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SUMMARY

We have investigated the role of pairing
centers (PCs), cis-acting sites required for
accurate segregation of homologous chro-
mosomes during meiosis in C. elegans. We
find that these sites play two distinct roles
that contribute to proper segregation. Chro-
mosomes lackingPCs usually fail tosynapse
and also lack a synapsis-independent stabi-
lization activity. The presence of a PC on just
one copy of a chromosome pair promotes
synapsis but does not support synapsis-
independent pairing stabilization, indicating
that these functions are separable. Once ini-
tiated, synapsis is highly processive, even
between nonhomologous chromosomes of
disparate lengths, elucidating how translo-
cations suppress meiotic recombination in
C. elegans. These findings suggest a multi-
step pathway for chromosome synapsis in
which PCs impart selectivity and efficiency
through a ‘‘kinetic proofreading’’ mecha-
nism. We speculate that concentration of
these activities at one region per chromo-
some may have coevolved with the loss of
a point centromere to safeguard karyotype
stability.

INTRODUCTION

Accurate segregation of chromosomes during meiosis is es-

sential to reestablish a normal diploid genome at fertilization.

The universal and defining event of meiosis is the segrega-

tion of homologous chromosomes, which in most species
Cell
occurs during the first of two meiotic divisions. The ability

of homologs to separate, or disjoin, from each other hinges

on their ability to contact and recognize their partners and

to form pairwise linkages that persist until chromosomes

orient at the metaphase plate. The physical pairing of homol-

ogous chromosomes is usually stabilized during meiotic pro-

phase by a protein scaffold known as the synaptonemal

complex (SC), which polymerizes between homologous

chromosomes. In most organisms, the more enduring phys-

ical links that connect homologs until metaphase also require

the formation of meiotic crossovers, or chiasmata.

Perhaps the most mysterious aspect of meiosis is the

mechanism by which each chromosome selectively synap-

ses with its unique homologous partner (reviewed by Page

and Hawley, 2003). Polymerization of the central element

of the SC does not intrinsically require sequence homology

and can occur inappropriately between nonhomologous re-

gions under a variety of perturbed circumstances (reviewed

by Zickler and Kleckner, 1998). However, synapsis is nor-

mally coupled with chromosome pairing so that only homol-

ogous regions ultimately synapse.

In C. elegans, genetic analysis of chromosome transloca-

tions, inversions, and deficiencies has revealed the existence

of a particular region on each chromosome that determines

its choice of meiotic segregation partner. Reciprocal-

translocation chromosomes that share homology with two

potential partners usually recombine with only one of the

partial homologs (McKim et al., 1988). Furthermore, dupli-

cations of the left end of the X chromosome, but not the right

end, will recombine with intact X chromosomes (Herman and

Kari, 1989), and deletion of a region at the left end results

in markedly reduced recombination between the Xs (Ville-

neuve, 1994). These and other observations have led to

the idea that special sites, known as ‘‘homolog recognition

regions,’’ or ‘‘pairing centers’’ (PCs), somehow govern mei-

otic interactions in C. elegans. These sites have been map-

ped toward one end of each chromosome by observing the

segregation patterns of chromosome rearrangements (Fig-

ure 1A). Although PCs (as we refer to them) have been pro-

posed to mediate homolog pairing, recognition, synapsis, or
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Figure 1. Normal and Rearranged Chromosomes Examined in This Study

(A) The wild-type haploid karyotype of C. elegans. The physical interval that contains pairing-center function on each chromosome is indicated with her-

ringbone shading. Left and right arms of each chromosome were arbitrarily designated in early genetic studies. This diagram is similar one in Albertson

et al. (1997) but has been updated to include new mapping information (this study; Edgley and Riddle, 2001; Koh et al., 2004). All gray numbers indicate

megabases of DNA.

(B) The X chromosome pairing-center deficiency meDf2(X) and the attached duplication mnDp66(X;I). meDf2 is a terminal or near-terminal deficiency; our

SNP analysis revealed that its internal breakpoint is located between two SNP markers 1.46 and 2.06 Mb from the left end, and this region of ambiguity is

indicated with light shading.

(C) Reciprocal-translocation chromosomes eT1(IV;V) and nT1(IV;V). For each half-translocation chromosome, the autosome that behaves as its meiotic

segregation partner is indicated in parenthesis—i.e., eT1(III) recombines with and segregates away from chromosome III and thus (by definition) carries

the chromosome III pairing center. Segment lengths shown in gray are deduced from the literature: the chromosome III breakpoint is within or very close

to the unc-36 locus located 8.2 Mb from the left end. The chromosome V breakpoint is not precisely known; minimal and maximal physical lengths for each

segment are based on the position of intervals known to be crossover suppressed or not suppressed. The precise breakpoints of nT1 were recently mapped

by Koh et al. (2004).

(D) Fusion chromosomes eT6 and eT3 indicating the orientation of the PCs. Both of these are fusions between nearly intact copies of chromosomes IV and

X. eT3[meDf2] is the product of exchange between eT3 and meDf2; it thus contains only the chromosome IV PC. All chromosome segments in (A)—(D) are

drawn to scale based on physical coordinates from the WS140 freeze of Wormbase data from March 2005 (http://ws140.wormbase.org/).
loading of the recombination machinery, these ideas have

not been tested directly.

Here we have used cytological methods to investigate the

roles of PCs during meiosis. Our results reveal that these

sites play at least two essential and separable roles in the

process of homologous pairing and synapsis. Prior work

has shown that pairing between homologous chromosomes

is partially stabilized in SC-deficient mutants of C. elegans

(Colaiácovo et al., 2003; MacQueen et al., 2002). Here we

show that PCs mediate this synapsis-independent stabiliza-

tion of pairing. We also show that—independent of this role

in pairing—these sites promote the polymerization of the SC

and are likely to be initiation sites for SC formation. We further

demonstrate that PC activity is not obligately located near

a chromosome end.

