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Unimolecular decay processes are studied in the regime of overlapping resonances with the goal of 
elucidating how. unimolecular reaction rates depend on resonances widths (the imaginary part of the 
Siegert eigenvalues). As illustrated analytically for one-dimensional models and numerically for a 
more general random matrix version of Feshbach's optical model, transition state theory (TST, 
Rice-Ramsperger-Kassel-Marcus) provides the correct average unimolecular decay rate whether 
the resonances are overlapping or not. For all studied cases, the explicit "universal" dependence of 
the TST average rate on the average resonance width (for a given energy, or an energy interval) is 
that of a saturation curve: in the regime of nonoverlapping resonances (i.e., weak coupling) the 
standard relation "unimolecular decay rate=resonance width Iii" holds, but as the resonance 
overlap increases (strong coupling) the rate saturates, becoming practically independent of the 
average resonance width in the strong overlapping limit. On the basis of these conclusions, a 
discussion of what has been or can be measured in experiments of unimolecular decay that relates 
to the average decay rate and to the resonance widths is given. © 1994 American Institute of 
Physics. 

I. INTRODUCTION 

The microscopic definition of the decay rate in unimo­
lecular reactions is a central issue. However, it is more dif­
ficult to provide a rigorous theoretical definition of a unimo­
lecular reaction rate than it is for a bimolecular reaction 
because there is in general no unambiguous way for separat­
ing the preparation of the initial (metastable) state of the 
molecule from its unimolecular decay. The exception to this 
confusing state of affairs is when the lifetime (inverse of the 
unirnolecular decay rate) is extremely long, i.e., when the 
coupling between the metastable bound molecular state and 
the continuum to which it is coupled is weak. In this limit the 
rigorous description of the molecular system and its unimo­
lecular decay is that of isolated (or nonoverlapping) reso­
nances: the resonance states are characterized by complex 
energies, {En - ir n12}, which are the eigenvalues of the 
time-independent SchrOdinger equation with outgoing wave 
boundary conditions (Siegert eigenvalues).I(a) The real part 
of an eigenvalue, En' is the energy of a particular metastable 
state, and the corresponding decay rate is given by its imagi­
nary part (or width) 

(Ll) 

The requirement that the resonances be nonoverlapping is 
that the average width <r) is less than the average energy 
spacing ilE, 

(f) 
ilE< I, (1.2) 

a)Permanent address: Department of Chemistry, University of Southern Cali­
fornia, Los Angeles, CA 90089-0482. 

where the averages are over the set of metastable states in 
some relatively narrow energy region. 

In most practical situations, however, unimolecular reac­
tions do not correspond to this nonoverlapping regime. For 
example, for a typical rate k= I 0 11 S-I, Eq. (1.1) implies a 
width of 1'=0.5 cm -I, so that with a typical density of 
strongly mixed states p= I1ilE that is many states per cm- l

, 

one has 

(1.3) 

the opposite to the nonoverlapping condition of Eq. (1.2). 
Siegert eigenvalues still exist in this overlapping situation, 
but in this case the unimolecular decay rate is not related to 
their widths in such a simple way as Eq. (1.1).1 The primary 
purpose of this paper is to explore the relationship between 
rates and widths in the overlapping regime. Establishing this 
relationship in the regime of overlapping resonances has be­
come particularly important, for it is now possible to carry 
out state-to-state studies of unimolecular reactions with ini­
tial state selection and measure both the reaction rates and 
spectral line shapes in the regime of overlapping 
resonances.3- 5 For small molecules that dissociate on a sub­
picosecond time scale, it is often easier to obtain line widths 
than to carry out time-resolved measurements, and thus a 
clear understanding of the meaning of these two observables 
is important. 

The standard RRKM approximation for unimolecular 
decay rates is based on microcanonical transition state theory 
(TST).6,7 It is assumed that the metastable states of the reac­
tant molecule are strongly mixed (ergodic) and that the usual 
transition state assumption of "direct dynamics" (or, in the 
language of classical mechanics, no recrossing trajectories) 
through the transition state bottleneck (local minimum of 
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FIG. 1. (a) A square well potential. (b) A typical one-dimensional potential 
with a barrier. 

flux through the TST dividing surface) is valid. The classical 
TST expression for the average rate for total energy E is 

. N(E) 
kTSrlE) = 27TnpCE) ' (1.4) 

where the density of states, pee), is the number of reactant 
states per unit energy and N(E) is the number of energeti­
cally accessible states of the activated complex (the molecule 
with the reaction coordinate degree of freedom removed) at 
the transition state dividing surface,6 

