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Abstract. Ecological monitoring of streams has frequently focused on measures describing
the taxonomic, and sometimes functional, a diversity of benthic macroinvertebrates (BMIs)
within a single sampled community. However, as many ecological processes effectively link
BMI stream communities there is a need to describe groups of communities using measures of
regional diversity. Here we demonstrate a role for incorporating both a traditional pairwise
measure of community turnover, b diversity, in assessing community health as well as f diver-
sity, a more generalized framework for describing similarity between multiple communities.
Using 4,395 samples of BMI stream communities in California, we constructed a model using
measures of a, b, and f diversity, which accounted for 71.7% of among-watershed variation in
the mean health of communities, as described by the California Streams Condition Index
(CSCI). We also investigated the use of f diversity in assessing models of stochastic vs. niche
assembly across communities of BMIs within watersheds, with the niche assembly model found
to be the likelier of the two.

Key words: f diversity; benthic macroinvertebrates; biotic integrity; diversity indices; landscape
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INTRODUCTION

Stream ecosystems provide a number of ecological ser-
vices for human activities, ranging from supporting pop-
ulations of native species to moderating the delivery of
nutrients to coastal ecosystems (Anderson et al. 2002,
Dudgeon et al. 2005). It has also been recognized that
monitoring the health of aquatic stream communities is
of importance not just to the functioning of the immedi-
ate environment, but to downstream ecosystems and
communities impacted by events such as harmful algal
blooms (Carpenter et al. 1998, Paerl et al. 2016). How-
ever, given the close proximity of many riparian systems
to agricultural and urbanized land, such communities
are frequently stressed by human activity in the sur-
rounding watershed (Urban et al. 2006, Tonkin et al.
2016). Such stress can take a variety of forms depending
on the geographic scope and intensity of land use, such
as increased nutrient levels from agricultural runoff or
increases in sediment load from upstream erosion (Sala
et al. 2000, Allan 2004, Dudgeon et al. 2005, Abell et al.
2007, Strayer and Dudgeon 2010). Ecological stress has
been found to be associated with a decline in local (a)

stream community diversity (Hendrickx et al. 2007,
Petrin et al. 2008, Heino 2009). Local stream communi-
ties are not isolated, being connected through mecha-
nisms such as dispersal, and may more accurately be
considered part of a regional-scale metacommunity
(Gr€onroos et al. 2013, Socolar et al. 2016). There is
importance then in considering both local and regional
measures of biodiversity (Socolar et al. 2016), as well as
regional gradients in environmental and anthropogenic
activity, in shaping community structure across water-
sheds (Shade et al. 2008, Rawi et al. 2013, Brendonck
et al. 2015, Tonkin et al. 2016).
One approach to assessing the impacts of environ-

mental gradients, both natural and anthropogenic,
across a set of stream communities is to consider the
regional-scale (c) diversity of the communities in ques-
tion (Heino 2009). c diversity has the advantage of
being straightforward to calculate, being the product
of the average local-scale diversity (a) and pairwise
similarity between local communities (b) (Whittaker
1972). Measures of diversity within (i.e., a), and
between or among (i.e., b and c) communities, have
been commonly used in describing stream communi-
ties (Vander Vorste et al. 2017). However, such mea-
sures are limited in fully describing diversity in groups
of more than two samples (Chao et al. 2008). For
example, estimates of b diversity are biased towards
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the turnover of rare types of organisms (Latombe
et al. 2017).
To address this limitation, we incorporated a new

measure, zeta (f) diversity, in our study of a set of Cali-
fornia stream communities. f diversity describes the
overlap in categories shared between multiple samples
(Fig. 1; Hui and McGeoch 2014). In our study, these
categories are defined either by membership of unique
taxa or of a particular functional feeding group. Using
this framework, one can describe the mean degree of
overlap in unique categories among N samples (fN)
across a given set of samples. From this metric one can
then define the mean a diversity, as defined by categori-
cal richness, across a sample set as f1, while the mean b
diversity, as defined by Jaccard’s similarity index
(Jaccard 1900), can then be defined as f2/(2 9 f1 � f2)
(Hui and McGeoch 2014). What is novel is that the f
diversity framework enables measurement of diversity
involving three or more sampled communities, which
cannot be determined using solely a and b diversity. For
example, the loss of categories of taxa found across most
samples in an environment can be a useful indicator of
widespread environmental degradation (Gaston and
Fuller 2008, Pond 2012).
Here we propose the utility of f diversity in describing