Our results illuminate additional key aspects of chromo-

some pairing and synapsis. Analysis of reciprocal transloca-

tions reveals that chromosome pairs that share a common

PC undergo complete synapsis even if they are largely non-

homologous and are of disparate physical lengths. This indi-

cates that synapsis is highly processive and also implies the

action of an adjustment mechanism that somehow equalizes

the lengths of synapsed axial elements.
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RESULTS

Pairing Centers Are Required for Normal

Interactions between X Chromosomes

To evaluate the role of the pairing center during meiosis, we

first analyzed the dynamics of interactions between X chro-

mosomes deficient for these regions. meDf2 is a terminal de-

ficiency that removes a large region from the left end of the X

chromosome (Figure 1B). It is one of three similar deletions of

the X PC recovered after exposure of worms to ionizing radi-

ation (Villeneuve, 1994). X chromosome missegregation dur-

ing meiosis in C. elegans hermaphrodites results in elevated

frequencies of male (XO) progeny, known as the high inci-

dence of males (Him) phenotype. Villeneuve (1994) found

that hermaphrodites carrying two X chromosomes deleted

for their PC regions display a very strong Him phenotype.

However, a more modest segregation defect is seen when

one X chromosome lacks the PC but its homolog is intact.

This demonstrates that recognition of homology does not

occur exclusively at these sites and also that a single, un-

paired PC still contributes to homolog segregation.

We mapped three independent PC deletions using SNPs

(see Experimental Procedures). All three remove at least
c.
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Figure 2. Quantification of X Chromosome Associations in Pairing-Center Mutants

Probes from the left and right arms of the X chromosomes were hybridized to hermaphrodites of the indicated genotypes. The percent of nuclei with paired

signals for each probe was measured for each of five temporal zones, as described by MacQueen and Villeneuve (2001). Zone 1 contains exclusively pre-

meiotic nuclei, zone 2 contains both premeiotic and leptotene/zygotene stages, zone 3 represents early- to mid-pachytene stages, and zones 4 and 5 con-

tain mid- to late-pachytene-stage nuclei. The genotypes in the top panels correspond to those in the bottom panels except that the bottom three panels

show data from animals also homozygous for a syp-1 mutation, which eliminates an essential SC component. Corresponding numerical data are presented

in Table S1.
1.46 Mb from the left end of the chromosome but do not

delete a site located 2.06 Mb from the left telomere. Because

these deletions remove essential genes, homozygous or

hemizygous animals must also carry a duplication of this

region. Most duplications of the PC region of the X chromo-

some induce some detectable nondisjunction of normal

X chromosomes (Herman and Kari, 1989; Herman et al.,

1982). However, mnDp66 fuses approximately the same

portion of the X chromosome deleted from meDf2 to the right

end of chromosome I but does not recombine with normal X

chromosomes or interfere with their segregation and thus

seems to have a nonfunctional or noncompetitive X PC.

This is further supported by experiments reported here and

in the accompanying paper (Phillips et al., 2005 [this issue

of Cell]), which indicate that mnDp66 does not show fre-

quent physical associations with X chromosomes during

meiosis.

To investigate the dynamics of X chromosome associa-

tions, we hybridized fluorescent probes to chromosomes

in whole gonads (Figure 2; see also Table S1 in the Supple-

mental Data available with this article online), each of which
Cell 1
contains a complete progression of meiotic prophase. Go-

nads were divided into five regions of equal size to evaluate

the steady-state level of pairing as a function of meiotic pro-

gression. As demonstrated in previous work, loci on both

ends of normal X chromosomes were predominantly un-

paired in the premeiotic region of the gonad (zone 1) but

paired rapidly after meiotic entry. Homologous pairing is nor-

mally stabilized by synapsis, such that all loci in wild-type an-

imals remained paired through zone 5 of the time course,

which corresponds to late pachytene.

X chromosome loci in meDf2 homozygotes displayed

a transient increase in association during early meiotic pro-

phase. However, in contrast to wild-type animals, these

associations were not stabilized. The frequency of paired

X chromosomes in meDf2 hermaphrodites reached a maxi-

mum in zone 2, which corresponds to the leptotene/zygo-

tene stages of meiosis (the ‘‘transition zone’’), and fell there-

after. In meDf2/+ heterozygotes, homologous interactions

between X chromosomes showed different dynamics

(Figure 2C), consistent with their milder segregation defects.

Pairing between X chromosome loci rose in early meiosis,
23, 1037–1050, December 16, 2005 ª2005 Elsevier Inc. 1039



Figure 3. X Chromosomes Lacking Pairing Centers Form Axial Elements but Only Rarely Undergo Synapsis

(A) illustrates the behavior of the proteins we have used here to visualize the axial and central elements of the SC. Axial-element proteins, including HTP-3,

load onto meiotic chromosomes prior to pairing and synapsis. The presence of SYP-1, a component of the central element, defines synapsed segments. (B)

and (C) show projections through fields of pachytene nuclei from gonads stained with antibodies against HTP-3 and SYP-1. (B) shows nuclei from a wild-

type hermaphrodite. SYP-1 staining corresponds closely with all HTP-3 segments in the merged image, indicating an absence of unsynapsed chromosome
1040 Cell 123, 1037–1050, December 16, 2005 ª2005 Elsevier Inc.



but, compared to meDf2 homozygotes, both ends of the

chromosome remained more highly associated through

the end of pachytene (Figure 2B). Comparison between

meDf2/+ (Figure 2C) and syp-1;meDf2/+ (Figure 2F) animals

confirmed that these associations in zones 3–5 require syp-1

and therefore reflect synapsis between X chromosomes.

Based on this analysis, 40% of meiotic nuclei in meDf2/+

heterozygotes achieve X chromosome synapsis by the end

of prophase (Figure 2; Table S1). This difference between

meDf2 and meDf2/+ hermaphrodites indicates that an un-

paired PC can promote a substantial degree of homolog

synapsis.