N(E)= ~ h(E- Vo- €nt). (1.5) 
n* 

Here h(0 is the usual Heaviside function Ch= 1 for positive 
argwnents, and h=O otherwise), Vo is the potential energy 
along the reaction coordinate at the transition state (the bar­
rier height), and the energy levels of the activated complex 
are often approximated as harmonic oscillators' 

F-] 

€nt= ~ nwIcn%+ 1/2), (1.6) 
k=! 

where F is the number of vibrational degrees of freedom of 
the molecule and {wi} are the vibrational frequencies of the 

activated complex.8 Por total energies below the zero point 
energy corrected barrier height, i.e., E <.. Va 

+ z,f:;: f th wZ, the classical TST rate is zero, so it is impor­

tant to include tunneling corrections in this regime. The sim­
plest one-dimensional tunneling correction generalizes Eq. 
(1.5) t09 

N(E)= ~ PID(E-cnt), (1.7) 
n* 

where P m( E F) is the one-dimensional tunneling (or trans­
mission) probability as a function of the energy available in 
the reaction coordinate, EF = E - €n*' More sophisticated 
approaches for determining N(E), the cumulative reaction 
probability, are also possible, e.g., a nonseparable semiclasc 

sical version of TST,1O and a fully rigorous quantum me­
chanical theory,11,12 but the essential points to be established 
in this paper can be achieved by considering the simplest 
approximation for N(E) [Egs. (1.5) and (1.7)]. 

The major thesis and conclusion of the present paper is 
that the physically correct average unimolecular decay rate is 
well described by the TST rate whether the resonances are 
overlapping or not. In the nonoverlapping regime (i.e., iso­
lated resonances) the rate is related to the widths of the Sieg­
ert eigenvalues in the usual way, Eq. (1.1). In the overlapping 
regime, however, the physically relevant unimolecular reac­
tion rate is not related to the resonance widths by Eq. (1.1), 
though it is still well approximated by the TST rate. As the 
overlap increases, the TST rate becomes independent on the 
average width (saturates), which implies that in practice one 
cannot relate the average width to the TST rate in any simple 
way, and also that calculations of resonance widths alone are 
not capable of describing unimolecular reaction rates. This 
conclusion is supported by analysis of one-dimensional 
model problems and also by numerical simulations of a ran­
dom matrix version of the Peshbach optical model of reso­
nance states. 

The plan of the paper is first to illustrate the situation 
with two simple one-dimensional examples in Sec. II, and 
then to treat the random matrix optical model in Sec. III. We 
conclude by commenting on the relation of the average width 
and rate to recent experimental measurements. The behavior 
seen in all cases is that 

(1.8) 

i.e., the average unimolecular decay rate is always less than 
or equal to the average width (IIi), equality maintaining in 
the low energy/nonoverlapping regime and the inequality be­
coming progressively more pronounced in the overlapping 
regime. 

Pinally, though the present paper deals primarily with the 
average unirnolecular rate for a given total energy (or energy 
region), we note that TST has recently been combined with a 
random matrix description of the decaying system to provide 
a theory for the probability' distributibn of state specific de­
cay rates in the nonoverlapping regime. 13 A similar descrip­
tion of the probability distribution of rates and widths can 
also be carried out for the overlapping regime. We show (end 
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of Sec. III) that a broad distribution of rates around the TST 
average [associated with a small NCE)] causes deviations of 
the effective decay rate from the TST value. 

II. ONE-DIMENSIONAL MODELS 

The general relation between rates and widths is cor­
rectly illustrated by one~dimensional systems, so it is useful 
to consider this simplest situation before proceeding to the 
more general model in Sec. III. We first consider a simple 
analytically solvable model, the square well potential, and 
then a general realistic potential within the WKB approxima­
tion. 

A. Square well potential 

For the square well potential, pictured in Fig. l(a) 

V(r)= {~: 
Vo, 

r<O 

O<r<a 

r>a 

(2.1) 

one seeks solutions of the time-independent Schrodinger 
equation that are regular at the origin and have outgoing 
wave boundary conditions for r>a. The relevant wave func­
tions are 

ifJ(r) = constX sin(kr), 

k= .J2mElh2 

for O<r<a, and 

ifJ(r) = constX e iKr 

K= V2m(E- Vo)lh2 

(2.2a) 

(2.2b) 

for r>a. Matching the logarithmic derivatives at r=a in the 
usual fashion gives the following eigenvalue equation: 

, . r Vo 
cot(ka)=t \/1- E' (2.3) 

which can be written in the following equivalent but more 
useful form: 

I 1T ; (I+VI-VoIE) k=(n+,,) -- - In . 
- a 2a I-.JI-VoIE 

(2.4) 

The Siegert eigenvalues are the complex roots of Eq. (2.4). It 
is easy enough to find these roots {En - ir n12} numerically, 
but they are well approximated over the entire energy region 
E> Vo by the following analytic expression: 

h21T2(n+ 112)2 
En= 2ma2 , (2.5a) 

_ 1 dEn (I+.J1-VoIEn) 
rn-~-d 2 In . 