variations in the composition of BMI communities in
streams over the entire state of California. We demon-
strate the role of a number of factors in shaping f diver-
sity, such as variation in the natural landscape (sample
site altitude), as well as levels of human impact (land use
upstream of sample sites). Using samples (Fig. 2)

collected by the State of California’s Surface Water
Ambient Monitoring Program (SWAMP), we also inves-
tigated trends in how f diversity declines with the num-
ber of sampled communities (namely, f order). How f
diversity declines with f order can allow for a test of like-
lihood for two models of community assembly, either a
stochastic process (Munoz et al. 2008) or one driven by
a niche differentiation process (Scheiner et al. 2011).
Given prior observations about how local environment
(Siqueira et al. 2012, Astorga et al. 2014) and predation
(Chase et al. 2009) have shaped BMI community struc-
tures our expectation was to observe dominance of niche
differentiation processes over stochastic ones. We then
demonstrated how various measures of f diversity can
be used to describe the health of communities of BMIs
as described by the California Streams Condition Index
(CSCI; Rehn et al. 2015, Mazor et al. 2016). f diversity,
as a generalized extension of a and b diversity, has the
potential to both better illustrate, at the watershed scale,
trends in turnover as well as a more general framework
for assessing the health of groups of BMI communities.

MATERIALS AND METHODS

Scope of data

The initial scope of data covered in this analysis con-
sists of 4,984 stream samples from 2,997 unique geo-
graphic locations across the state of California,
constituting a 23-yr period (1994–2016). Every sample
contains the following data: BMIs enumerated and

Sample A

Sample A

Sample B

Sample A

Sample B
Sample C

FIG. 1. An illustration of the first three orders of f diversity. The mean number of unique categories of organisms per sample, a
measure of a diversity, is represented by the value f1. In comparing two or more samples, the average number of unique categories
held in common between any two samples is represented by the value f2. The mean value then of b diversity, as described by Jaccard
distance (Jaccard 1900), for sets of two or more samples is f2/(2 9 f1 � f2) (Hui and McGeoch 2014). For sets of three or more sam-
ples, the value of f3 represents all of the unique categories held in common between three samples. This process can be extended to
N samples, allowing for a determination of the values f1 through fN.
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FIG. 2. The mean values per HUC 8 watershed of (a) ataxa, (b) afunctional, (c) btaxa, (d) bfunctional, (e) f10,taxa, (f) f10,functional,
(g) California Streams Condition Index (CSCI), and (h) modeled health index.
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sorted to a standardized level (generally a genus-level
identification except chironomids, which were identified
to subfamily; Richards and Rogers 2006), a bioassess-
ment index score based on a composite of taxonomic
and functional diversity within BMI assemblages known
as the California Stream Condition Index (CSCI), sam-
ple site altitude in meters, and the percent developed
land use (agricultural, urban, and managed landscapes)
within a 5-km clipped buffer of the watershed upstream
of the sampling site. We used the CSCI as our measure
of community health as it has been extensively validated
across the state of California, and has been used as the
primary bioassessment tool used to assess beneficial uses
in California and regulatory compliance with National
Pollutant Discharge Elimination System (NPDES) pro-
grams (Mazor et al. 2016). Sites were assigned to hydro-
logic regions (hereafter referred to as “watersheds”) at
different regional scales defined by the U.S. Geological
Survey Hydrologic Unit Code (HUC), a standardized
watershed classification system developed by the U.S.
Geological Survey that organizes watersheds in a nested
hierarchy by size (Seaber et al. 1987). Each HUC is
assigned a geographically unique numerical ID, with
geographic scale decreasing in increments of two digits
from a regional (HUC 2) to subwatershed (HUC 12)
scale. Our initial data contained 118 HUC 8, 22 HUC 6,
14 HUC 4, and 3 HUC 2 watersheds. We designated
HUC 8 watersheds as the minimum geographic scale for
investigating patterns of diversity.

