy for smallN’s.
Within the sudden approximation, the couplings of speci
final product states to the transition state~i.e., $aj ,n%! are
sensitive to the specific level of the activated complex,n. In
contrast, in cases where the dissociation dynamics is do
nated by exit channel forces beyond the transition state~i.e.,
the sudden approximation does not apply!, $aj ,n% for differ-
ent activated complex levels may be very similar. In this ca
the summation over differentn-states in Eq.~4.15a! may
lead to similar rotational distributions for nearby energi
also forN.1.

The random matrix assumption~i.e., ergodic dynamics
in theQ-space! leads to overestimation of the sensitivity o
the rotational distributions to small changes in excitation e
ergy, since the couplings of different resonance states to
activated complex@i.e., $Vl 8,n% in Eq. ~4.17!# are random. In
reality, it is possible that the couplings of nearby resonan
states to the activated complex will be correlated so that
J. Chem. Phys., Vol. 102Downloaded¬14¬Jul¬2010¬to¬128.125.205.65.¬Redistribution¬subject
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coefficientsgn(E) in Eq. ~4.15a! will not change much for
nearby energies, even when the resonances do not overlap.
this case energy sensitive distributions will not be observed

Experimentally, the sensitivity of the rotational distribu-
tions to small changes in the excitation energy@e.g., Fig.
7~b!# is not expected to be observed for large molecule
where the degree of resonance overlap increases rapidly wi
energy due to rapid increase inN. The energy sensitivity of
the distributions is associated with an intermediate regime, i
whichN is large enough so that the dissociation dynamics i
different for different activated complex states, and yetN is
small enough so that the molecular resonances do not ove
lap appreciably. This is expected to be the case for sma
molecules with a tight transition state. Indeed, the measure
ments of Reisler and co-workers have shown that for th
unimolecular decay of NO2 in the range of 2000–3000 cm

21

above dissociation threshold, the NO rotational distributions
obtained at nearby excitation energies are different.7,8Ab ini-
tio calculations31 as well as variational RRKM calculations24

confirm that the transition state of NO2 tightens rapidly as
the energy increases, which implies thatN ~as well asr and
s! is relatively small even high above the dissociation
threshold.

In summary, fluctuations and oscillations in final state
distributions are expected in almost every system withN
larger than a few states, but their variations with smal
changes inE depend on the degree of overlap and the spe
cific dynamics. Although the random matrix and the sudden
approximations used here describe only specific limiting
cases and real systems will display more complicated dy
namics, we believe that the trends illustrated by the presen
simulations are representative of real systems.

V. DISCUSSION AND CONCLUSIONS

The work presented here, as well as that in our previou
paper,14 shows that a random matrix version of Feshbach’s
optical model provides a description of unimolecular reac
tions that is applicableboth to isolated and overlapping reso-
nances. Specifically, final state-selected spectra, distributions
of decay widths and phases, the average decay width, and t
unimolecular reaction rate can be described. Although th
evolution of the system of resonances is treated as a scatte
ing process, the physical interpretations of the state-selecte
spectral features, rates and product state distributions a
couched in terms of statistical transition state theories. In
particular, the resonances are assumed to evolve to fin
products via a ‘‘bottleneck’’ whose structure and energy lev-
els are identified with the conventional transition state o
statistical theories of unimolecular decay~e.g., PST, RRKM!.

An important advantage of the formalism presented her
is its ability to treat both loose and tight transition states. The
evolution of the system up to the transition state is treated b
using random coupling matrix elements and does not nece
sitate knowledge of the PES. However, from the transition
state onward, the evolution is controlled by the dynamics on
each PES, and the formalism presented here includes expli
itly the dynamical coupling matrix elements. We point out
also that the model is valid as long as a partitioning into the
, No. 22, 8 June 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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bound (Q) and continuum (P) parts is possible, i.e., for
dissociation that is not too fast.