_1T n 1-.JI- VoIEn 
(2.5b) 

It is also useful to recall the transmission probability pee) 
for a particle passing over a step potential (i.e., at r = a) 14 

( 
1-.JI-VoIE)2 

P(E)= 1 - , (2.6) 
1+.JI-VoIE 

so that the width in Eq. (2.5b) can be written in terms of the 
transmission probability as 

1 dEn ( 1 ) 
r n=21T dn In I-P(E

n
) . 

(2.7) 

The first factor in Eq. (2.7), (1I21T)dE/dn, when di­
vided by h, is the classical frequency of oscillation in the 
well; it is also related to the level spacing and density of 
resonance states, 

dEn 1 
-==I1E=­
dn p 

(2.8) 

For small transmission probabilities, P (E n) ~ 1 , i.e., energies 
En only slightly above Vo, one has In[I-P(En )r

l 

"""P(En)' so that from Eq. (2.7) one obtains 

which is identical (when divided by h) to the TST result for 
the one-dimensional rate [Eqs. (1.4) and (1.7)] 

1 dEn 1 
KTST(En) = 21Th dn P(En)= 21Thp Peen)· (2.1O) 

Note, however, that the TST rate, Eq. (2.10), is the correct 
rate for all values of P (P~ I or P--+ I); i.e., the physically 
correct decay rate is the frequency of oscillation in the well 
multiplied by the escape probability per oscillation. There­
fore, r ih is the physically correct rate only for P~ 1. As 
P--+ 1, i.e., in the high energy limit, Eqs. (2.6) and (2.7) give 

I 
lim rn=-2-ln(4EIVo)2 

En-"oo 1Tp 
(2.11a) 

which is increasingly larger than the correct rate, 

(2. 11 b) 

as the energy increases. 
Since 

p<lnC~p) (2.12) 

for all values of P, from Eqs. (2.7) and (2.10) one sees that 

rn r;;::' kTST(En)' (2.13) 

with equality being approached in the lower energyl 
nonoverlapping regime, and the inequality becomes stronger 
at the higher energy/overlapping limit. Using Eqs. (2.7), 
(2.8), and (2.10), one can express the TST rate in terms of r n 

I 
k (E) = -- (I-e .-21Tpf n ) 

TST n 21Thp' (2.14) 

which reveals quite clearly the characteristic features of the 
overlapping and non overlapping regimes, 

rn 
kTsT(En)=r; for rnp~1 
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and 

kTsnEII)-(21Thp) -1 for r IIP~ l. 

The transition between the two regimes, i.e., r nP= 1, occurs 
when [see Eq. (2.10)] 

P(EII )=( l-e- 27T) =0.998. (2.15) 

With P given by Eq. (2.6) for the present square well ex­
ample, this corresponds to 

E=Vo cosh2(1T12)-6.3Vo, (2.16) 

Le., an energy about 6 times the well depth. 

B. Smooth potential barrier 

Figure l(b) shows a more realistic one-dimensional po­
tential that is characteristic of a unimolecular decay process. 
Although one cannot obtain an exact analytic solution for a 
general potential, one can treat the general case within the 
WKB approximation (which is typically quite accurate for 
molecular systems).15 

The WKB version of the Siegert eigenvalue condition 
is l6 

i 
<f>(E)=(n+ 1I2)1T- 4"ln(l +e-20(E), (2.17) 

where <P(E) is the phase integral across the well 

<P(E) =_Ir2 
dr ~2m[E-V(r)]lh 2, (2. 18a) r, 

and O( E) that through the barrier 

Ir 3 
O(E)= dr..j2m[V(r)-E]lh 2. 

r2 

(2.18b) 

For energies E above the barrier, <PCE) is the phase integral 
from the repulsive wall to rb (the top of the barrier) and 
O( E)-that between the two complex turning points that are 
the analytic continuations of r2 and r3' Again, one could find 
the complex roots of Eq. (2.17) numerically, but they are 
approximated well quite generally by expanding <I>(E) about 
the real part of the eigenvalue. The latter is then determined 
by the equation 

(1) (Ell) = (n + 112) 1T, (2.19) 

the standard Bohr-Sommerfeld quantization condition for 
the well, and the width (imaginary part of the eigenvalue) is 
given by 

1 dE r =_ ... - ~ I (1 + .···20(En» 
II 21T dn n e . (2.20) 

For energies not too high above the barrier, O(E) is well 
described by the parabolic approximation, 

(2.21) 

where Vo is the barrier maximum and wb its (real) harmonic 
frequency. 

