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A B S T R A C T

Domestication and subsequent breeding have eroded genetic diversity in the modern chickpea crop by ˜100-fold.
Corresponding reductions to trait variation create the need, and an opportunity, to identify and harness the
genetic capacity of wild species for crop improvement. Here we analyze trait segregation in a series of wild x
cultivated hybrid populations to delineate the genetic underpinnings of domestication traits. Two species of wild
chickpea, C. reticulatum and C. echinospermum, were crossed with the elite, early flowering C. arietinum cultivar
ICCV96029. KASP genotyping of F2 parents with an FT-linked molecular marker enabled selection of 284 F3
families with reduced phenological variation: 255 F3 families of C. arietinum x reticulatum (AR) derived from 17
diverse wild parents and 29 F3 families of C. arietinum x echinospermum (AE) from 3 wild parents. The com-
bined 284 lineages were genotyped using a genotyping-by-sequencing strategy and phenotyped for agronomic
traits. 50 QTLs in 11 traits were detected from AR and 35 QTLs in 10 traits from the combined data. Using
hierarchical clustering to assign traits to six correlated groups and mixed model based multi-trait mapping, four
pleiotropic loci were identified. Bayesian analysis further identified four inter-trait relationships controlling the
duration of vegetative growth and seed maturation, for which the underlying pleiotropic genes were mapped. A
random forest approach was used to explore the most extreme trait differences between AR and AE progenies,
identifying traits most characteristic of wild species origin. Knowledge of the genomic basis of traits that seg-
regate in wild-cultivated hybrid populations will facilitate chickpea improvement by linking genetic and phe-
notypic variation in a quantitative genetic framework.

1. Introduction

Modern agriculture must meet the nutritional demands of a growing
human population using increasingly limited land and water resources.
Ideally, cultivation will intensify while energy-intensive inputs, such as
water and nitrogen, will decrease. Grain legumes, including chickpea,

are the primary source of nutritional nitrogen for approximately 30% of
the world's human population [1]. Legumes were not, however, bene-
ficiaries of the Green Revolution. Grain legumes in particular were
underinvested and often relegated to marginal lands where abiotic
stress, shortened growing seasons, and poor soils conspire to limit yield
[2]. Nevertheless, grain legumes remain a vital asset in the effort to
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meet the demand for food in impoverished, often food-insecure coun-
tries. Paradoxically, in the case of chickpea, domestication and modern
breeding have constrained the capacity for crop improvement by
eroding ancestral diversity [3–5].

Germplasm collections with abundant phenotypic and genetic var-
iation are essential to adapting crops to current and future agricultural
challenges [5–8]. Crop wild progenitors are likely to be of particular
value because they possess unexplored variation (‘genomic gems’) that
could accelerate breeding gains beyond what is possible from the do-
mesticated gene pool alone. Despite this fact, the systematic, large-scale
use of wild germplasm has been limited to only a few crop species [5].

During domestication and breeding, humans selected cultivated
plants for superior agronomic performance. Within the cultivated gene
pool, the assembled agronomic traits are themselves augmented by the
complexity of genetic context, including pleiotropy and linkage,
creating what are in essence distinct sub-species. By contrast, superior
traits present in wild germplasm typically exist in the context of inferior
agronomic performance, despite their presumed ecological utility. Such
features complicate trait selection from wide cross populations and
have the practical impact of focusing breeding efforts on few loci of
large effect size. Mining of large-effect loci is an obvious target and has
been pursued to great impact [9]. Quantitative genetics tools can access
minor effect loci with large cumulative effects, which for example is an
implicit goal of genomic selection [9,10], but to our knowledge, such
tools are not in use with wild germplasm. More nuanced but also of
great importance, wild populations offer unique opportunities to reduce
the burden of minor effect deleterious alleles that are often elevated in
domesticated species [5], by identification and introgression of wild
genome backgrounds that lack undesirable pleiotropies on crop phe-
notypes. To do so, one must estimate the effects of introgressions not
only on the primary yield-related traits, but – ideally – on the full range
of agricultural phenotypes. Thus, wild x cultivated hybrids potentially
have multiple uses in crop improvement: identifying desirable traits of
wild origin for introgression, reducing the load of deleterious alleles,
and re-cycling useful cultivated traits previously selected during do-
mestication.

While wild x cultivated populations provide the means to bridge
germplasm collections, maximizing their impact requires capturing the
full wealth of wild adaptations, which in turn depends on comprehen-
sive knowledge of wild species’ diversity. Ideally one would leverage
population genomic and origin environment data to select wild parents
of diverse origins. Such populations would enable the identification of
fixed differences between wild and cultivated species (including, but
not limited to, domestication traits) as well as those that continue to
segregate among wild populations.