Pairing Centers Stabilize Homolog Pairing Even

in the Absence of Synapsis

In principle, the importance of PCs during meiosis could be

explained by our finding that they potently promote synapsis

of the chromosomes that carry them. However, previous

work has revealed that the PC end of each chromosome be-

haves distinctly even when synapsis does not occur. In syp-1

or syp-2 mutants, which lack essential structural compo-

nents of the SC, all chromosome regions undergo transient

pairing during early prophase. However, in mid- to late

pachytene, the PC region of each chromosome remains

more highly paired than loci from the opposite end (Colaiá-

covo et al., 2003; MacQueen et al., 2002). Thus, in the ab-

sence of synapsis, homologous pairing is locally stabilized

near the PC region of each chromosome.

We tested whether this stabilization of pairing in the ab-

sence of SC proteins requires PC activity by combining

meDf2 with a syp-1 mutation (Figures 2E and 2F). The differ-

ential behavior of the XL and XR probes observed in syp-1

hermaphrodites (Figure 2D) is not detected in syp-1;meDf2

animals (Figure 2E). Moreover, differences between XL and

XR pairing were eliminated when even one X chromosome

lacked a PC in syp-1 animals (Figure 2F). Fisher’s exact

test or chi-square analysis confirm that XL showed signifi-

cantly higher levels of pairing than the XR probe throughout

meiosis in syp-1 mutants (p < 0.025 for either test in each

of zones 2–5), but pairing of XL and XR was not significantly

different in syp-1;meDf2 or syp-1;meDf2/+ animals. We con-

clude that meDf2 deletes all preferential stabilization activity

from the left end of the X chromosome and that this synap-

sis-independent stabilization of pairing therefore requires the

X chromosome PC. Further, a PC must be present on both

chromosomes to promote local stabilization of pairing. Thus,

meDf2/+ heterozygotes display a separation of function: the

PC on the intact X chromosome retains some ability to pro-
Cell
mote synapsis in the absence of any local stabilization of

homolog pairing.

Synapsis Does Not Strictly Require a Pairing Center

We directly visualized synaptonemal complex (SC) formation

using antibodies to structural proteins of the SC (Figure 3). To

detect the axial elements, we generated antibodies to HTP-3

(HIM three paralog 3). We observed that this protein forms

axes along the chromosomes even before nuclei show other

signs of meiotic entry—i.e., prior to and independently of

homolog pairing (data not shown). This behavior is similar

to that of a related protein, HIM-3 (Zetka et al., 1999), but

HTP-3 loading occurred somewhat earlier and was indepen-

dent of him-3 function (data not shown). The central region of

the SC was detected using antibodies against SYP-1, which

normally polymerizes along chromosomes concomitant with

homolog pairing (MacQueen et al., 2002).

By the onset of pachytene in wild-type gonads, all HTP-3

segments were associated with SYP-1 protein, indicating

synapsis of all regions (Figure 3B). Six contiguous strands

stained by both HTP-3 and SYP-1 antibodies could often

be counted in 3D views of pachytene nuclei. By contrast,

most nuclei in the pachytene region of meDf2 hermaphro-

dites contained segments of HTP-3 staining that lacked

SYP-1, indicating regions of asynapsis (Figures 3C and 3D).

Frequently, two distinct regions of HTP-3 devoid of SYP-1

could be observed in three-dimensional images of meDf2

nuclei. Immunolabeling combined with FISH confirmed that

these SYP-1-negative regions corresponded to the X chro-

mosomes (Figure 3E).

Despite their obvious synapsis defects, a small but signif-

icant fraction of nuclei in meDf2 homozygotes contained six

HTP-3 and SYP-1-stained SCs of normal length, indicating

complete synapsis (Figures 3C and 3D). Twenty-six fully syn-

apsed nuclei were observed among 260 nuclei from the

pachytene regions of four meDf2 hermaphrodites, or 10%

of the total that we counted.

Fully synapsed nuclei comprised nearly half of the popula-

tion observed at pachytene in meDf2/+ heterozygotes

(Figure 4C and data not shown), consistent with our FISH-

based measurement of 40% synapsis (Figure 2C; Table

S1). The remainder appeared to have completely unsy-

napsed Xs. No indication of partial synapsis (i.e., HTP-3-

staining segments partially stained with SYP-1) between X

chromosomes was observed in this or any genetic back-

ground, suggesting that the SC spreads rapidly along the

full length of the chromosomes whenever it initiates success-

fully.
regions. Six SCs, corresponding to the six synapsed chromosome pairs, can be detected in each nucleus. (C) shows images from a hermaphrodite ho-

mozygous for the PC deficiency meDf2. Regions of HTP-3 staining lacking SYP-1 staining can be detected in most of these nuclei, although in a small

fraction of nuclei, complete synapsis with six contiguous stretches of SC is detected. Because the asynapsed regions and the difference between synapsed

and asynapsed chromosomes is more easily observed in 3D images, the same region shown in (C) is displayed in (D) as a stereo pair of images. Blue arrows

indicate the two nuclei in this field that are fully synapsed. In (E), in situ hybridization confirms that the X chromosomes are specifically asynapsed in meDf2

homozygotes. The X chromosome probe used here hybridizes to a region 2.2 Mb from the left end of the chromosome, which is retained on meDf2 and is

not duplicated on mnDp66. In most pachytene-region nuclei, two separated X chromosome signals can be seen, in contrast to the chromosome V-derived

probe, which is consistently paired. Interestingly, the X chromosome probes often colocalize with small foci of SYP-1 (two clear examples are indicated with

arrows), suggesting that although SYP-1 does not polymerize along these PC-deficient chromosomes, it may load onto the chromosome end (or ends). All

scale bars represent 5 mm.
123, 1037–1050, December 16, 2005 ª2005 Elsevier Inc. 1041



Figure 4. Recombination Intermediates Reach Higher Steady-State Levels and Persist Later in Nuclei with Defective X Chromo-

some Synapsis

(A) The distribution of RAD-51 foci as a function of meiotic progression in N2 (wild-type) and meDf2 hermaphrodites was measured as in Colaiácovo et al.