Recalling that the WKB transmission (or tunneling) 
probability through the barrier iS1(b) 

I . 
P(E) = 1 + e20(E)' (2.22) 

the width in Eq. (2.20) can also be expressed as 

1 dEn ( 1 ) 
r n =21T dn In I-P(E

n
) , 

(2.23) 

precisely the same expression found above for the square 
well [Eq. (2.7)J. Thus essentially all of the above discussion 
for the square well potential also applies to the present more 
realistic (and general) potential, e.g., the TST rate is the fre­
quency of oscillation inside the well multiplied by the escape 
probability per oscillation, according to Eq. (2.10). As be­
fore, the resonance width (when divided by h) gives the rate 
correctly in the lower energy/tunnelinglnonoverlapping re­
gime, but is larger than the rate in the high energyl 
overlapping regime. The transition between these two re­
gimes (r liP = 1) in the present case corresponds to In( 1 
+ e-2B(EnJ) = 21T [see Eq. (2.20)], or 

O(EII ) =. - 112 In(e 21T -1)- -1T (2.24) 

which for the parabolic barrier [Eq. (2.21)J gives 

EII=VO+hwb' (2.25) 

In other words, the overlapping regime is reached by the 
time the energy is approximately one vibrational quantum of 
the barrier frequency above the barrier. 

Finally, one can use the results of this section to treat a 
general multidimensional system within the framework of 
the usual TST microcanonical convolution, i.e., the TST rate 
expression [Eqs. 0.4) and (1.7)], 

1 
kTST(E) = 21Thp(E) 2f PlO(E- Eot), 

o 

(2.26) 

is a microcanonical average of the one-dimensional rate in 
Eq. (2.10).17 Carrying out this same microcanonical average 
of the one-dimensional width expression, Eq. (2.7), one ob­
tains the microcanonical average width (Le., for total energy 
E) as 

1 ( 1 ) 
r(E)=21TP(E); In 1-PlO(E-Eo*) . (2.27) 

In light of the inequality in Eq. (2.12) for any specific one­
dimensional tunneling probability, one has the relation 

kTST(E)~rcE)/h 

for all E, equality maintammg in the low energy! 
nonoverlapping regime. In the high energy limit one can ob­
tain an approximate relation between kTST(E) and r(E) by 
going to the classical limit: neglecting tunneling [i.e., 
PlO(E - Eot)-+h(E - Vo - (;"0*)]' using the harmonic ap­
proximation, and replacing the sums over nt by integrals 
gives the classical RRK result for the TST rate,6 

cl _ 1 (E- VO)F-l F-l 1 
kTST(E) - 21Thp(E) (F-l)! llk= 1 Ii wI' (2.28) 

In the expression for the microcanonical width, Eq. (2.27), 
one cannot simply replace P 1D by 0 or 1. However, for en-
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ergies that are sufficiently low such that the parabolic ap­
proximation holds [Eqs. (2.21) and (2.22)], and yet are suf­
ficiently high such that 1 BC E) 1 ~ 1, one has 

In( 1 ) =In(1 +e2IO(ElI)= 27T (E- Ent - Yo). 
1-P lO nWb 

(2.29) 

Using this approximation in Eq. (2.27), and the other classi­
cal approximations noted above, one obtains 

c1 _ 1 (E- VO)F F-] 1 
f (E) - P(E)nwb F! IIk=1 nwf (2.30) 

Equations (2.28) and (2.30) thus give the following relation 
between k¥ST(E) and fc1(E)ln: 

fcl(E) 27T(E- Vo) 

hk¥ST(E) = IiwbF 
(2.31) 

which is valid in the high energy limit. As before, fclCE)11i 
becomes progressively larger than k¥sTCE) as the energy in­
creases. 

From Eg. (2.30) for rCE) one can also estimate the en­
ergy at which the transition between nonoverlapping and 
overlapping resonances takes place (on the average), i.e., 
when fcl(E)p= 1, 

E= Vo + [CF! )liWbIIf:lliwt]lIF = Vo+ CP!) lIFli w:l:, 

(2.32) 

where W;': is the geometric average of the transition state 
frequencies [including the (real) barrier frequency]. The tran­
sition to overlapping resonances therefore occurs at an en­
ergy of """ (F! ) 11 F times Ii ii/ above the barrier, e.g., 
(F!)lfF=2, 3, 4, for F=3, 6, 9, respectively, and 
(F!)lIF ---+Fle as F--+oo. 