In chickpea, wild germplasm has seen limited use for crop im-
provement. In particular, systematic use of wild Cicer germplasm is
hampered by the lack of adequately diverse inter-specific mapping
populations and also by the scarcity of validated genetic markers and
few known genes/QTLs for important agronomic traits [6]. Our recent
comprehensive sampling and genomic analyses of chickpea’s wild
progenitor populations create an opportunity to reverse this situation
[5]. The wild progenitors of chickpea, Cicer reticulatum and C. echi-
nospermum, are confined to southeastern Turkey, near the origin of the
Tigris and Euphrates rivers in a region historically known as Mesopo-
tamia. We used ecological principles to guide collection across the full
range of habitats in which wild chickpea occurs [5]. Sequencing of
˜1000 wild accessions, either as field-collected DNA or seed, was suf-
ficient to describe the nature of wild species’ diversity. Twenty wild
accessions representing the genetic and environmental breadth of the
wild collection were crossed into cultivated accessions as the first step
towards trait introgression.

We report on a subset of 284 F3 phenology-normalized lineages
obtained from crosses with a single early flowering cultivated lineage
(ICCV 96,029). Twenty-three core phenotypes were scored, including
the broad list of traits and protocols first instituted almost one century

ago by Nikolay Vavilov and colleagues at the All Russian NI Vavilov
Institute for Plant Genetic Resources, Saint Petersburg [4]. Together,
these traits survey aspects of vegetative growth, plant architecture, seed
and pod traits, disease susceptibility, nodulation, and flower color.

Because the present data involves numerous phenotypes for which
genetic control may involve genetic interactions, we utilized multi-
dimensional analyses to disentangle relationships between correlated
traits. Specifically, we applied two types of linear mixed models: a
single-trait model and a multi-trait model, while a Bayesian network
analysis was performed to find influential relationships between phe-
notypes. A Bayesian network is a directed acyclic graph in which each
node contains quantitative probability information [11]. A Bayesian
framework analysis has been used previously to understand causal
markers that drive disease resistance and metabolic pathways [11–14].
Lastly, random forests, a machine learning technique, was utilized to
explore traits that differ most between progeny obtained from the two
wild species, C. reticulatum and C. echinospermum. The results presented
here will increase the immediate utility of these wild x cultivate po-
pulation for genomic breeding, by linking genetic variation to pheno-
typic variation through quantitative genetic and genomic approaches.

2. Materials and methods

2.1. Germline development

von Wettberg et al. [5] have described the construction of the hy-
brid germplasm analyzed here. Briefly, all parental accessions were
sequenced to at least 30-fold coverage. One full set of 2521 F2 progeny,
representing 20 wild parents crossed into the early flowering parent
ICCV96029, was genotyped to facilitate trait-marker discovery. To
correct for the confounding effect of segregating phenology, F2 plants
were genotyped for the FT locus using KASP genotyping, because
ICCV96029′s early flowering habit is substantially explained by var-
iants tightly linked to FT [5]. A subset of 284 F2-derived lines homo-
zygous the ICCV96029 early flowering locus was selected. The geno-
typed F2 plants were selfed to produce F3 progeny and at least 20 seeds
per lineage were grown in the field. As the frequency of alleles averaged
among these progeny correspond to the allelic state known from F2,
phenotyping of F3 is akin to estimating breeding values for genotyped
F2 individuals. Note that while additive effects are well-recovered in
this approach, the dominance deviations would not be; accordingly we
don’t attempt to estimate them.

2.2. DNA analysis

Genomic DNA was isolated using the Qiagen DNeasy 96 format
Plant Mini Kit (Valencia, CA, USA). DNA was digested with restriction
enzymes HindIII and NlaIII and ligated with adapters. The ‘barcode’
adapter ligates to HindIII allowing sample pooling. The ‘common’
adapter ligates to NlaIII. Products were selected for size and amplified
through 14 rounds of PCR. 100 base paired-end reads were generated
on an Illumina HiSeq4000 at the University of California at Davis
Genome Center DNA Technologies Core. Illumina data is available on-
line at the National Center for Biotechnology Information under the
BioProject umbrella PRJNA507624. Illumina reads were mapped to the
C. arietinum CDCFrontier reference genome [15] using BWA MEM [16]
under default mapping parameters. Polymorphisms were called using
the GATK pipeline, which considers indel realignment and base quality
score recalibration, and calls variants across all samples simultaneously
through the HaplotypeCaller program in GATK. Variants were filtered
using standard hard filtering parameters according to GATK Best
Practices recommendation. More precisely, GBS data were filtered to
only retain SNP calls with Mapping Quality (MQ)> 37 and Quality by
Depth (QD)>24. Both metrics take into consideration the quality of
the mapping and genotype calls to ensure that only those with highest
confidence were used. The SNPs were also filtered to retain those with
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MQRankSum< |2.0|, which ensures that there is no difference in the
Mapping Quality scores for alleles at a given locus. This filtering re-
moved nearly 60% of variant sites reported by GATK and only retained
those that passed all three criteria. The resulting SNP were filtered
using a minor allele frequency (MAF) threshold of> 5% and genotype
call-rate> 90%. 14,201 SNPs remained in the C. arietinum x C. re-
ticulatum (AR) crosses, while in the combined data of C. arietinum x C.
reticulatum (AR) and C. arietinum x C. echinospermum (AE) 4713 SNPs
were retained. Considering the small sample size of AE, AE specific
association analysis was not performed.