(2003). Each genotype is plotted independently. Gonads were divided into seven zones of equal size, which are enumerated along the x axis.

(B) To facilitate comparison between the genotypes analyzed in (A), the same data were consolidated to derive a mean number of RAD-51 foci per nucleus in

each zone. For (A) and (B), the total numbers of nuclei scored for each genotype were as follows (in order by zone). N2: 344, 453, 471, 373, 327, 276, 138;

total = 2382. meDf2: 257, 323, 342, 364, 296, 240, 149; total = 1971.

(C) RAD-51 foci are detected on unsynapsed X chromosomes. This projection displays late-pachytene nuclei from a meDf2/+ heterozygote. Two fully syn-

apsed nuclei are indicated with small white arrows, and three nuclei with unsynapsed X chromosomes are indicated by yellow arrows. Nuclei containing

unsynapsed chromosomes retain a more asymmetric chromosome distribution and display more numerous RAD-51 foci. Unsynapsed X chromosomes

can be detected as brightly DAPI-stained regions that lack extensive SYP-1 staining. Late RAD-51 foci are abundant on the X chromosomes, perhaps

most easily seen in the nucleus on the lower right. Scale bars represent 5 mm.
1042 Cell 123, 1037–1050, December 16, 2005 ª2005 Elsevier Inc.



These observations indicate that the X chromosome PC is

not absolutely required for SC polymerization or, alterna-

tively, that meDf2 does not eliminate the synapsis-promoting

activity of the PC although it deletes all local pairing stabiliza-

tion activity. These possibilities are further considered in the

Discussion, below.

X Chromosomes Lacking Pairing Centers

Incur Double-Strand Breaks and Can Undergo

Crossing-over

To investigate the consequences of PC deletion on recom-

bination, we used antibodies against RAD-51, a protein re-

quired to repair meiotic double-strand breaks (Rinaldo

et al., 2002). In wild-type worms, RAD-51 foci begin to accu-

mulate on chromosomes at the leptotene/zygotene stages

of meiosis, peak during early pachytene, and are infrequently

detected by late pachytene (Colaiácovo et al., 2003). Stain-

ing of meDf2 and meDf2/+ hermaphrodites revealed abun-

dant RAD-51 foci at later-than-normal stages in the gonad

(Figure 4). Similar delays in RAD-51 clearance have been ob-

served in other mutants with defects in synapsis (Colaiácovo

et al., 2003; Couteau et al., 2004). Interestingly, this delay

appears to be cell autonomous: the subpopulation of nuclei

in meDf2 and meDf2/+ hermaphrodites that does achieve

synapsis also shows normal clearance of RAD-51 foci (Fig-

ure 4C). In meDf2 and meDf2/+ hermaphrodites, the unsy-

napsed X chromosomes showed a high concentration of

persistent RAD-51 foci, indicating that PCs are not required

in cis for initiation of meiotic recombination (Figure 4C and

data not shown). Interestingly, many late foci are also de-

tected on the synapsed autosomes of these nuclei, suggest-

ing that the failure of the X chromosomes to synapse may in-

fluence recombination on the autosomes. We have explored

this issue in detail elsewhere (Carlton et al., 2005).

The frequency of crossing-over between PC-deficient X

chromosomes was analyzed by counting DAPI-stained bod-

ies at diakinesis, the stage of prophase just prior to the first

meiotic division. Gonads from meDf2 animals were hybrid-

ized with X chromosome FISH probes to enhance discrimi-

nation between bivalent (chiasmate) and univalent X chro-

mosomes. Consistent with the observations of Villeneuve

(1994), 23% of oocytes in meDf2 hermaphrodites showed

only six bivalents, while 77% revealed seven distinct DAPI-

staining bodies with separated X chromosomes (n = 100).

This observed frequency of bivalent X chromosomes in

meDf2 hermaphrodites substantially exceeds the fraction

of nuclei that displayed extensive X chromosome synapsis

at pachytene, based on either FISH or immunostaining as-

says (above). A possible interpretation of this discrepancy

is that some X chromosomes manage to undergo exchange

without completely synapsing with their partners. However,

the observation that nuclei with unsynapsed X chromo-

somes contain persistent RAD-51 foci suggests an alternate

explanation. Unrepaired meiotic breaks can trigger a DNA-

damage checkpoint, resulting in programmed cell death

(Gartner et al., 2000). Apoptosis in C. elegans oocytes oc-

curs during late pachytene, prior to diakinesis. Preferential

apoptosis of nuclei with unsynapsed X chromosomes could

potentially enrich the pool of oocytes at diakinesis and after
Cell
division for the small fraction that have achieved X chromo-

some synapsis. In support of this idea, when a ced-3(n717)

mutation, which reduces apoptosis, is combined with

meDf2, only 12% of nuclei at diakinesis showed bivalent X

chromosomes (n = 174). We believe that this lower fre-

quency of chiasmata more accurately reflects the actual

frequency of crossover formation, in part because cross-

overs are likely to require synapsis in C. elegans (MacQueen

et al., 2002), and this frequency is similar to the 10% of

meDf2 nuclei that displayed X chromosome synapsis

(above). These observations have broad implications since

they reveal that chromosome missegregation observed

among the progeny of mutant worms is not a simple func-

tion of the frequency of defects in synapsis or crossover

formation.

Evidence that Synapsis Initiates Near the

Pairing-Center Region of the Chromosome

and Proceeds through Nonhomologous Regions

Recognition of a special activity located near one end of each

C. elegans chromosome arose from genetic studies of struc-

turally rearranged chromosomes (Herman and Kari, 1989;

McKim et al., 1988). In many organisms, heterozygosity for

chromosome rearrangements such as inversions and trans-

locations inhibits meiotic recombination near the break-

points. This is usually attributed to local disruption of syn-

apsis, which can sometimes be observed cytologically.