III. RANDOM MATRIX OPTICAL MODEL 

A popular and useful description of metastable states is 
the optical model, which is characterized by an effective 
non-Hermitian Hamiltonian. The formal derivation of the op­
tical model Hamiltonian is based on the FeshbachILowdin 
partitioning of Hilbert space: 18

,19 the projector Q is defined 
by a set of basis functions which span the bound state space 
of the molecule, and its complement, P == 1 - Q, projects 
onto the dissociative continuum to which it is coupled and 
decays. The effective Hamiltonian (which is a Q~space op­
erator) is given by 

A , i A 

Heff=QHQ+ limQHP(E+iE'-PHP)-] PHQ==Ho -2 f, 
.. --+0 

(3.la) 

where 

r=27TQHPo(E-PHP)PHQ. (3.lb) 

In most applications of the optical model I3,19-22 the width 
operator t is taken to be energy independent, which is not a 
severe approximation if one considers a group of molecular 
bound states all in a relatively narrow energy regime. The 
operators Ho and t in Eq. (3.1) are both Hermitian, so Heff is 

not; it describes the metastable Q space. If ifJ(0) is the initial 
Q-space state, then its Q-space component at time t later is 

(3.2) 

and its effective decay rate is defined as the logarithmic de­
rivative of its norm, 

(3.3) 

The eigenvalues of Heffare complex, {E j -ifz/2}, the coun­
terpart to the Siegert eigenvalues discussed in Sec. II. If the 
initial state 11/1(0» has nonzero overlap with only one of the 
eigenstates of Heff , then 

1 if!(t)} = e -i(E/-if/12)tlnl if!(0», ~ 

and the rate defined by Eq. (3.3) is simply 

f[ 
kerrC t )=-,;:, 

(3.4a) 

(3.4b) 

the standard relation for an isolated resonance. In the more 
general case, however, the resonance states overlap, and the 
initial state will typically overlap more than one state. The 
decay rate in this case will not be related to the resonance 
widths in a simple fashion. Rather, it is necessary to deter­
mine the decay rate directly from Eqs. (3.2) and (3.3). 

To carry out calculations of the unimolecular rate, we 
adopt a random matrix version of the optical model, similar 
to that used by other authorsy,2o-22 The (Q space) matrix 
representation of H eff is 

N 

H:~m' =Emom,m,-i7T 2: Vn,m Vn,m" 
n=l 

(3.5) 

m,m' = 1, ... ,M. We assume that the molecular states are 
strongly mixed (ergodic), so the energies Em are chosen from 
a Wigner distribution of nearest-neighbor level spacings, 

(3.6a) 

where Sm= Em - Em-I, and the average spacing is deter­
mined by the density of molecular states, p, 

(3.6b) 

The average bandwidth in energy space of the M molecular 
states is therefore W=pM. The width matrix in Eq. (3.5), 
i.e., 

N 

f mm ,=27T2: Vn,mVn,m" 
n=] 

(3.7) 

describes the coupling of the M states in the Q space to N 
independent decay channels in the P space. The Q - P 
coupling matrix elements, Vn m' are chosen randomly from a 
Gaussian (normal) distributi~n with mean value 0 and stan­
dard deviation u; thus 

(3.8) 
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For a given realization of the effective Hamiltonian (i.e., 
a given random selection of the matrix elements as discussed 
above), its eigenvalues {E1- if/2} are obtained by diago­
nalizing the matrix numerically. The average width of all M 
eigenstates, 

~ 1 M 

f=-~ f[ 
M [=1 

is determined by the sum rule 

_ 1 271" M N 

r= M tr r= M 2: 2: V~,m> 
m=l n=l 

(3.9a) 

(3.9b) 

and the average of f over the random matrix ensemble (Le., 
the distribution of coupling matrix elements, V ) gives [see n,m 

Eq. (3.8)], 

(3.10) 

In the nonoverlapping regime, (f)p<!1; 1, the averageunimo­
lecular decay rate is expected to be related to the average 
resonance width in the usual way, 

(3.11) 

and indeed this is found in our numerical simulations r see 
Fig. 2(a)]. By expanding the norm in powers of t and keeping 
only the linear term, it can readily be shown that the short 
time decay rate is always given by the average resonance 
width divided by n, Le., 

f 
lim kerr<. t) = -;::. 
t->O n 

(3.12) 

However, when the resonances overlap, the time interval 
over which Eq. (3.12) holds becomes too short to be signifi­
cant, as illustrated in Fig. 2(b). We have taken the operational 
definition of the time-independent rate, keff' to be the best 
exponential fit to the decay of the norm over the time interval 
for which it is diminished by two orders of magnitude (Le., 
from 1 to "'10-2

). In the nonoverlapping regime, Eq. (3.12) 
holds for sufficiently long time to describe the entire decay 
process, but in the overlapping regime, it corresponds merely 
to an insignificant initial transient. 