Sample group selection

To investigate patterns in our measures of a, b, and f
diversity we first constructed equally sized groups of
samples from within each HUC 8 watershed. We chose
watersheds with at least 25 unique samples as having suf-
ficient data density for meaningful analysis. This filter-
ing reduced our overall data set from 4,984 to 4,395
unique samples. We then randomly subsampled 25
stream samples within each of the remaining 56 HUC 8
watersheds. For analysis of trends in sample diversity,
this process was repeated 100 times. For each group of
25 samples, we calculated the mean sample site altitude
(altitude), the mean percent developed upstream land
use (land use), and for mean geographic separation
distance in meters between samples (distance) we used
the distm function within the R package geosphere
(Hijmans, 2016).

Sample acquisitions and classifications

Slightly more than one-half (55%) of the BMI samples
were collected following the reach-wide protocol of
(Peck et al. 2006); the other samples were collected with
targeted riffle protocols, which produce comparable data
(Gerth and Herlihy 2006, Herbst and Silldorff 2006,
Rehn et al. 2007). For most of the available data, taxa
were identified to genus, although this level of effort (as

well as the total number of organisms per sample) varied
among samples, necessitating standardization of BMI
data. Membership of a particular taxon to a functional
feeding group was done using CAMLnet (Ode 2003).
Using these methods, we assigned all identified BMIs to
one of 334 unique taxonomic groups and 8 unique func-
tional feeding groups.

Calculating the CSCI

The CSCI is a predictive measure of community
health at a given site that compares observed taxa and
metrics to values expected under reference conditions
based on site-specific landscape-scale environmental
variables, such as watershed area, geology, and climate
(Mazor et al. 2016). This index comprises two sets of
measurements using a standardized taxonomy for BMI
communities (Richards and Rogers 2006): the first being
a ratio of observed-to-expected taxa (O/E), and the sec-
ond a predictive multi-metric index (pMMI) made of six
metrics related to ecological structure and function of
the BMI assemblage describing the site’s community.
The CSCI, and its components, were designed to have
minimal influence from major natural gradients, and
can therefore be used as a measure of biological condi-
tions with a consistent meaning in different environmen-
tal settings (Reynoldson et al. 1997, Hawkins et al.
2010).

Land use

The type and geographic extent of land use in the
upstream vicinity of each sampling site data is derived
from the National Land Cover Data set (Homer et al.
2007). The type of land use attributed to human activity
is measured by the total percent of land cover in a desig-
nated area dedicated to agriculture, urbanization, or
otherwise managed vegetative landscapes such as golf
courses. The sum of all of these measures is applied to
each sample site using a 5-km watershed-clipped buffer
upstream of a stream sampling site using ArcGIS tools
(version 10.3; Environmental Systems Research Insti-
tute, Redlands, California, USA; Mazor et al. 2016).
Land use data are derived for all sample sites using satel-
lite measurements acquired in the year 2000. It should
be noted that the samples in our study were located in
areas where the percent developed land use did not
change significantly over the range of time covered in
this study (r2 = �0.02, P not significant).

Statistical analysis

The diversity measures we used in this study, sepa-
rately calculated for samples categorized both by taxo-
nomic groups as well as functional feeding groups, were
mean a diversity, b diversity, the f diversity decline
power-law exponent (b), and the mean number of groups
held in common across 10 samples (f10). Both measures
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of a and f diversity were calculated using the R package
ZETADIV (Latombe et al. 2016), with the mean a
diversity per group of samples calculated as f1. The
mean value of b diversity, as determined from the Jac-
card distance, was calculated per group of samples using
the vegdist function in the R package vegan (Oksanen
et al. 2013). To then determine the contribution of each
of our experimental factors to our observed variation in
b diversity we performed a 1,000 permutation PERMA-
NOVA using the adonis function in the R package vegan
(Oksanen et al. 2013).
To investigate how similar on average our samples

were within groups, as described by f diversity, we then
tested two models, a power-law of the form fN = f1N