The main assumption of the model lies in the use of th
random matrix formalism, namely the coupling matrix ele
ments between the quasibound states of the excited molec
and the transition state are random and can be chosen from
Gaussian~normal! distribution. This assumption is justified
in cases when the states of the excited molecule are mix
~ergodic!. Thus, the same assumption, i.e. complete intram
lecular vibrational redistribution~IVR!, that justifies the use
of statistical theories in describing unimolecular decay, als
provides the rationale behind assigning each resonance
equal, but random, probability for accessing all states of th
transition state. In statistical theories, due to inherent e
semble averaging, resonance-specific effects are expected
wash out. In the cases discussed here, where the initial a
final states are well defined, averaging is minimized and th
assumption of random coupling matrix elements leads, for
loose transition state, to random fluctuations in the fina
state-selected spectra and product distributions. Howev
since each molecule has well defined resonance structu
and dissociates on a specific PES, in reality the couplin
matrix elements are resonance and molecule specific. Th
the model described here is general in that it shows featur
that provide guidelines in interpreting results of state
selected experiments in the presence of overlapping res
nances, but it is not intended to be applied quantitatively to
specific molecule.

The main results derived from the model and their inte
pretations are summarized below:

~1! For isolated resonances or at low level of overlap, th
distribution of decay widths obeys ax2-like distribution
and the phases are clustered around the real axis. W
increasing overlap, the distribution of decay widths star
to broaden and deviates from that predicted by ax2-like
distribution, while the phases become randomly distrib
uted. This leads to interference, and for a molecule wit
a low density of states, to the observation of spectr
features that depend sensitively on the monitored fin
state. When the density of states becomes large or ma
initial or final states are summed, the spectral feature
become smeared and the conditions which justify th
random phase approximation prevail.

~2! When the resonances overlap, there is no simple relati
between the resonance widths~which cannot be ob-
served experimentally!, the widths of the spectral struc-
tures, and the average rate. The simulations, which allo
independent variation of the average width and rate, ca
be optimized until best agreement with the experiment
obtained. The average width can be extracted by sim
lating the experimental spectra, and the average rate c
be calculated using Eq.~2.9!. The relation between the
average rate and width in the case of overlapping res
nances is discussed in detail elsewhere.14

~3! For a loose transition state, the number of final states
equal toN, the number of transition state levels, and th
simulations can be compared directly~albeit qualita-
tively! with experimental final state-selected spectra. Fo
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example, whenr andN are known, the average width
can be extracted by simulating the spectra. The simu
lated final state-selected spectra are shown to be qualita
tively similar to those observed in the near-threshold uni-
molecular reaction of NO2 by monitoring selected levels
of NO.4 Both experiments and simulations show spectra
that differ in line intensities, positions, and widths when
different final states are monitored. Our model also pre-
dicts trivially that the rotational state distributions at spe-
cific photolysis energy will show random fluctuations.

~4! Simulations were also carried out for dissociation over a
barrier ~i.e., with a tight transition state!. The transition
state was modeled with hindered rotor wave functions,
and a limiting case where no final state interactions oc-
cur beyond the transition state was treated explicitly~i.e.,
by using the Franck–Condon model for dissociation!. In
this case, the behavior of the rotational state distributions
depends on the excess energy regime. When a mode
number of transition state levels are populated~e.g.,
5–20!, prominent oscillatory structures appear in the ro-
tational distributions, which change sensitively with a
small change in photolysis energy. The behavior ob-
tained in this regime is quite similar to that seen in the
unimolecular reaction of NO2 at excess energies 2000–
3000 cm21, where large oscillations in the NO rotational
distributions that change significantly with a small
changes in photolysis energy~e.g., 5–50 cm21! are
observed.8 When a large number of transition state levels
are populated, the simulated oscillatory structures do no
depend sensitively on photolysis energy any more. In
this regime, the degree of overlap is very large and a true
statistical limit is reached. Here, averaging over even
few initial states will tend to smooth the oscillations.28,32
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