In C. elegans, crossovers are suppressed in all regions

distal to translocation breakpoints, where ‘‘distal’’ is defined

in relation to the pairing centers, and not just near the

breakpoints. In principle, the regions that are crossover-

suppressed could be asynapsed, synapsed with nonhomol-

ogous regions, or homologously synapsed but not capable

of forming crossovers, although preliminary cytological stud-

ies have indicated that the latter possibility is unlikely (Gold-

stein, 1986; Loidl et al., 2004).

To understand the basis for crossover suppression in

translocation heterozygotes, we examined their synapsis

behavior. eT1 and nT1 are two of the best characterized

‘‘balancer’’ rearrangements used in C. elegans genetics

(Edgley et al., 1995; Koh et al., 2004; Rosenbluth and Baillie,

1981). Each is a reciprocal translocation that suppresses ex-

change over extensive portions of two autosomes (III and V

or IV and V; Figure 1C). Crossing-over in eT1 and nT1 hetero-

zygotes occurs only from the pairing-center end to the

breakpoint on each autosome.

In eT1 or nT1 heterozygotes, we observed six SC seg-

ments in pachytene nuclei (Figure 5). All HTP-3 staining seg-

ments were associated with SYP-1, indicating synapsis of all

chromosome regions. Strictly homologous synapsis in these

animals would result in cruciform, or quadrivalent, SCs, and

such structures were never detected. This suggests that the

crossover-suppressed regions are nonhomologously syn-

apsed, which would account for their inability to undergo re-

ciprocal recombination.

By combining immunostaining with FISH, we directly ob-

served nonhomologous synapsis in these crossover-

suppressed regions (Figure 6). Probes to the nonhomolo-

gous ends of eT1(III)/III and eT1(V)/V were closely juxtaposed
123, 1037–1050, December 16, 2005 ª2005 Elsevier Inc. 1043



Figure 5. Reciprocal Translocations that Suppress Crossing-over Do Not Cause Asynapsis

These panels show immunostaining of the SC in hermaphrodites heterozygous for the reciprocal translocations eT1 and nT1 (diagrammed in Figure 1). As in

wild-type animals, no regions of unsynapsed axial elements are observed. Stereo pairs of regions from the merged images are also shown because they

make it easier to observe the six contiguous SCs in each nucleus and the absence of cruciform (quadrivalent) structures. All scale bars represent 5 mm.
at pachytene at one end of each of two linear SCs. By con-

trast, probes from the pairing-center regions of these chro-

mosomes were homologously paired (data not shown).

Thus, eT1 and nT1 heterozygotes undergo complete syn-

apsis between chromosomes with matching PC regions

(Figure 6C), despite the fact that they have extensive regions

of nonhomology.
1044 Cell 123, 1037–1050, December 16, 2005 ª2005 Elsevier In
Together with evidence that PCs are important for the ef-

ficient initiation of synapsis, these observations are most

easily explained if we propose that (1) synapsis initiates at

or near the PC and (2) polymerization of the SC is highly

processive and, once initiated, will ‘‘zipper’’ up two chromo-

somes without regard to homology distant from the PC. The

idea that synapsis is very processive is also consistent with
c.



Figure 6. Regions that Are Crossover-Suppressed in Reciprocal-Translocation Heterozygotes Participate in Nonhomologous

Synapsis

(A) shows separate and merged images of pachytene nuclei from an eT1/+ heterozygote stained with anti-SYP-1 antibodies and hybridized with fluorescent

probes to the crossover-suppressed (non-PC) ends of chromosomes III and V. As in Figure 5, six SCs are observed in each nucleus, and two of these show

closely associated nonhomologous probe pairs at one end. (B) indicates the position of the probes on the wild-type karyotype. (C) illustrates the most

straightforward explanation for the observations: synapsis initiates at the homologously paired PC end of the chromosomes and ‘‘zippers’’ up along the

complete length of each chromosome pair, resulting in nonhomologous synapsis of these distal regions associated with homologous PCs. The eT1

(III)/III and eT1(V)/V pairs both involve synapsis between chromosomes of unequal length, suggesting that there is a mechanism that compacts and/or ex-

tends chromosome regions to equalize these lengths. Scale bars represent 5 mm.
the absence of partial synapsis observed for X chromo-

somes in any of the mutant genotypes analyzed here.

Interestingly, both the homologous and nonhomologous

ends of the translocation chromosomes were closely juxta-

posed with their partners at pachytene, with no apparent

‘‘overhang’’ of axial-element proteins or chromatin on either

end (Figures 5 and 6). This is significant in light of the discrep-

ancy between the lengths of the synapsed chromosome

pairs. The chromosome III breakpoint in eT1 is in or very

near the unc-36 locus, and eT1 balances the left portion of

chromosome V through at least the rol-3 gene (Barbazuk

et al., 1994); thus, the pairs of synapsed chromosomes in

an eT1 heterozygote differ in physical length by at least

22% (III and eT1(III)) and 14% (V and eT1(V)) (Figures 1C

and 6C). The length disparity is even greater between synap-

tic partners in nT1 heterozygotes (Figure 1). These observa-

tions imply the existence of a mechanism that globally aligns
Cell
the mismatched chromosomes and adjusts the lengths of

their axes, perhaps by matching up the telomeres and con-

densing or decondensing the chromosomes, as necessary,

to equalize their lengths at pachytene. We cannot currently

determine whether this length equalization occurs before

or concomitantly with synapsis since it has not been possible

to measure the lengths of unsynapsed axial elements with

enough precision.

