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Post-GWAS: where next? More samples, more SNPs
or more biology?

P Marjoram1,2, A Zubair2 and SV Nuzhdin2

The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive
genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-
intermediate frequencies, or will be effectively ‘tagged’ by polymorphisms that do. Each of these assumptions has recently been
questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear?
(ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that
quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might
lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the
optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that
in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of
population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental
data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can
be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in
population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar
approaches will be helpful as a GWAS augmentation, in human and agricultural research.
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INTRODUCTION

We live in the era of genome-wide association studies (GWAS), a time
in which vast efforts have been made to find single-nucleotide
polymorphisms (SNPs) that are associated with phenotypic variation.
This has led to the discovery of a large number of associated SNPs—
1617 published GWAS ‘hits’ at Pp5� 10�8 for 249 traits as of the
third quarter of 2011, the latest figures available from http://
www.genome.gov. However, there is a growing awareness that the
majority of phenotypic variance apparently remains unaccounted for.
This has led to a search for this missing heritability (for example,
Manolio et al., 2009; Eichler, et al., 2010).

There are at least two possible explanations for missing heritability.
First, it may be a consequence of our inability to interrogate all SNPs

in a region using so-called SNP-chip array platforms. This has led to a

growing enthusiasm for the use of next-generation sequencing

technologies with which, in principle at least, all polymorphism in

a region can be discovered. However, another possible explanation for

missing heritability is that we are not performing the correct analysis

of the data we are collecting or we are not estimating heritability in

the correct way (Zuk et al., 2012). GWAS typically looks for simple,

marginal effects of SNPs on phenotypic variation. However, disease is

often complex. As an example, Zuk et al. (2012) illustrate how simple,

nonlinear models can lead to phantom heritability. It is possible

(and we believe likely to be) that analyses that move beyond agnostic,

marginal tests of association will lead to the amount of missing

heritability being significantly reduced. With this in mind, we briefly
overview three interconnected pillars of assumptions, which serve as

foundations for the marginal GWAS approach: (i) additive genetic
variation is abundant, (ii) individual causal polymorphisms have

sizable effects and (iii) those polymorphisms segregate at moderate-
to-intermediate frequencies. Arguably, a fire has recently begun
smoldering under each of these three pillars. We will focus on the

brightest flames illuminating the limitations of the traditional GWAS
approach. As is frequently the case, these same flames also cast light

on possible future directions. Thus, we end on optimistic notes
sounded by clues present in recent research.

We begin by discussing each of the three pillars in turn:

PILLAR 1: ADDITIVE GENETIC VARIATION IS ABUNDANT

For decades, programs of stock improvement have relied on the
breeders’ equation, based on resemblance between relatives (Lynch
and Walsh, 1998). These programs have been tremendously successful,
resulting in productivity increases of several folds (Falconer and
Mackay, 1996). However, the reason why the breeders’ equation works
remains a subject of debate (and, of course, the plant breeding
community has made much progress without it). The problem is that
phenotypes arise from principally nonlinear molecular biological
processes underlying developmental, signaling and metabolic
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cascades. Is the additive component of genetic variation, in fact,
predominant? Hill et al. (2008) became so alarmed by this issue that
they reanalyzed an impressive array of data. They overwhelmingly
confirm widespread additivity. They hypothesized that a population
genetic process referred to as mutation-selection balance may result in
patterns of segregation in casual polymorphisms in which the
variation will appear additive even though the pathways through
which the phenotypes are affected are highly nonlinear. Indeed,
mutation-selection balance can account for most, though hardly all
(Houle, 1998), of the genetic variation in phenotypes. Under
mutation-selection balance most mutations segregating in a popula-
tion are partially recessive, and they are present at low frequency. Hill
et al. (2008) show that under these conditions, most variation will
appear additive irrespective of the architecture of the molecular
network.

Gjuvsland et al. (2011) have approached the issue from a different
angle, basing their considerations not in population genetics but in
network architecture principles. Indeed, population genetics might
represent a somewhat shaky foundation upon which to build. If
mutations do not contribute to additive variation, natural selection to
keep them at low frequency might be ineffective (Charlesworth and
Hughes, 1996). If additive variation is removed but non-additive
variation accumulates, the outcome might be envisioned as predo-
minantly non-additive variation. Gjuvsland et al. (2011) show that, in
populations with intermediate allele frequencies, randomly generated
genotype–phenotype (GP) maps generate proportions of additive
heritable variation (Va), among overall variation due to segregating
polymorphisms (Vg), that are far lower than is empirically observed.
They, therefore, argue that the special nature of molecular networks
might lead to additivity, even though the networks themselves are
nonlinear. As an example of this, they consider the property of ‘order-
preservation’, in which the network architecture prevents ‘order-
breaking’ (Gjuvsland et al., 2011).