�b

and an exponential of the form fN = f1e
b.(N�1), in

describing how overlaps between samples declines with f
order. The f diversity decline exponent, b, is a measure
of the dissimilarity within a sample set with a greater
value of b indicating a greater overall dissimilarity
between constituent samples across a multi-site assem-
blage. We fitted these models to the first 10 orders of f
within a given set of 25 stream samples. The first 10
orders of f diversity, f10, were chosen as this was suffi-
cient to show an asymptotic “floor” for the average num-
ber of unique taxa or functional feeding group held in
common across a sample set. Support for each model
was determined using an Akaike Information Criterion
(AIC) score within ZETADIV.
For each set of 25 samples, the AIC score was found

to be significantly less for the power-law model than the
exponential decline model for community compositions
described either by taxonomic (P < 10�4) or functional
feeding groups (P < 10�4), as measured by a Wilxocon
signed-rank test. As a further check on the support for a
power-law model describing f diversity decline, we
repeated this analysis using the same sample groups, but
with count data randomly reassigned to the taxonomic
and functional groups present in those same sample
groups. Repeating a comparison of the AIC scores for
both models for this randomized data produced f diver-
sity curves more likely to be described by an exponential
decay model for both taxonomic (P < 10�4) and func-
tional diversity (P < 10�4), which supports the assertion
of taxa being distributed via stochastic process produc-
ing an exponential model of f diversity decay (Hui and
McGeoch 2014). Subsequently, the power-law model
was then selected as the likelier of the two in describing
the decay in f diversity with f order.
Our measure of a diversity was compared against alti-

tude, land use, and distance using the lm function in the
stats R package (v3.5.1 Team, 2018). This same package
was used to construct a best-fit linear model to predict
the mean CSCI score of a set of samples given their diver-
sity measures. To determine the relative importance of
each factor in a linear model the function calc.relimp was
usedwithin the relaimpo R package (Gr€omping 2006).
To construct a linear model to best predict the ecologi-

cal health of a set of samples, as measured by their mean

CSCI value, we first applied a backwards elimination
method in selecting significant diversity parameters
(Pearman 1997, Snodgrass 1997). In comparing the AIC
scores of each linear model after the removal of a param-
eter, we dropped two parameters, btaxa and bfunctional, as
they made no significant contribution in predicting mean
CSCI score. The resulting linear involves six parameters:
ataxa, afunctional, btaxa, bfunctional, f10,taxa, and f10, functional.

RESULTS

Trends within diversity measures

From our analysis of 100 permutations on 56 within-
watershed groups of samples we observed four general
trends between our measures of diversity (ataxa,
afunctional, btaxa, bfunctional, f10,taxa, and f10, functional) and
environmental parameters (altitude, land use, and dis-
tance). Both the mean taxonomic and functional rich-
ness per sample have a negative correlation with
environmental stress, described either by a rise in land
use or a decline in altitude (Fig. 3a and d, Appendix S2:
Fig. S1a and d). There is negative correlation between
the mean level of similarity within a group between sam-
ples and the mean level of environmental stress (Fig. 3b,
c, e, and f, Appendix S2: Fig. S1b, c, e, and f). There is
also a negative correlation between the mean level of
similarity within a group between samples and the mean
geographic distance between samples (Fig. 3g–i,
Appendix S2: Fig. S1g–i). On a watershed scale, coeffi-
cients describing the strength and significance of the
relationships between measures of community diversity
and turnover with environmental metrics indicate dis-
tance appears not to underlie much of the variation in
our measures of diversity as compared to either altitude
or land use (Appendix S1: Table S1–S2).
We then further investigated the contributions of our

experimental factors to the observed variations in b
diversity using a PERMANOVA with 1,000 permuta-
tions. We found altitude (F1, 4315 = 58.8, P < 10�4) and
upstream land use (F1, 4315 = 32.8, P < 10�4) accounted
for more of the variation in b diversity than either HUC
8 watershed (F41, 4315 = 7.3, P < 10�4) or sampling year
(F22, 4315 = 8.4, P < 10�4). As a result, our focus was on
the role of land use, distance, and altitude within HUC 8
watersheds in describing patterns of diversity. We also
determined, in line with prior observations (Vander
Vorste et al. 2017), that variations in b diversity tended
to increase with geographic scale, with it increasing from
(F6, 4315 = 11.9, P < 10�4) with HUC 6 watersheds, to
(F7, 4315 = 38.9, P < 10�4) at HUC 4 watersheds, and
(F1, 4315 = 133.4, P < 10�4) at HUC 2 watersheds.