2.3. Field cultivation and phenotyping

During the growing season of 2017, 284 hybrid lines were pheno-
typed at the Kuban branch of the VIR (Fed Res Center The NI Vavilov
All Russian Institute of Plant Genet Resources). The Kuban station is
situated at the step zone of near Kuban flatlands, 80 km away from the
Kavkaz foothills. The typical soils in these regions are Kavkaz blackland
soils, with a fertile layer of 140–150 cm and slightly alkaline pH. The
humus horizons depth is typically between 130–170 cm, with humus
content approaching 3.6–4.6%. The climate of the station is char-
acterized by suboptimal rainfall, and high fluctuations of all climatic
parameters. Temperatures are typical of moderate-continental sites,
with hot summers. Mid-temperature of the coldest month (January) is
−2.6C, and of the hottest month (July) 23C. Total yearly rainfall is
565mm. These climatic conditions are beneficial for the chickpea cul-
tivation. The station has been engaged in experimental cultivation of
over 1000 chickpea varieties since 1930.

The sowing of all hybrid lines was carried out on the same day on
May 2, 2017 using hand drills according to the scheme of
70×5 x 100 cm. Each line was sown in a row 100 cm long, where each
row of 20 seeds was sown to a depth of 5 cm. The distance between the
rows was 70 cm, and between the seeds in a row was 50 cm. The onset
of germinations was on May 10, 2017, while the appearance of com-
plete shoots differed among individuals and was between May 12,
2017–June 20, 2017. During the growing season, 4-fold manual
weeding was conducted. Harvesting of chickpea seeds was carried out
manually from July 25, 2017 to August 20, 2017, as the pods matured.

During the plant’s vegetative period, 23 phenological, morpholo-
gical, agronomical, and biological descriptors were analyzed. At the
time of seed collections, full structural analyses were executed for 5
randomly chosen plants per accession. The following phenotypes were
recorded in the field throughout the growing season: ‘start of germi-
nation – sowing’ (days), ‘start of flowering - start of germination’ (days),
‘full flowering - start of germination’ (days), ‘full flowering - start of
flowering’ (days), ‘start of maturation - start of flowering’ (days), ‘start
of maturation - start of germination’ (days), ‘full maturation - start of
germination’ (days), and ‘full maturation – start of maturation’ (days).
Plant architecture was recorded as: growth habit (score), plant height
(cm), location of the lowest pod (cm), pod per plant, pod width (mm),
pod length (mm), number of seeds per pod, 1000 seed weight (g),
weight of seeds per plot (g), pod dehiscence (score), presence of nodules
on roots, number of pods per peduncle. Seed and flower color were
recorded by visual observation. Growth habit was measured based on
five criteria: prostrate, semi-prostrate, spreading, semi-erect or erect.
Disease incidence of Ascochyta susceptibility (score) was recorded for
at least 5 plants per accession.

2.4. Linkage map

The linkage map was built based on 1950 F2 lines of C. arietinum x
C. reticulatum. Before the construction of the linkage map, SNP geno-
types were imputed and error-corrected using an in-house script. We
first estimated recombination events; when multiple SNPs were present
in the same recombination bin, one representative SNP was assigned as
the marker to represent the entire bin. Recombination break points

were determined based on the dissimilarity value of genotypes flanking
SNP k which is defined as follow:

∑ ∑= ⎛

⎝
⎜ − ⎞

⎠
⎟

∈ ∈

disimilarity k abs genotype i genotype i( ) ( ) ( )
i Sl i Sr

where Sl is the set of left flanking SNPs of SNP k and Sr is the set of right
flanking SNPs. Genotype(i) denotes the genotype of SNPi which was
converted into a numeric value−1, 0, 1 according to its heterozygosity.
The size of the window flanking each SNP was determined based on the
average number of recombination events across all individuals and
chromosomes with the given target window size. We aimed to obtain
one recombination event per chromosome on average, considering that
the utilized samples were from F2 plants.

JoinMap V4.0 [17] was used to build the linkage map. SNPs located
in the same chromosome were run separately using the independence
LOD option to calculate groups. Based on the location of SNPs in the
CDCFrontier genome, the fixed order of markers was assigned. The
Maximum likelihood mapping function was used to estimate map dis-
tances.

2.5. LD decay and population structure

The genome-wide mean Linkage Disequilibrium (LD) was measured
using R-square between SNPs. The average of R-square values for SNP
pairs was calculated in intervals of 50Kb. The calculation was carried
out using PLINK v1.07 [18].

Bayesian Markov Chain Monte Carlo model (MCMC) implemented
in STRUCTURE was used to find population structure of genetic data
[19]. Burn-in iteration and Markov chain Monte Carlo (MCMC) re-
plications were set to 10,000 and 25,000, respectively. The number of
subpopulations was set from 2 to 21 (K) in five independent runs. The
optimal K value was determined based on the log probability of data
[LnP(D)]. Principal Component Analysis (PCA) was performed using
SNPRelate [20].