In Fig. 3, the decay rates, keff' obtained as described 
above, ~e plotted as a function of the average resonance 
width (n, for fixed values of the density of states, p, and the 
number of open channels, N. For sufficiently small (t), (the 
nonoverlapping regime), a linear dependence is observed ac­
cording to Eq. (3.11) with a slope of 1 as (f)--+o. As (f) 
increases into the overlapping regime, deviations from the 
linear dependence are observed, until saturation of the curves 
is reached, indicating an increasingly larger difference be­
tween the decay rate (Xn) and the average resonance width. 

The saturation phenomenon can be understood physi­
cally by invoking a "kinetic picture" of the optical modeL 
When the average coupling strength is much smaller than the 
average level spacing in the molecular complex, Le., cl-p--+O 
(the nonoverlapping regime), the "rate limiting step" in the 
decay is the transition from specific states in Q to specific 
states in P (the state-to-state transition probabilities in the 

2.0 

0.0 

~ 
.E 

-2.0 

-4.0 

-6.0 "-"""~---'-'--~--" 
0.0 . 200.0 400.0 

(a) time (psec) 

~ 
c 

2.0 

0.0 

' ... 

-2.0 

-4.0 

----,------"-~, ---

' ... ...... 
" 

" " ' ... ' ... , 
...... 

' ... ' ... ... , 
" ... 

' ... , 
-6.0 " 

0.0 5.0 10.0 
(b) time (psec) 

600.0 

15.0 

FIG. 2. Ca) Solid line: A typical simulation of a unimolecular decay in the 
regime of non-overlapping resonances (f'p = 0.25). The solid line corre­
sponds to the actual decay of a normalized random initial state, 
P=(ifJ(t)!ifJ(t», for an effective Hamiltonian with N= laO, M=800, and 
p=5 states per wave number. Th_e dashed line corresponds to the average 
resonanc~ decay rate, P=exp( - rtlh). (b) The same for overlapping reso­
nances (fp= 12.5), 

"golden rule" limit). As cl-p increases (the overlapping re­
gime), the state-to-state rate become large and the total decay 
rate is limited only by the "volumes" of the spaces Q and P, 
Le., the number of molecular states per energy, p, and the 
number of independent open channels, N. Therefore, for 
fixed values of p and N, the rate depends on the coupling 
strength in the nonoverlapping regime, but saturates as a 
function of c? in the overlapping regime. 

A more quantitative physical understanding of this sa­
turation phenomenon can be obtained from the correspon­
dence between the present random matrix optical model and 
the TST picture discussed in Sec. II B. To thiS" end we write 
the average width in Eq. (3.9b) as 

N 

r= " .::.,;" Yn' (3.13a) 
n=l 

where 
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FIG. 3. (a) Decay rates for a random initial state, plotted as a function of the 
average resonance widths (in wave numbers). The different symbols corre­
spond to different random choices of the effective Hamiltonian matrix witb 
N = 10 and p=OS states per wave number. M = 600 was found large 
enough to provide a reliable statistical ensemble. The solid line is tbe TST 
result for the ensemble average [Eq. (3.16a)], and tbe dashed line is tbe 
result of equating tbe averaged rate (Xii) to the averaged resonance width. 
(b) The same, witb N=50 and p=2.5 states per wave numbers. (c) The 
same, witb N= 100 and p=5 states per wave number. 

(3.l3b) 

and interpret Yn as the average width of channel n (the av­
erage partial width). Furthermore, we identify the indepen­
dent final channels in the optical model with the states of the 
activated complex in TST, so that by equating the average 
width in Eq. (3.13a) with the micro canonically averaged 
width given by TST, Eq. (2.27), we obtain 

Yn= 2~P InC ~ pJ, (3.14a) 

or 

(3. 14b) 

Making use of Eq. (3.14b) for the transmission probability, 
the average TST rate is obtained from Eq. (2.26) 

- 1 '" 2 kTsT=-- £.J (l-e- 7T"YnP) 
27rlip n 

(3.1Sa) 

or by using Eq. (3.I3b) for Yn 

kTST = 2;1i ~ [1- exp( - 4;;P ~ V~,m)]. 
p n m=] 

(3.1Sb) 

Averaging Eq. (3.15b) over the random matrix ensemble fi­
nally gives . 

_ N [ ( 47rP(f») -MI2] 
(kTST) = 27rlip 1- 1+ NM ' (3. 16a) 

which in the limit M -";00 becomes 

lim(k >=~(I_e-2'lT(f}PIN). 
M_oo TS1': 2 7r1i P (3. 16b) 

[Note that for N= 1, Eq. (3.16b) is the same as the one­
dimensional result of Sec. II, Eq. (2.14)!] 