Linear models of diversity and health

Using six parameters, ataxa, afunctional, btaxa, bfunctional,
f10,taxa, and f10, functional, a linear model was constructed
to best predict the mean value of the CSCI score for a
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set of samples (Table 1). The functional relationship
between the mean CSCI score per sample group and the
remaining diversity parameters are as follows:

MeanCSCI¼�0:3þ6:2�10�3�ataxaþ0:2�afunctional

�0:6�btaxaþ1:0�bfunctional�6:5�10�3

� f10;taxaþ1:7�10�2� f10;functional

This model was found to explain 71.7% of the observed
variation in the mean value of the CSCI score for a set
of samples. This modeled health index was found to vary
in accordance with altitude, land use, and distance for a
set of samples in a similar fashion as the mean CSCI
score (Table 2, Fig. 4).

DISCUSSION

We found f diversity, as an extension of established
measures of diversity, to play a potential in role in both

the investigation of BMI community assembly processes
as well as assessing the health of groups of BMI commu-
nities. In determining a greater likelihood for a power
law vs. exponential decay model for how f diversity
declines with f order, we found BMI communities in
California streams are more likely to assembled via a
niche differentiation rather than a stochastic process.
While both measures of a and b diversity were found to

FIG. 3. Trends in the mean values per HUC 8 watershed of ataxa, btaxa, and f10,taxa vs. changes in altitude, land use, and distance.
Note that a rise in b or a decline in f10 diversity indicates a greater level of dissimilarity between samples within a group.

TABLE 1. The relative importance of various diversity
parameters in our modeled stream health index.

Parameters F1, 5568 P Relative importance (%)

ataxa 1.2 9 104 <10�4 32.5
afunctional 1,151 <10�4 36.7
btaxa 21.9 <10�4 6.3
bfunctional 690.6 <10�4 10.3
f10,taxa 19.4 <10�4 3.1
f10, functional 50.5 <10�4 11.2
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explain sizable proportions of variation in the mean
CSCI, our measure of BMI community health, within
each of the 56 watersheds across California we found the
addition of measures of f10 diversity to improve the abil-
ity of our modeled index to account for variation in our
measure of BMI community health. As our modeled
index uses a more generalized framework composed of
presence/absence diversity measures, rather than relying
on a set of undisturbed reference communities, we
believe there is the potential to utilize the f diversity
framework in creating community health assessment
indices applicable in environments beyond the current
geographic scope of the CSCI.

Modeling watershed health and the importance of single
and multi-sample measures of diversity

We found both the mean watershed values of ataxa and
afunctional to have the greatest relative importance in our
model to describe the variation in the mean CSCI on a
per watershed basis. Measures of diversity across

TABLE 2. The relative importance of altitude, land use, and
distance in describing linear models of the mean value of the
California Streams Condition Index (CSCI) and modeled
index per HUC 8 watershed.

Health index CSCI Modeled index

Proportion of variation
due to altitude

F1, 5571 = 9,243 F1, 5596 = 3,162

P, variation due to
altitude

<10�4 <10�4

Proportion of
variation due
to land use

F1, 5571 = 1.1 9 104 F1, 5596 = 6,890

P, variation due to
land use

<10�4 < 10�4

Proportion of variation
due to distance

F1, 5571 = 45.1 F1,5596 = 12.5

P, variation due to
distance

<10�4 <10�3

Relative importance of
altitude (%)

24.0 15.6

Relative importance of
land use (%)

73.1 78.7

Relative importance of
distance (%)

2.8 5.7

Proportion of variance
explained by model (%)

78.3 64.3

FIG. 4. A comparison of the sample groupmean values for the CSCI andmodeled index versus sample group mean values for altitude,
land use, and distance with linear best fit lines. Both indices show similar behavior in response to changes in altitude, land use, and distance.