2.6. Association analysis

A linear mixed model was used to find markers associated with 23
traits. The linear mixed model we used incorporates the realized re-
lationship matrix (RRM), which is equivalent to including markers as
covariates to control confounding factors induced by relatedness of
samples [21]. In addition to the RRM, we added family information as
covariate in order to remove cross-specific confounding effects. The
model can be written as follows:

= + + +y Xβ g f e

where y is an ×n 1 vector of the phenotypes, X is an ×n m matrix of the
fixed effects, and β is an ×m 1 vector of the coefficients of the fixed
effect. Additionally, g is the random effect of the mixed model, with
g˜ N(0, σ K)g

2 where K is the relationship matrix that reflects the genetic
similarity between samples, f is a fixed effect which represents the fa-
mily affiliation of each individual, and e is an ×n n matrix of the re-
sidual effects. The model was implemented using Fast-LMM [22].

We also explored marker associations using a multi-trait linear
mixed model. To avoid convergence issues due to the similarity of
genotypes and covariates, residuals were calculated using a linear
model incorporating the family information as fixed covariate and
marker associations were investigated using the residuals. The model
was implemented using GEMMA [23]. For both models, we used Bon-
ferroni-corrected p-values with a threshold of 0.05 to determine the
significance.

2.7. Bayesian network analysis

To investigate genetic interactions among traits, we utilized a
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Bayesian network analysis. The analysis was conducted using the R
package bnlearn [24]. Traits were discretized using a quantile-based
discretization. To find trait relationships that are consistent across
different algorithms, six different types of learning algorithms were
applied: hc, gs, iamb, inter.iamb, mmhc, and rsmax2. Stable trait re-
lationships were identified by means of bootstrap resampling using a
minimum frequency of 85% as the significance threshold [25]. The final
set of trait relationships was determined by requiring consistency across
the six models.

2.8. Random forest

To explore traits that differ most between the AR and AE progenies,
we measured trait importance. We applied the random forest, a popular
machine learning method, to assess trait importance. The trait im-
portance measure corresponds to the importance index of the random
forest, which is defined as follow:

∑= −
ntree

errOOB errOOBImportance index 1 ˜
t

t
j

t

where t is a tree that corresponds to a single decision tree, ntree is the
number of trees, errOOBt is the prediction error of tree t, and errOOB˜

t
j is

the prediction error of tree t when a predictor j is perturbed [26]. The
ranking of the importance index can be utilized to prioritize predictors
for a prediction. In the sense of predicting AR and AE, the importance
index ranks the ability of traits to distinguish crosses based on the
parental origin (i.e., C. reticulatum versus C. echinospermum). To mea-
sure the importance index, we first grouped correlated traits using a
correlation coefficient 0.5 and only utilized one representative trait
from each group to prevent spurious signal [26]. To balance the sample
size of two crosses, the SMOTE [27] algorithm in the R package DMwR
was used. To build the random forest, we used the R package ran-
domForest. The number of trees and number of predictors in each tree
was set to 500 and 4, respectively.

3. Results

3.1. LD decay and population structure

To assess the genome-wide Linkage Disequilibrium (LD), LD decay

was calculated using R-square between SNPs. The average of R-square
values for SNP pairs was calculated

in intervals of 50 Kb. Based on our result, the LD reached its half of
the maximum value at 1.9Mb, which is substantially longer than pre-
viously reported LD decay measures that were less than 800 Kb [28,29]
(Fig. S5). The observed long decay was as expected since our data was
generated from short cycle of breeding and selfing.

Population structure was assessed using the Bayesian Markov Chain
Monte Carlo model (MCMC) implemented in STRUCTURE [19]. The
optimal K was determined to be 14 after investigating the log prob-
ability of data [LnP(D)]. The output of STRUCTURE showed that pro-
geny materials share both cultivar and wild parental genetic char-
acteristics (Fig. S4). The subpopulation pattern of progeny clearly
followed the characteristic of their wild parent. Principal Component
Analysis (PCA) showed the similar pattern, exhibiting progeny mate-
rials being intermediate genetic sources of their cultivar and wild par-
ents (Fig. S3).

3.2. Analysis of phenotypes

Representatives of multiple, diverse genetic populations of two
species of wild Cicer, C reticulatum (R) and C. echinospermum (E), were
crossed with the elite chickpea cultivar C. arietinum (A) ICCV96029 [5]
to generate F2 populations. 284 derived F3 lines were selected to survey
populations from each of twenty diverse wild parents: 17 C. reticulatum
(AR) parents (255 lines) and three C. echinospermum (AE) accessions (29
lines). Among 23 traits, we observed broad differences between AR and
AE with maturation time related traits showing the greatest difference
(Table 1), especially time to seed maturity. AE progeny tended to have
more erect growth, greater plant height, and higher location of the
lowest pod. 1000 seed weight was also higher in AE. Color of seeds was
also significantly different between the two crosses, with seeds of AE
generally darker than seeds from AR.

Several traits were highly correlated. ‘full flowering - start of ger-
mination’ and ‘full flowering - start of flowering’ showed the highest
positive correlation (correlation coefficient 0.9; Fig. 1). Pod width and
pod length were also highly positively correlated (correlation coeffi-
cient 0.5; Fig. 1). Maturation time related traits clustered in two sepa-
rate groups, with a correlation coefficient threshold 0.5. Highly nega-
tive correlations were found between the following pairs of traits: the

Table 1
Mean and standard deviation of traits in the combined data, AR, and AE.