These observations can explain the genetic behavior of

large heterozygous insertions and deletions in C. elegans,

which disrupt crossing-over in the vicinity of the insertion

but are often partially permissive for crossing-over distal to

the region of presumed nonhomologous synapsis (McKim

et al., 1993). Similar adjustments in SC formation between

chromosomes of different lengths have been observed in

mammals and plants (reviewed by Zickler and Kleckner,

1999).
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Pairing-Center Function Does Not Require

Proximity to Chromosome Ends

Genetic mapping has revealed that PCs are located toward

one end of each chromosome (Figure 1A), raising the ques-

tion of whether their function requires proximity to a telomere.

A possible relationship between PCs and telomeres is further

suggested by our findings that PCs associate with the nu-

clear envelope during meiosis (Phillips et al., 2005), as do te-

lomeres in many organisms. To test whether pairing centers

can function at locations other than chromosome ends, we

examined the meiotic behavior of eT3 and eT6, two different

fusions between chromosomes X and IV (S. Ahmed, per-

sonal communication; Figure 1D). C. elegans hermaphro-

dites can transmit these and other X autosome fusion chro-

mosomes efficiently to their progeny, although heterozygous

animals show high X and autosomal nondisjunction (Herman

et al., 1982; Hillers and Villeneuve, 2003; Sigurdson et al.,

1986).

On eT6, the PC ends of both the X and chromosome IV are

oriented internally, near the junction (Figure 1D). Consistent

with their efficient segregation, we found that synapsis oc-

curred regularly along the entire length of homozygous eT6

chromosomes (Figure S1). The behavior of eT6 argues that

the PC does not need to be near an end to promote homol-

ogous synapsis, but it does not eliminate the possibility that

telomeric sequences are important for PC function since eT6

does contain TTAGGC repeats at the junction between X

and IV (M. Lowden and S. Ahmed, personal communica-

tion).

In principle, each PC on eT6 could act near the junction to

promote synapsis directionally toward its respective end of

the chromosome. To explore whether a single, internally lo-

cated PC can promote synapsis toward both chromosome

ends, the X chromosome PC was deleted from the X-IV

fusion eT3 by recombination with meDf2. This created an

X-IV fusion that has only the chromosome IV PC, located

internally near the junction (diagrammed in Figure 1). Immu-

nostaining of SC components revealed that this chromo-

some, like eT6 and intact eT3 (data not shown), regularly

undergoes synapsis along its length in homozygous animals

(Figure S1). This demonstrates that a medially located PC

can promote synapsis that extends to both ends of the fu-

sion chromosome.

DISCUSSION

Pairing Centers Are Essential for Accurate Meiotic

Segregation but Are Not Strictly Required

for Homolog Pairing, Synapsis, or Crossing-over

Our data have demonstrated that PCs locally stabilize homo-

log pairing in the absence of synapsis; they also promote

synapsis even in the absence of this stabilization activity. It

is not yet clear whether PCs also actively facilitate encoun-

ters between homologs. Our observations that the unpaired

PC in meDf2/+ heterozygotes retains substantial synapsis-

promoting activity in the absence of local synapsis-

independent stabilization activity reveal that the stimulation

of synapsis by the PC is not simply a consequence of in-

creased perdurance of pairing interactions. It is not yet
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known whether these distinct activities originate from the

same locus on the chromosome or from separate but closely

linked sites. Either way, it may be advantageous to the cell to

physically link these activities as a means to coordinate the

processes of homolog pairing and synapsis.

One surprising conclusion is that PCs profoundly influence

the probability of synapsis and crossing-over without being

strictly required for their occurrence. Homolog pairing, syn-

apsis, and crossover recombination all take place, albeit

transiently or inefficiently, between chromosomes lacking

pairing centers. This could be attributed to residual PC activ-

ity on the meDf2 chromosome, but our results argue against

this interpretation. Specifically, we have shown here that

meDf2 eliminates preferential stabilization activity from the

left end of the X chromosome. Results in an accompanying

paper (Phillips et al., 2005) also reveal that meDf2 removes

the primary binding site for an essential PC-interacting pro-

tein. Previous work has shown that the recognition of homol-

ogy is not an exclusive property of the pairing-center region

of the chromosome (Villeneuve, 1994). Moreover, chromo-

some regions distant from PCs can cross over, which re-

quires intimate homologous interactions, even when partner

chromosomes lack contiguous homology (McKim et al.,

1993). We favor the idea that, while activities that stabilize

pairing and promote synapsis are highly concentrated at

the PCs, these activities are also distributed elsewhere along

the chromosomes, either at discrete sites or to some extent

at all sequences.

A Multistep Model for PC-Mediated Pairing

and Synapsis

Our results suggest a model (Figure 7) describing how the

PC might enable chromosomes to transition efficiently and

accurately from an unpaired (U) to a homologously synapsed

(S) state. We propose that the local stabilization of pairing by

the PC creates a long-lived but reversible state (P1) that al-

lows the evaluation of local homology. Initial, transient con-

tacts between homologous or nonhomologous chromo-

somes are designated in the model as P0. When pairing

centers interact with each other, P0 can transition to the lon-

ger-lived P1. If homology criteria are satisfied, the paired

chromosomes are maintained at P1 until they transition to

the S (synapsed) state. On the other hand, if homology rec-

ognition mechanisms determine that the partners are in-

appropriate, chromosomes transition from P1 back to U to

enable a new search for the correct partner. For synapsis

to preferentially occur homologously, the rate of synapsis ini-

tiation must be slow relative to the average persistence of the

P0 state. When the P1 state occurs between homologous

partners, it is long lived, providing an extended time window

for synapsis to initiate.