June 2019 ZETA DIVERSITYANDWATERSHED HEALTH Article e01896; page 7



multiple samples in a watershed (b and f) further
improved our model’s predictive powers. It is also note-
worthy that both b and f10 diversity have a significant
role in our model, although they are potentially captur-
ing two different patterns describing multiple sampled
communities. In general measures of diversity that incor-
porate the overlap between large numbers of communi-
ties, such as f10 diversity, are more sensitive to the
presence of common groups of organisms than those
that only involve pairwise comparisons, such as b diver-
sity, which are inherently more biased to the presence of
rare groups (Latombe et al. 2017). As we observed that
both f10 and b diversity have a significant role in our
model of the health of BMI communities across a water-
shed (Table 1) we propose that the effects of environ-
mental degradation cannot be fully assessed by the loss
of rare or common taxa alone, but both must be consid-
ered in tandem. We also noted that a sizeable portion of
variation in the mean value of the CSCI per watershed
could be attributed to our modeled index. As this index
is comprised solely of a linear combination of measures
a, b, and f10 diversity it suggests future assessments of
the health of BMI communities across a watershed could
be done using a more general framework than the one
used to devise the CSCI.

Relationships between measures of watershed health and
the physical environment

We found that both our modeled index and the CSCI
have similar patterns of variation with our measure-
ments of the physical environment (Fig. 4). Variation in
the average ataxa and afunctional diversity per watershed
appear to underpin a significant portion of the variation
of both the CSCI, itself a composite measure of taxo-
nomic and functional richness (Mazor et al. 2016), and
our modeled index of watershed health (Table 2). Prior
observations support the general trend of the decline in
BMI sample diversity associated with a rise in environ-
mental stress at the sample site (Paul and Meyer 2001,
Stepenuck et al. 2002, Ourso and Frenzel 2003, Wallace
and Biastoch 2016). This has been observed with ataxa
and upstream land use (Sponseller et al. 2001, Ste-
penuck et al. 2002, Allan 2004), ataxa and altitude
(Ward, 1986; Jacobsen et al. 1997, Jacobsen 2008), as
well as with afunctional and both altitude and land use
(Huryn et al. 2002, Finn and Leroy Poff 2005, Heino
2005). Our results then support the utility of using both
average ataxa and afunctional diversity per watershed as
indicators of the health of their resident BMI communi-
ties.
We also observed that communities of BMIs tended to

have greater degrees of similarity (lower b and higher
f10) both taxonomically as well as functionally, within
watersheds at a higher AL with the opposite trends
observed in comparison to land use and distance (Fig. 4,
Appendix S2: Fig. S1, Appendix S1: Table S1–S2). Our
observed relationship between b diversity and distance,

where a greater geographic distance between samples is
associated with greater intersample dissimilarity, is in
line with previous observations of communities of
stream BMIs (Astorga et al. 2012, Rouquette et al.
2013). However, our observations appear to run counter
to previous research indicating a positive correlation
between the mean altitude of a set of samples and their
degree of community dissimilarity (Finn and Leroy Poff
2005, Frady et al. 2007), as well as a negative correlation
with upstream land use (McGoff et al. 2013).
One potential mechanism for the observed correla-

tions with dissimilarity between sampled communities
within watersheds, negative with altitude and positive
with land use, may be driven by an underlying correla-
tion with habitat heterogeneity. Prior observations sup-
port a positive relationship between the b diversity of
multi-site assemblages of BMIs and variations in the
physical environment; habitat heterogeneity (Shostell
and Williams 2007, Astorga et al. 2014, Zhang et al.
2014). Using the standard deviation of land use on a per
watershed basis as a proxy for habitat heterogeneity, we
find strong correlations with our measures of dissimilar-
ity between communities: btaxa (r = 0.6, P < 10�4), bfunc-
tional (r = 0.6, P < 10