Trait mean (all) sd (all) mean (AR) sd (AR) mean (AE) sd (AE) p-value*

start of germination – sowing 11.5 3 11.6 3 10.5 2.3 2.49E-02
start of flowering – start of germination 27.4 3.4 27.4 3.5 27.4 2.4 8.99E-01
full bloom – start of germination 34.9 8.6 35.1 8.8 32.4 6.5 4.45E-02
full bloom – start of flowering 7.4 7.8 7.7 8 5 5.8 2.93E-02
start of maturation – start of flowering 45.1 5.9 44.5 5.8 50.1 4.2 7.91E-08
start of maturation – start of germination 72.8 6.3 72.2 6.3 78.2 3.3 2.96E-11
full maturation – start of germination 82 7.2 81 6.8 90.3 5.2 6.45E-11
full maturation – start of maturation 9.2 5 8.8 5 12.2 4.1 2.40E-04
growth habit 2.9 1.5 2.8 1.5 3.7 1 4.40E-05
plant height 48.1 9.1 47.1 8.5 57.4 8.5 4.36E-07
location of the lowest pod 8.1 3.4 7.7 3 11.9 4.5 2.48E-05
pod per plant 162.9 86.5 164.1 86.3 152 89.1 5.00E-01
pod width 0.9 0.2 0.9 0.2 0.9 0.1 8.16E-04
pod length 2 0.3 2.1 0.2 2 0.3 6.99E-02
number of seeds per pod 1.4 0.5 1.4 0.5 1.4 0.5 8.43E-01
1000 seed weight 167.7 37.7 163.7 36.1 211 26.3 1.53E-07
weight of seeds per plot 101 58 103.7 58.6 76.9 46.4 7.77E-03
double pod 1.1 0.3 1.1 0.3 1 0.2 4.26E-02
Ascochyta susceptibility 0.8 1 0.8 1 0.7 0.7 6.54E-01
presence of nodules on roots 1 0.2 1 0.2 1.1 0.4 1.05E-01
pod dehiscence 2 0.2 2 0.2 1.9 0.3 6.51E-01
color of flowers 3.6 0.6 3.6 0.7 3.9 0.4 1.86E-04
color of seeds 3.3 0.6 3.3 0.6 3.6 0.6 4.25E-03

* p-value from t-test.
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pair ‘start of germination – sowing’ and ‘start of maturation - start of
germination’, and the pair ‘start of germination – sowing’ and ‘start of
flowering - start of germination‘.

3.3. Association analysis

We conducted association analyses to investigate QTLs that are as-
sociated with 23 traits of 284 F3 plants. Genotype data represent F2
parents, while phenotypes were averaged among 20 F3 sibling plants
for each F2 lineage. The analysis was carried out on the combined data
of AR and AE, and then separately for AR. AR specific analysis was
performed with 14,201 markers, while for the combined data analysis

4713 pan-collection markers (markers that exist in both datasets) were
selected. AE was not analyzed separately due to its small sample size.
To remove confounding signals from the wild parents and family effects
from each cross, we applied a mixed-linear model with a relationship
matrix as a random effect and the family information as fixed cofactors.
Each associated marker was remapped to the linkage map built based
on 1950 F2 lines of C. arietinum x C. reticulatum (Table A.1 in
Supplementary material). Trait-associated markers that were mapped
to the same linkage map bin (defined by 1 cM distance) were considered
as a single QTL. Using the Bonferroni multiple test correction, we de-
tected 50 QTLs in 11 traits of AR and 35 QTLs in 10 traits of the
combined data (Fig. 2, Table A.2 in Supplementary material). To

Fig. 1. Correlation analysis results of (A) 23 traits and (B)
traits that exhibited strong correlations (correlation coef-
ficient> .5). Correlation significance is denoted as *< 0.05,
**<0.01, ***< 0.001. The corresponding trait of the each
alphabet are: a) start of germination - sowing, b) start of
flowering - start of germination, c) full flowering - start of
germination, d) full flowering - start of flowering, e) start of
maturation - start of flowering, f) start of maturation - start of
germination, g) full maturation - start of germination, h) full
maturation - start of maturation, i) growth habit, j) plant
height, k) location of the first pod, l) number of pods per ped-
uncle, m) pod width, n) pod length, o) number of seeds per pod,
p) 1000 seed weight, q) seed weight per plot, r) double pod, s)
Ascochyta susceptibility, t) presence of nodules on roots, u)
dehiscence of pods, v) color of flowers, w) color of seeds.
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investigate the variance explained by QTLs, R2 of the most significant
marker in each QTL was assessed. QTL markers associated with plant
height exhibited comparatively high R2 values above 0.5 (Table A.2 in
Supplementary material). In addition, QTL markers associated with
seed maturation related traits showed moderately high R2 values above
0.3. Among the observed QTLs, those associated with Ascochyta sus-
ceptibility, presence of nodules on roots, and color of seeds were dis-
covered only in the combined data set. The growth habit QTL on
chromosome 5 was uniquely found in the combined data, whereas other
QTLs were present on chromosome 1 in both data sets. Previously re-
ported growth habit SNP Ca_Kabuli_Chr1 6262577 was found to be

within a 1 cM window with the marker 1: 6481879 and the marker
1:6660037 that showed moderate level of p-value in AR and AR+AE.
repectively (p-value: 0.00088 and 0.0002) [30].