Although both explanations are elegant and intuitive, they in no
sense represent a final answer. Indeed, they present particular cases in
which Va would be the main component of variation but they do it by
imposing constraints (on the frequency of causal mutations or on
network architecture) that do not have to be generally correct. Zuk
et al. (2012) approach the same problem from a different angle. They
again start from the common observation that causal polymorphisms
detected in GWAS on tens of thousands of individuals appear to
account for only a small fraction of heritable variation for a given
complex disease. They argue that this conclusion is often drawn
because investigators typically, and mistakenly, equate narrow sense
heritability, Va, with the estimate of heritability resulting from
pedigree studies, Vg, which includes effects due to epistasis. This
results in a concept they term ‘phantom heritability’. When compared
with Vg, much heritability appears to be missing; but when compared
(correctly) with Va, much of the missing heritability disappears. Using
an example of a particular nonlinear network, they present simula-
tions showing that only a fraction of heritable variation need be truly
additive. In such a context, if causal polymorphisms are found as
contributing to that truly additive component (rather than highly
inflated pedigree-based estimates), the polymorphisms identified
would have accounted for most–if not all–of Va. Thus, from their
perspective the problem of ‘missing heritability’ should be re-termed
as a problem of ‘inflated Va estimates’. For a nice overview of
issues related to heritability in the GWAS era, see Zaitlen and
Kraft (2012).

Building on the helpful framework provided by theoretical analyses
such as those discussed above, one possible way forward is to analyze

genetic variation in the networks directly, observing whether linear
models account for a significant fraction of natural variation. We have
implemented this approach for sex determination (Tarone et al.,
2005), and InR/TOR (Nuzhdin et al., 2009) pathways in flies. We
proposed (Tarone et al., 2012) that small-effect mutations might be
well approximated by linearization around steady flow in nonlinear
pathways. Whether and to what extent this explanation is generally
correct is fertile ground for future research.

PILLAR 2: INDIVIDUAL CAUSAL POLYMORPHISMS HAVE

SIZABLE EFFECTS

Inferring causal polymorphisms that account for, but, a tiny fraction
of quantitative variation would require an enormous sample size
(Long and Langley, 1999). The sizes of GWAS studies are now
reaching multiple thousands of individuals, in part, due to a move
toward meta-analysis in recognition of the consequent power benefits
(for example, Lindgren et al., 2009; Stahl et al., 2010). However, causal
polymorphisms can only be reliably detected if they account for a
sizable fraction–on the order of 1%—of phenotypic variation (Long
and Langley, 1999). Is it reasonable to hope that most polymorphisms
have such large effects? The literature on this topic is nearly
overwhelming and we are able to cover only a few highlights here.
At the beginning of the QTL era, arguments that phenotype would
typically be explained by a few loci of major effect were abundant
(for example, Mackay, 2001). It was fast realized, however, that the
effect sizes are typically overestimated—the so-called Beavis effect
(Beavis, 1994). The problem is that the lower the power of an assay,
the greater is the resulting overestimation of effect size (Lynch and
Walsh, 1998). This is related to the effect known as the ‘Winner’s
Curse’ in the GWAS field, in which it was also noted that effect
sizes for significantly associated loci will typically be overestimated
(Kraft, 2008).

Is it possible to ‘back-calculate’ the true distribution of the effect
size of causal polymorphisms given their estimated effect sizes? Otto
and Jones (2000) showed that it is possible to estimate the total
number of associated loci from such data, but did not address bias
correction. The emerging best practice to avoid the Winners’ Curse is
to infer the set of causal polymorphisms in one population, whereas
estimating their effects in a different, fully independent population
(Kruglyak, 2008). Although utilizing data from several populations
has become a common practice in yeast and human studies, other
models do not afford similar replication. In conclusion, the distribu-
tion of effect sizes contributing to standing quantitative variation
remains unclear.

As an illustration of this in a series of recent manuscripts, Mackay
et al. (2012), Jordan et al. (2012) and Weber et al. (2012) identified a
relatively small number of candidate polymorphisms that might
account for the majority of phenotypic variation. The analytical
approaches used rest on the underlying assumption that a few major
polymorphisms matter; the conclusions support this conjecture.
Alternatively, Ober et al. (2012) reanalyzed some of the same data
under a different assumption—the ‘nearly infinitesimal’ model—that
assumes numerous polymorphisms, each with rather small effect size.
In this paper, they calculate genetic relatedness among genotypes,
compare it with phenotypic resemblance and calculate the fraction of
phenotypic variation accounted for. The conclusion was that on the
order of 8% of phenotypic variation is explained, consistent with the
expectation for the experiment sample size. Overall, genetic poly-
morphisms appear to have accounted for modest amounts of
variation. We stress that the two above analyses, made under
diametrically opposed assumptions, resulted in rather divergent

GWAS is dead, viva la GWAS
P Marjoram et al

80

Heredity



conclusions. This is unsurprising as the truth probably represents a
mix of larger and smaller effect mutations, and the analyses above
pick from opposite tail of this distribution. There has been additional
recent progress in this area using models mixing both assumptions in
the context of variance component or mixed models (Kang et al.,
2010; Korte et al. (2012). However, a general picture is yet to emerge.