�4), f10,taxa (r = �0.4, P < 10�4), and
f10,functional (r = �0.5, P < 10�4). This suggests a mea-
sure such as the standard deviation of land use could be
used as a proxy for habitat heterogeneity on a watershed
scale (Sponseller et al. 2001, Astorga et al. 2014), and
may be a metric to consider in subsequent studies. As
this proxy of habitat heterogeneity is negatively corre-
lated with altitude (r = �0.4, P < 10�4) this suggests
that a decline in habitat heterogeneity with altitude may
then be driving our observed decline in dissimilarity
between sampled communities within watersheds with
altitude. A similar relationship may also underpin the
positive correlation between land use and dissimilarity
as our measure of habitat heterogeneity is positively cor-
related with land use (r = 0.6, P < 10�4).

f Diversity decay and evidence of niche differentiation

Our observations, whereby f diversity decays via a
power-law with respect to f order, support a model of
stream community composition being determined more
by niche differentiation than by a stochastic assembly
process (Scheiner et al. 2011, Hui and McGeoch 2014,
Hui et al. 2018). Both our measures of turnover, b and
f10 diversity, are more strongly associated with the stan-
dard deviation of land use than altitude within both low
and high altitude watersheds (Appendix S1: Tables S3–
S4). Treating the standard deviation of land use as a
measure of landscape heterogeneity this suggests vari-
ability in upstream land use underlies a process of niche
differentiation in metacommunities of BMIs on a water-
shed scale (Winemiller et al. 2010, Astorga et al. 2014,
Hammill et al. 2018).
Such niche differentiation, whereby the probability of

detecting a member of a particular taxon or functional
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feeding group within a particular sample varies across a
landscape, is also reflected in the probabilities of detect-
ing members of a particular taxon or functional feeding
group within our set of BMI communities. For example,
of the 334 unique taxa identified in our data only mem-
bers of three genera were detected in more than 50% of
our samples. These were members of the genera Baetis
and Simulium and the subclass Oligochaeta, which are
known to be geographically widespread (Fend et al.
2005). We observed a similar skew in functional diversity
with the most common functional group, collector-gath-
erers, present in only 37.8% of samples while the average
functional group was only found in 12.5% of samples.
This may be reflective of the relative tolerance of each
functional group to the abiotic stressors frequently asso-
ciated with human dominated land use. Such a case has
been observed with members of the collector-gatherer
feeding group (Feld and Hering 2007). Although we
should note that the BMIs within the family Chironomi-
dae, whose members belong to the collector-gatherer
functional feeding group, were aggregated to the level of
subfamily rather than genus.

CONCLUSION

Our results indicated that, for multiple communities
within watersheds, both the mean values of ataxa and a
diversity were found to negatively correlate with mean
upstream land use and positively with altitude. This is in
line with prior observations of the response of communi-
ties of stream BMIs to natural and anthropogenic varia-
tion in the environment (Ward 1986, Jacobsen et al.
1997, Sponseller et al. 2001, Huryn et al. 2002, Ste-
penuck et al. 2002, Allan 2004, Finn and Leroy Poff
2005, Heino 2005, Jacobsen 2008). Such relationships
are also observed in the behavior of the CSCI, itself a
measure of taxonomic and functional a diversity (Rehn
et al. 2015, Mazor et al. 2016). What we have also
demonstrated is a relationship between measures of the
diversity of our groups of sampled communities,
described both by measures of b and f10 diversity, and
variations in the environment, both natural and anthro-
pogenically driven.
As the monitoring of the health of ecological commu-

nities transitions from methods utilizing taxonomic
diversity of particular groups of indicator taxa, or other
forms of diversity such as the functional feeding group
memberships utilized in this study, to broader commu-
nity profiles enabled by metagenomic approaches (Baird
and Hajibabaei 2012, Bohmann et al. 2014, Deiner et al.
2016, Jackson et al. 2016) the need arises for a more gen-
eralized framework with which to construct measures of
single and multi-community health that could incorpo-
rate information on the composition of full communities
(e.g. bacteria, algae, etc.) in addition to groups of well-
defined indicator taxa (Hooper et al. 2003, Takamura
et al. 2008, Pignata et al. 2013). What our results illus-
trate then is the potential for creating a more

generalizable framework for assessing the health of com-
munities using both established measures of diversity,
such as a and b, as well as comparisons of larger ensem-
bles of communities enabled by the f diversity frame-
work.
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