3.4. Multi-trait association analysis

To explore QTLs with pleiotropic effects, we implemented a multi-
trait association analysis. Traits were grouped based on correlation
coefficients using hierarchical clustering and traits with a correlation
coefficient higher than 0.5 were assigned to the same group (Fig. 1,
Table 2). As a result, six groups were determined and they were

Fig. 2. Association hits on each chromosome. (A) C. reticulatum and (B) All data combined.

Table 2
Groups of traits with correlation coefficients bigger than 0.5.

Group A full flowering – start of germination, full flowering – start of flowering
Group B full maturation – start of germination, full maturation – start of maturation
Group C start of maturation – start of flowering, full maturation – start of germination, start of maturation – start of germination
Group D pod width, pod length
Group E start of germination – sowing, start of maturation – start of germination
Group F start of germination – Sowing, start of flowering – start of germination
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analyzed using the multi-trait mixed model. In AR, four QTLs were
found in group B, C, and D (Fig. 2a, Table 3). There were three QTLs
associated with group B, and among them, two QTLs (MQTL1 and
MQTL2) overlapped with QTLs found in group C, suggesting their
global role in the duration of seed maturation. In the combined data, a
single QTL, MQTL2, was found associated with group B (Fig. 2b,
Table3).

By comparing these results to the single-trait association results, we
investigated multi-trait QTLs that also appeared as single-trait QTLs or
were located close to single-trait QTLs. MQTL2 associated with group B
in both data sets was one of the QTLs associated with full maturation -
start of germination. Similarly, MQTL4 associated with group D was
one of the QTLs associated with pod length. On the other hand, MQTL1,
which was associated with group B and C, did not overlap with the
single-trait association results. In summary, the multi-trait analysis ef-
ficiently captured pleiotropic QTLs in two groups among a total of six
groups of highly correlated traits.

3.5. Influential relationships of traits

To investigate the influential relationship between traits, we im-
plemented a Bayesian network analysis using phenotypes of AR and AE.
To guarantee the stability of the Bayesian model, six types of Bayesian
relationships were measured and only relationships that appeared
across all six models were reported. Directional arcs of Bayesian net-
works can be interpreted as causal on the condition that all traits that
are interrelated were measured. According to the analysis, there were
four influential relationships found, all related to the duration of either
vegetative growth or seed maturation. We observed relationships in-
volving the timing of germination and other phenology-related traits,
including relationships between ‘start of germination – sowing’:’start of
maturation – start of germination’ uniquely in AR and between’ full
maturation – start of maturation’: ‘full maturation - start of germina-
tion’ in the combined data. Similarly, there was a relationship between
plant height and location of the lowest pod. Less obvious is the observed
relationship of 1000 seed weight and 1000 seed weight. Rubio et al
[31] found that chickpeas with erect growth habit have greater seed
size, implicating genetic or physiological relationship between these
two traits [31]. Under the assumption that our data capture all of the
representative correlated traits, the relationships found by Bayesian
network analysis can be considered as dependencies between traits.

Based on the GWAS results, one can infer whether the deduced in-
fluential relationships are governed by common QTLs or not. In the

maturation time related relationships, the pair ‘start of maturation -
start of flowering’:’start of maturation - start of germination’ shared the
common QTL located on chromosome 1 (Fig. 2). The result may in-
dicate that these paired traits share common regulatory loci or path-
ways. On the other hand, the QTLs of ‘start of maturation - start of
germination’ and ‘full maturation - start of germination’ were located
on chromosome 1 and 6, respectively. With respect to the pair, ‘growth
habit’:’1000 seed weight’, the QTL associated with growth habit did not
contribute measurably to 1000 seed weight. Likewise, ‘start of germi-
nation -sowing’ was not associated with a QTL despite the fact that its
counterpart trait, ‘start of maturation - start of germination’ had a QTL
on chromosome 1.

Comparison of the multi-trait association results with the Bayesian
network results make it possible to illustrate which relationships were
affected by pleiotropic QTLs. Based on the multi-trait association re-
sults, two seed maturation related relationships, ‘start of maturation -
start of flowering’:’start of maturation - start of germination’, and ‘start
of maturation - start of germination’:’full maturation - start of germi-
nation’, were governed by two pleiotropic QTLs, MQTL1 and MQTL2
(Tables 2–4). Furthermore, the other seed maturation relationships,
‘full maturation – start of maturation’:’full maturation - start of germi-
nation’, were governed by three QTLs, MQTL1, MQTL2 and MQTL3. On
the other hand, plant height, seed weight and growth habit related
relationships showed no evidence of pleiotropic QTLs.

3.6. Trait importance index analysis using machine learning

To assess the degree to which each trait differs in two crosses, trait
importance was measured using the importance index of the random
forest method fitted to predict the wild parent origin of each cross, i.e.,
AR versus AE. Before the analysis, sample size was balanced using the
algorithm SMOTE [27]. To prevent biased results that can derive from
correlation of traits, traits with a correlation coefficient higher than 0.5
were assigned to the same group and only one representative trait from
each group was used for the analysis (Table 2). The results showed that
seed maturation time, seed weight, and plant height-related traits most
effectively classify the two types of crosses (Fig. 3). Combining the trait
importance results with the Bayesian network results, we found that the
influenced traits have higher importance than the influencing traits.
More specifically, location of the lowest pod showed higher importance
than plant height, while 1000 seed weight had higher importance than
growth habit. The combination of these two analyses suggests that, for
future breeding schemes, the choice of the wild parent should consider

Table 3
QTLs showed significance in the multi-trait association analysis.