Equation (3.16) clearly shows that in the nonoverlapping 
limit, 

. _ (f) 
}lm (kTsT) = h' 

{I)p-+o 
(3. 17a) 

while the saturation behavior is apparent at large overlap 

_ N 
lim (kTsT) = ~' 

(i)p-+co ... 7r P 
(3.17b) 

where the latter limit has the "classical" TST form for the 
reaction rate. The solid lines in Fig. 3 are obtained by using 
Eq. (3.16a), and they are seen to provide a qualitatively cor­
rect description of the saturation phenomenon observed in 
the numerical simulations. This suggests that the above TST 
interpretation of the random matrix optical model is qualita­
tively correct. However, quantitative agreement between the 
simulated decay rates (i.e., keff) and the TST average rate is 
obtained only when N, the number of independent open 
channels, is large enough (see Fig. 3). This is most apparent 
in looking at the large (f) "plateau" values of the rates, 
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where the simulated results (the points) fall below the TST 
values (the curve), the more so the smaller N. This, however, 
is not related to a failure of the TST interpretation, but rather 
to deviations of the actual (simulated) decay process from a 
single exponential. Deviations from a single exponential are 
associated with a distribution of state-specific rates about the 
average value. To show how this reduces the effective decay 
rate with respect to the averaged TST rate, we assume the 
well known y probability distribution13,18,23 of rates about 
(kTST), 

P(k)= .. e~Nk/(2(kTST» 
(
' N ')NI2 kN12 - 1 , _ 

" 2(kTST) r(N/2) , 
(3.18) 

where the distribution width is determined by N, the number 
of decay channels. The decay of the system is then given 
by24 

(<X> (2(k )t) -NI2 
_~r1t)= Jo dkP(k)e- kt= 1 + :';T , (3.l9a) 

which in the limit of large N gives pure exponential decay, 

limJY\t) =e-(kTST)t, (3.l9b) 
N-+oo 

where ~p(t) is the norm of an arbitrary state in the Q space, 
(!fr(t) I !fr(t». The effective time-independent decay rate for a 
finite time interval, O<t<T, is the average of the time­
dependent effective rate defined in Eq. (3.3), 

1 (r (d )-1 
keff=y Jo dt - dt In( .. J"·(t» = T In[A'TT)]. (3.20) 

By using Eq. (3.19) one obtains the following explicit rela­
tion between the effective decay rate and the TST average 
rate: 

and one can easily show that 

limkeff=(kTsT)' 
N-+oo 

(3.21a) 

(3.21b) 

Thus for infinite N the effective decay rate over any time 
interval is given by the TST average rate, but for finite N, keff 
is smaller than the TST rate, and their ratio depends on 
vF·(T). In the present simulations, the time interval Twas 
defined such that v1''(T)-10~2. According to Eq. (3.2la), 
for N= 10,50, and 100, this choice gives kefl(kTsT)=0.60, 
0.91, 0.95, respectively, which is in a good agreement with 
the results in Fig. 3 (Le., these ratios correspond to the de­
viations of the simulated effective rates from the TST curve). 

Note that although the TST expression for the rate agrees 
well with the simulations, the correspondence between TST 
and the present optical model is not precise, because the 
parametrization in the two models is different. For example, 
according to TST the coupling of the molecular complex to 
the different decay channels (i.e., states of the activated com­
plex) varies greatly depending on the energy available to the 
reaction coordinate, whereas in the random matrix model all 
decay channels are equivalent. Also, in TST an increase in 

the average coupling always corresponds to an increase in 
the number of decay channels [NeE)], while in the optical 
model they are independent parameters. One could, of 
course, refine the optical model, e.g., by adopting different 
average coupling strengths, V~,m' for different channels n, 
and this might indeed be useful in applications to specific 
molecular systems. 

Finally, we note in Fig. 3 that when the resonance over­
lap becomes sufficiently large, the average decay rate actu­
ally decreases as a function of (f) =2 ?TN a 2

, in contradiction 
to the prediction of the TST model, Eq. (3.16), and to the 
physical interpretation of the optical model. Our simulations 
indicate that this behavior appears approximately when the 
degree of resonance overlap exceeds the number of decay 
channels, i.e., when 

p(f»N. (3.22) 

This condition is identical to the onset of a bifurcation in the 
distribution of resonance widths in the optical model, which 
has recently been discussed by several authors.l°,22 In our 
opinion this behavior signals the breakdown of the optical 
model itself and is not due to a failure of the TST interpre­
tation of the rate, i.e., we argue that the results of the optical 
model become physically irrelevant once the condition 
(3.22) is met. The reasoning is as follows: The basis set in 
which the effective Hamiltonian matrix is represented covers 
a spectral energy range of W = M I p. This basis provides a 
reliable representation of the Hamiltonian only as long as its 
eigenvalues are confined to a circle in the complex energy 
plane with radius W/2. This limitation implies the restriction 