This model can account for the substantial levels of synap-

sis observed between normal and PC-deficient X chromo-

somes if we propose that a single PC enhances the P0/S

transition rate (Figure 7B), thereby promoting synapsis initia-

tion even in the absence of the P1 state. When both PCs are

absent, the P0/S transition rate is further reduced, but our

observation that meDf2 chromosomes do undergo occa-

sional synapsis implies that this transition can still occur.
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One prediction of this model is that chromosome synapsis

might occur not only less frequently but also more stochas-

tically in the absence of the stabilization activity due to ongo-

ing collisions during meiotic prophase. This idea is supported

by our FISH analysis of meDf2/+ heterozygotes, in which the

fraction of synapsed X chromosomes continues to rise

throughout pachytene (Figure 2C, zones 3–5). Because it

sidesteps the stabilized state, which we have proposed to

play an important role in homology discrimination, we predict

that this route to synapsis might also be error prone relative

to the normal pathway. However, this prediction has not

been tested here. In meDf2/+ heterozygotes, all of the auto-

somes carry functional PCs, which promote their efficient

synapsis and prompt removal from the pool of unsynapsed

potential partners. This lack of competition may facilitate

Figure 7. A Model for the Role of PCs in Chromosome Pairing

and Synapsis

(A) The normal pathway leading from unpaired (U) chromosomes to ho-

mologous synapsis (S). The P0 paired state is transient, but the P1 state

is stabilized by an interaction between homologous PCs. Yellow balls rep-

resent pairing centers, and the green dashed lines represent the synap-

tonemal complex. The red ‘‘horns’’ represent the Maxwellian demon-

like properties of the pairing centers at the P1 state. See the text of the

Discussion for explanation.

(B) An alternate pathway to synapsis when the pairing center is missing

from one of two homologous chromosomes.
Cell
proper X chromosome partner choice even in the absence

of stabilization.

The Pairing Center as a Maxwellian Demon

We suggest that the PC enables the cell to overcome a ther-

modynamic barrier to achieve accurate sorting and that it

does so by using energy to kinetically stabilize a key transi-

tion state, the P1 state. This proposed function meets the

definition of ‘‘kinetic proofreading,’’ as outlined by Hopfield

(1974). He demonstrated that the error rate in multistep bio-

logical processes could be reduced through kinetic stabiliza-

tion of transition states and recognized that this proofreading

must consume energy.

In the case of PC function, energy might be expended to

make the transition from the P0 to the P1 state irreversible

and/or to perpetuate the P1 state for long periods relative

to the rate of synapsis initiation. For example, homologous

associations at PCs might be maintained through phosphor-

ylation of protein targets or by hydrolysis of ATP or GTP by

PC-associated molecular motors. Molecular dissection of

pairing-center components will make it possible to test these

ideas.

This proposed sorting function of the PC suggests an

analogy with Maxwell’s demon, an imaginary creature pro-

posed by physicist John Clerk Maxwell that could distinguish

fast- from slow-moving molecules in a volume of gas. In our

model, the stabilization of pairing facilitates sorting by allow-

ing homology to be assessed prior to synapsis initiation. This

aspect of the model is indicated by the horns on the PCs in

the P1 state (Figure 7).

Pairing-Center Conservation and Evolution

The essential role of cis-acting pairing centers distinguishes

C. elegans from other species in which meiosis has been

extensively analyzed. In most organisms, the stabilization

of pairing and initiation of synapsis are not generally thought

to depend on specific chromosome regions. Telomeres may

contribute to this process via formation of the meiotic bou-

quet, but synapsis frequently initiates at interstitial positions

(reviewed by Zickler and Kleckner, 1998).

In Drosophila, there is evidence for sites that play special

roles during female meiosis as well as a distinct set of sites

that are essential for meiotic segregation in Drosophila

males. Both differ in significant ways from the pairing centers

of C. elegans. The sites that have been identified in female

meiosis act as boundaries of crossover regulation, but it is

not yet clear whether they contribute to either pairing or syn-

apsis (Hawley, 1980; Sherizen et al., 2005). Male pairing

sites share a major function with C. elegans PCs in that

they are required to stabilize homolog association and to

permit proper segregation. Unlike PCs, however, they do

not contribute to synapsis initiation since Drosophila sper-

matocytes lack SCs.

Evidence from other model systems has indicated that

the recombination machinery contributes to synapsis-

independent stabilization of pairing, although such a contri-

bution is either nonexistent or dispensable in C. elegans and

Drosophila. Perhaps the most straightforward demonstra-

tion comes from real-time analysis of meiotic chromosomes
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in living S. pombe cells (Ding et al., 2004). In fission yeast,

there is no synapsis. In the absence of double-strand breaks,

homologous interactions are very transient throughout mei-

osis, but they are normally stabilized via a recombination-de-

pendent mechanism. In other organisms, it has been difficult

to tease apart the role of the recombination machinery in

pairing and synapsis, largely because recombination and

synapsis are often mutually interdependent. However, re-

cent evidence from S. cerevisiae shows that both crossover

and noncrossover recombination intermediates stabilize

interhomolog interactions, and at least the noncrossover

pathway’s contribution is independent of any role in initiating

synapsis (Peoples-Holst and Burgess, 2005). It remains am-

biguous whether the recombination machinery plays a direct

role in initiating synapsis in any system or instead stimulates

SC formation by stabilizing pairing, but in vivo kinetic analysis

should help to resolve this issue.

It is possible that the concentration of these key meiotic

functions at a unique region on C. elegans chromosomes

is related to the fact that worm chromosomes are holocentric

in mitosis and probably also in meiosis (reviewed by Albert-

son et al., 1997). The overt functions of pairing centers and

centromeres are quite distinct, and there is no evidence

that pairing centers contribute to the quintessential roles

of the centromere in kinetochore formation or microtubule

attachment during mitosis or meiosis. Nevertheless, cen-

tromeres play another, less obvious but essential role in

chromosome integrity simply by virtue of their singularity. In

monocentric species, where a unique site on each chromo-

some mediates the indispensable functions of spindle at-

tachment and segregation, chromosome rearrangements

are usually eliminated through mitotic divisions. In particular,

any event that produces an acentric fragment will result in

chromosome loss, usually leading to the death of that cell’s

progeny. By contrast, chromosome fragments are transmis-

sible through mitotic divisions in holocentric species (White,

1973). We propose that the presence of a unique and essen-

tial PC region on each chromosome prevents the efficient

transmission of chromosome fragments through meiosis.