Data type Group QTL name Marker Chr cM p-value Gene

AR Group B MQTL1 5:38343696 5 68 8.12E-01 LOC101492219
AR Group B MQTL2 6:30959263 6 54 4.26E-02 LOC101490414
AR Group B MQTL3 6:57185489 6 95 5.15E-02 receptor-like protein kinase FERONIA-like
AR Group C MQTL1 5:38343696 5 68 1.34E-01 LOC101492219
AR Group C MQTL2 6:30959263 6 54 3.15E-01 LOC101490414
AR Group D MQTL4 7:11287194 7 30 8.05E-02 AP2-like ethylene-responsive transcription factor
Combined Group B MQTL2 6:30959263 6 54 4.24E-01 LOC101490414

Table 4
Influential relationship of traits. Left: influencing trait and right: influenced trait.

Data type From To

C. arietinum x C. reticulatum, combined start of maturation – start of flowering start of maturation – start of germination
C. arietinum x C. reticulatum, C. combined start of maturation – start of germination full maturation – start of germination
combined full maturation – start of maturation full maturation – start of germination
C. arietinum x C. reticulatum start of germination – sowing start of maturation – start of germination
combined plant height location of the lowest pod
C. arietinum x C. reticulatum, combined growth habit 1000 seed weight
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not only the traits that differ most, which corresponds to a higher trait
importance, but also the traits that influence other traits irrespective of
their difference between crosses.

4. Discussion

4.1. By the integration of single and multiple trait association analysis,
genomic regions involved in important traits of chickpea were discovered

For millennia, agriculturalists and breeders have focused on se-
lecting organisms with the desirable phenotypes. Strong selection on a
few traits during domestication by definition caused a reduction in
adaptive variation due to genetic bottlenecks, the strength of which
vary depending on the crop, but are particularly pronounced in
chickpea [5]. Counteracting these forces requires tapping diverse
germplasm, including wild species and more primitive landraces that
can be sources of variants useful for improving elite varieties. Sys-
tematic breeding with wild materials is uncommon, in part because the
desirable characteristics of elite cultivated genotypes can be greatly
reduced in wide cross populations. The burden of disentangling traits in
wide cross populations is not only labor intensive, but often desirable
traits are missed entirely due to genetic interactions. Modern genomics
and quantitative genetics can resolve these complexities and reduce the
barrier to use of wild species in crop improvement. Here we conducted
an analysis of the genetic underpinning of individual domestication
traits and the genetic basis of multi-trait complexes. The resulting in-
ferences may be of value to optimize wide-cross breeding by allowing a
priori weights for different genes and variants to be integrated into
marker-assisted and genomic-selection programs.

We explored QTLs of 23 chickpea traits by applying both single and
multiple trait association analysis. As depicted in the correlation ana-
lysis, some pairs of traits were strongly correlated. In several cases the
associated QTLs overlapped, even when traits were not strongly cor-
related. For example, plant height and growth habit were poorly

correlated (correlation coefficient 0.2), which is consistent with a pre-
vious study reporting overall low correlation coefficients of these traits
[32]. Nevertheless, breeders have an interest combining these char-
acters, because tall plants with reduced canopy density are desirable for
machine harvesting. Interestingly, despite their low correlation, the two
traits occur in moderately distant QTL region (18 cM in AR and 10 cM
in the combined data), suggesting that targeting these regions will
improve plant height and growth habit simultaneously.

Most of the QTLs found in the combined data were also found in AR
alone. QTLs specific to the combined AR+AE data include Ascochyta
susceptibility, presence of nodules and color of seeds. Among possible
explanations for combined data-specific QTLs are: i) the subset of
markers in the combined data was not present in AR because the MAF
of the markers was lower in AR, ii) the combined data had better power
to detect causal markers due to the increased sample size, or iii) the
effect of the causal markers in AE is greater. QTLs associated with
Ascochyta susceptibility and presence of nodules on roots corresponded
to case i). In the case of the QTLs associated with color of seeds, two
linked SNP showed a slightly higher seed color increase as a function of
genotype, suggesting the combined data-specific signal originates from
iii). (Figs. S1 and S2). Future studies with larger sample sizes and
perhaps with specific AR and AE parents are required to test whether
these are species specific QTLs (i.e., uniquely derived from C. re-
ticulatum vs C. echinospermum), or artifacts of the current genetic ma-
terials.

Multi-trait association analysis efficiently identifies signals caused
by pleiotropic loci. Our analysis of multi-trait associations found loci in
common with single-trait association analysis, and also loci that were
not detected in the single-trait analysis. MQTL2 and MQTL4 are the
cases where an association was found by both association analysis
methods. On the other hand, MQTL1 was located in a region not
identified in single-trait analysis. This can be explained by the fact that
the multi-trait model has higher power, and thus signal detection is
more efficient than in the single-trait model. Differential discovery of
genetic associations is expected to be especially high for loci that are
measurably pleiotropic, but that make relatively small contributions to
single traits.