(3.23) 

A rough estimate for the maximum resonance width can be 
obtained in the "reversed" perturbative limit, where the real 
part of the Hamiltonian matrix is negligible with respect to 
the imaginary part. The imaginary part is an M X M matrix 
of rank N. Therefore M - N of its eigenvalues (widths) are 
zero (This is in fact the reason for the observed bifurcation). 
In this limit, a lower bound estimate for the largest width is 
given by the average of the N nonzero eigenvalues, M (f)1 N. 
Using this estimate, the condition in Eq. (3.19) for the rel­
evance of the optical model is (f)MIN<W, or (f)p<N, 
precisely the opposite of Eq. (3.22). We thus conclude that 
the phenomenon of bifurcation in the distribution of widths 
and the decrease of the decay rate with increasing average 
resonance width are associated with an improper sampling of 
the spectrum of Heff within the finite representation of the Q 
space. 

IV. CONCLUDING REMARKS 

From several different points of view, including analyti­
cal treatments of simple one-dimensional systems and nu­
merical simulations of a random matrix version of the optical 
model, we conclude that the TST (RRKM) rate constant 
gives the physically correct unimolecular reaction rate 
whether the complex (Siegert) eigenvalues which character­
ize the metastable molecular system are overlapping or not. 
In the limit that the resonances do not overlap, the standard 
relation k= r In. holds, but not so in the overlapping regime, 
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for which k<f/li, the more so the greater the degree of 
overlap. Furthermore, we were able to give a transition state 
theory interpretation of the numerical simulations of the ran­
dom matrix optical model which explains how the effective 
decay rate "saturates" as the coupling strength (degree of 
resonance overlap) increases. 

In concluding, we briefly discuss what has been or can 
be measured in experiments of unimolecular decay that re­
lates to the average decay rate and to the resonance widths. 
The average decay rate can, of course, be measured in time­
resolved experiments, whether the resonances are overlap­
ping or not. Averaging is inherent in measurements of fast 
decay rates, since the energy resolution is limited by the 
uncertainty relation between the pulse duration and its en­
ergy. Thus, the rates derived from such measurements can be 
compared directly to the TSTIRRKM predictions. Note that 
as the number of states of the activated complex [NCE)] 
decreases, the distribution of decay rates around the average 
value becomes broader, which implies that the measured (ef­
fective) decay rate may not correspond directly to the TST 
rate. 

In contrast to the rates, the true resonance widths can be 
measured only in the regime of isolated resonances. Al­
though the present work suggests a universal relation be­
tween the average TST rate and the averaged resonance 
width also in the overlapping regime, the saturation of the 
rate (at the classical RRKM value) as the resonance overlap 
increases, implies that in practice one cannot extract the reso­
nance widths from measurements of rates in this regime, not 
even on the average. 

In the regime of nonoverlapping resonances, one can 
measure the resonance widths directly. When the coupling to 
the continuum is relatively weak, the total absorption spec­
trum and the partial spectra into specific product channels 
will exhibit spectral features of Lorentzian shape, whose 
widths can be identified with the resonance widths (the 
imaginary part of the Siegert eigenvalues). In the regime of 
overlapping resonances, the observed spectral features are 
governed by superpositions (with complex coefficients) of 
overlapping resonance amplitudes. Therefore, in this regime 
the shapes of the spectral features are usually not Lorentzian 
and the resonance widths are not directly related to the ex­
perimental observables. 

The interpretation of the observed spectral line shapes is 
an interesting subject for future research. Recent measure­
ments of final state-selected spectra of N02 photo­
dissociation25 have indicated that the average spectral line­
width over a given energy range is not too different from the 
unimolecular decay rate (Xli) obtained in time-resolved 
measurements,5 even in the overlapping regime. We argue, 
however, that in general, in the overlapping regime, the ob­
served linewidths are not related in a simple fashion either to 
the unimolecular decay rate or to the resonance widths. 

Finally, we point out that fluctuations in the decay rates 
about the TST average have been demonstrated experimen­
tally and treated theoretically in the case of isolated 
resonances. 13,21,23 The TST interpretation of the optical 
model can be used to characterize these fluctuations also in 
the regime of overlapping resonances. An indirect experi-

mental observation, suggesting that such fluctuations do exist 
in the case of overlapping resonances, have been obtained 
recently26 in the unimolecular decay of N02 . 
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