There are further reasons to suspect that pairing centers in

C. elegans may be related to centromeres. In wheat meiosis,

centromeres play a role in distinguishing homeologous from

true homologous chromosomes (Martinez-Perez et al.,

1999), indicating that they contribute to the recognition or

enforcement of homology. Recent evidence has revealed

a potentially analogous role for centromeres in budding-

yeast meiosis (Tsubouchi and Roeder, 2005). Prior to syn-

apsis, pairwise associations between centromeres are

observed. These initial contacts occur irrespective of homol-

ogy, and chromosome pairs are subsequently re-sorted to

lead to homologous synapsis. As in our model (Figure 7),

pairing between centromeres may mediate a metastable,

paired state in which homology can be assessed. Centro-

meres are also thought to play a role in the segregation of

nonexchange chromosomes in yeast (Kemp et al., 2004),

which may be a manifestation of this putative stabilization

function.

One possibility is that, as centromeres became delocal-

ized in the lineage leading to C. elegans, the same sites ac-
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quired the indispensable function that they now play in mei-

otic pairing and synapsis. Although the existence of a unique

site on each chromosome that confers centromere activity is

dispensable and has been lost in many evolutionary lineages

among plants and animals, an essential site that functions

properly in one and only one copy per chromosome may

be a universal feature of eukaryotic genomes.

EXPERIMENTAL PROCEDURES

Genetics and Mapping

All worms were raised at 20ºC under standard culture conditions. Specific

alleles used in this study were chromosome IV, ced-3(n717); chromo-

some V, syp-1(me17); chromosome X, unc-1(e528);dpy-3(e27);lon-

2(e678); and chromosome aberrations eT1(III;IV), nT1[qIs51](IV;V),

eT3(IV;X), eT6(IV;X), eT3[meDf2](IV;X), mnDp66(X;I), meDf2(X), meDf3(X),

and meDf5(X).

To generate meDf2/ + animals lacking mnDp66, mnDp66;meDf2/0

males were mated to unc-1 dpy-3 hermaphrodites. Hermaphrodite

crossprogeny were allowed to self-fertilize, and their Unc nonDpy prog-

eny were selected. To generate the eT3[meDf2] chromosome, lon-2

was first crossed onto meDf2 to mark its left end.

The extent of the deficiencies meDf2, meDf3, and meDf5 was mapped

using ‘‘snip-SNPs,’’ single nucleotide polymorphisms that alter a restric-

tion site between N2 (the reference strain) and a Hawaiian isolate of

C. elegans (Wicks et al., 2001). An unc-1 dpy-3 strain with Hawaiian-

derived SNPs to the left of dpy-3 was generated by extensive outcrossing.

mnDp66;meDf2/0 males were crossed to these Hawaiian unc-1 dpy-3

hermaphrodites; crossprogeny were allowed to self-fertilize, and Unc

nonDpy hermaphrodites (which lack mnDp66) were picked and lysed

for SNP analysis. Six SNPs ranging from 0.05 to 2.06 Mb from the left

end of the X chromosome were examined; for SNPs within the deletion,

only the Hawaiian restriction digest pattern was observed, whereas for

SNPs outside the deletion, we detected both N2 and Hawaiian alleles.

Cytological Methods

FISH experiments were performed essentially as in Dernburg et al. (1998).

Either formaldehyde fixation alone or a combined EGS/formaldehyde fix-

ation procedure was used. Probes to single-copy sequences were gen-

erated using cosmids or YACs provided by the Sanger Centre. The

X chromosome probes used for the pairing analysis in Figure 3 and Table

S1 were synthesized from YACs Y24A9 (XL) and Y68A3 (XR). The probes

for the experiment presented in Figure 6 were synthesized from cosmid

pools T27A9, T25C8, T12D8, and ZK526 (for IIIR) and T01G6, D2051,

and R11G11 (for VL). For experiments in which FISH was combined

with immunostaining, FISH was generally performed first on samples fixed

in 1% formaldehyde.

To raise antisera specific for HTP-3, the C-terminal exon of the

predicted gene was amplified and cloned into pET-D/TOPO (Invitrogen),

verified by sequencing, and expressed in E. coli. The recombinant His6-

tagged protein was purified under denaturing conditions, separated

from contaminants by SDS-PAGE, and excised from the gel. Chickens

and guinea pigs were immunized, and reactive sera were used without

further purification. Antisera against SYP-1 (MacQueen et al., 2002) and

RAD-51 (Colaiácovo et al., 2003) have been described previously.

For immunostaining, dissected gonads were fixed in 1% formaldehyde

in egg buffer (Dernburg et al., 1998) containing 0.1% Tween 20 for 5 min,

freeze cracked into cold 100% dimethylformamide, and then transferred

to PBS + 0.1% Tween 20 at room temperature. All primary antisera ex-

cept for anti-RAD-51 were used without affinity purification, but in some

experiments they were preadsorbed against formaldehyde/methanol-

fixed whole worms to reduce nonspecific staining. Secondary antibodies

were purchased from Jackson ImmunoResearch or Molecular Probes.

Three-dimensional images of stained gonads were collected using

a DeltaVision microscope system on an Olympus IX70 platform (Applied

Precision, Issaquah, WA). Most images were recorded using a 100�
NA 1.35 UPlanApo objective. All images were deconvolved with
c.



a measured point-spread function. For display of all three-dimensional

images presented here, projections through the full nuclear volumes

were generated using a maximum-intensity algorithm.

Supplemental Data

Supplemental Data include one table and one figure and can be found

with this article online at http://www.cell.com/cgi/content/full/123/6/

1037/DC1/.
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