4.2. Bayesian network analysis provides more information on trait
relationships than correlation analysis can do

To investigate the genetic regulation of multiple trait interactions,
we used Bayesian network analysis. Bayesian network analysis found
trait interrelationships that could not be detected based on trait cor-
relation alone. Using six Bayesian network methods to ensure the
consistency of the relationships, we found six pairs of traits with in-
fluential relationships. Four of the relationships were involved the
regulation of seed maturation time, while the remainder involved
characteristics of plants, pods and seeds.

In the case of maturation time influences, all interactions involved
germination-related traits. Delayed germination exposes seedlings to
differing environments, i.e., day length and potentially temperature
vary with time, which may influence the rate of plant development.
Thus at least some of the observed signal may be caused by germination
environment, rather that direct genetic interactions. Interestingly,
however, the results of GWAS implicate a genetic component, at least in
the case of the pair ‘start of maturation - start of flowering’:’start of
maturation - start of germination’, which share a common QTL located
on chromosome 1 (Fig. 2).

By better understanding the influential relationships between
agronomic traits, we can predict the outcomes of changing certain traits
and prevent or induce undesirable or desirable changes in other traits.
For instance, according to Bayesian network results, regulating the
height of the chickpea plant may change the lowest pod position. While
the result may sound obvious – taller plants have more upright growth,
while upright growth raises the height of the lowest pods–, quantifying

Fig. 3. Trait importance index sorted by the importance of each trait. x-
axis corresponds to the decreased accuracy of the cross type prediction which
corresponds to the importance of each trait.
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the nature of such relationships and ultimately determining the nature
of their genetic control, including pleiotropy and linkage, has broad
implications especially for crops such as chickpea where a quantitative
genetic framework is largely absent.

4.3. The combination of QTL mapping, Bayesian networks, and trait
importance can contribute to in-depth strategy for future breeding

Introgressing wild germplasm into the cultivated genepool provides
an opportunity to overcome obvious limitations in selective breeding of
cultivated plants caused by a narrow genetic basis. When multiple traits
are considered, the choice of the parental type is expected to affect the
relationship between the target traits. For example, Guo et al., (2017)
investigated timing and quality traits in two types of Petunia crosses: P.
axillaris x P. exserta (AEx) and P. integrifolia x P. axillaris (IA). The
authors found that the correlation of the development rate and time to
flower was different between the two crosses depending on tempera-
ture. Moreover, the percentage of traits with significant correlations
was different: 63.8% and 43.2% in AEx and IA respectively. This ex-
ample illustrates the importance of prioritizing wild materials based on
the characteristics of the target traits. This priority can be achieved by
assessing how much each trait differs between cross types.

In the current evaluation, we used the random forest method to
measure the importance of each trait, identifying traits that best dif-
ferentiate populations based on their wild species origin (C. reticulatum
vs C. echinospermum). The integration of trait importance index, influ-
ential relationships and GWAS results gives insight into how wild spe-
cies might be used systematically in crop improvement. For instance,
1000 seed weight was influenced by growth habit in Bayesian network
analysis. Seed weight is an important agricultural trait and thus in-
trogressing QTL associated with seed weight is a desirable choice for
breeding. However, according to our GWAS results, no corresponding
QTL region was found. The reason of absence of signal can be explained
by the polygenic characteristic of seed weight of legumes of which QTL
detection requires large number of samples [33,34]. We did however
identify multiple QTL associated with growth habit. Bayesian network
analysis suggests a potential solution: introgression of the growth habit
QTL is predicted to increase seed weight, despite the presence seed
weight-associated QTL. Following the trait importance index, growth
habit might be discarded as a breeding objective. However, under-
standing that growth habit can influence seed size might lead to a re-
prioritization, permitting the use of growth habit-associated QTL to
pursue increased seed size. We suggest that the insights of this study,
based on integration of multiple traits and different analytic methods,
can contribute to improving cultivar chickpeas in future breeding sys-
tems.

5. Conclusions

This study investigated agronomic traits of F3 progeny derived from
the elite, C. arietinum cultivar ICCV96029 and two species of wild
chickpea, C. reticulatum and C. echinospermum, were crossed with the
elite, early flowering C. arietinum cultivar ICCV96029. The application
of a single-trait genome-wide association analysis revealed 50 QTLs in
11 traits for AR and 35 QTLs in 10 traits for the combined data. By
performing a multi-trait association analysis, we found four pleiotropic
QTLs. Moreover, we detected phenotypic-level inter relationships of the
duration of vegetative growth and seed maturation, seed weight,
growth habit, plant height and the location of the lowest pod utilizing a
Bayesian analysis. Combining the results from the two types of asso-
ciation approaches and the Bayesian analysis, we detected QTLs that
govern traits that showed inter relationships. Lastly, a random forest
approach was applied to find the traits differ most between the AR and
AE progenies. By combining multiple traits and analytic methods, this
study provides an insight for the efficient scheme to target agronomic
QTLs for future breedings.
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