PILLAR 3: INDIVIDUAL CAUSAL POLYMORPHISMS

SEGREGATE AT MODERATE-TO-INTERMEDIATE FREQUENCIES

The debate over ‘common mutation–common disease’ versus ‘rare
mutations–common disease’ models has proven to be the source of a
great number of manuscripts, including many recent reviews (for
example, Manolio et al., 2009). We raise this issue only insofar as it
relates to the prospect for GWAS. Recall Hill et al. (2008). If causal
polymorphisms are at low frequency, they contribute to additive
variation. However, the power to detect such polymorphisms is rather
low, potentially requiring prohibitive sample sizes (Zuk et al., 2012).
Curiously, as power drops with allele frequency, the resulting expected
overestimation of effect size increases (Lynch and Walsh, 1998).
Accordingly, less frequent causal polymorphisms will appear to have a
stronger effect than is actually the case (Mackay et al., 2012), perhaps
biasing the flow of resources from GWAS to the ‘mutational screen’
paradigms that have recently been gaining in popularity (Tennessen
et al. (2012).

What proportion of phenotypic variation is, then, due to low-
frequency (as compared with intermediate frequency) alleles? Refer-
ring back to Mackay et al. (2012), Jordan et al. (2012) and Weber
et al. (2012), low-frequency mutations matter. This is problematic for
GWAS if effect sizes are relatively small. However, per the analysis of
Ober et al. (2012), the intermediate frequency alleles matter. This in
itself may pose problems for GWAS analyses that focus on detecting
additive effects since, as discussed above, although apparent additivity
is likely to be for rare variants, it is not a necessary consequence for
alleles of intermediate frequency.

To summarize, GWAS will be most successful, if (i) additive genetic
variation is abundant, (ii) individual causal polymorphisms have
sizable effects and (iii) they segregate at moderate-to-intermediate
frequencies. So, is genetic variation mostly additive? In general, we do
not know. Do individual causal polymorphisms have sizable effects?
Again, in general we do not know. Do they segregate at moderate-to-
intermediate frequencies? Once again, we do not really know. Overall,
it appears that we are still some way short of certainty in affirming
these requirements, at least in the Drosophila model we feature in this
mini-review.

THE WAY FORWARD: ‘POST GWAS’

From the preceding discussion, it is tempting to generalize that the
answer ‘we do not know’ is the only ‘true answer’ and the minute one
claims that he ‘knows’, he is wrong (Pelevin, 2001). This response is
obviously unsatisfactory, particularly if it might undermine a para-
digm, which is seen as a significant step toward future advances in
health and agriculture. Alternatively, might the GWAS paradigm be
modified in such a way to result in useful conclusions even if the
above pillars are in question?

One feature of the GWAS paradigm is its purely statistical nature. It
takes molecular biological knowledge into account only a posteriori.
One possible alternative to this is to treat the biological knowledge as
prior information, and refocus the analytical approaches accordingly.
For example, in Quintana et al. (2012), functional information is used
to prioritize choice of combinations of SNPs to include in a burden-
style association test and thereby gain power.

Another motivation for this alternative perspective is that causal
polymorphisms are not directly linked to phenotypes. Instead, a
polymorphism has a direct effect only on intermediate processes, such
as networks of genes or gene regulatory networks (GRNs. The effect
of genotypes is then expressed through their effects on the network
themselves. Thus, a polymorphism might affect the level at which a
particular gene is expressed, with consequent effects on the products
of network(s) in which the gene has a role. Testing association
between SNP polymorphism and network parameters means that one
can detect the direct association (between SNP and parameter value),
rather than the indirect association between SNP and disease
phenotype (say). This offers the potential for increased power
(regardless of whether or not a SNP is in a gene that is itself in the
network).

Drosophila seems to be a prime model for the development of such
perspectives. In human and yeast research, GWAS limitations might
be overcome, at least partially, by ever increasing the sample sizes.
This is not straightforward with flies, where developing and keeping
dozens of thousands of natural strains is difficult. As an alternative
response, our exquisite knowledge of the molecular processes resulting
in the GP map might be capitalized upon to guide fly quantitative
geneticists.

Although there might be numerous polymorphisms affecting a
network, their effects are stereotypic, that is, they up- or downregulate
genes in the GRN responsible for the GP map. Truly significant
advances will be possible once the effects of regulatory polymorph-
isms are understood as part of the entire GRN. Instead of developing
treatments for each of many polymorphisms, a single cure for a
specific type of GRN malfunction might be developed–compensating
for numerous regulatory polymorphisms at once. Although the
accumulation of knowledge necessary for such a paradigm shift
might be sufficient in flies, would such an approach ever be practical
in human research? We believe the answer is an overwhelming ‘yes’.
We are rapidly entering an era of ‘personal genomics’ wherein
‘-omics’ data (for example, RNA expression, methylation, histone
acetylation and protein abundances) will be available for large
numbers of cell lines, and ultimately individuals. Thus, GRNs will
rapidly become annotated. Developing GRN-based approaches now,
in the first instance with the Drosophila model, will catalyze these
advances, providing the conceptual and analytical framework for
building GP maps in other species.

ANALYSIS OF GRNS: HISTORICAL PERSPECTIVE

As we have discussed, genetic variation does not lead directly to
phenotype, but instead alters intermediate molecular pathways that in
turn affects the higher-order traits. In order to understand how
genetic variation underlies phenotypic variation, we are required to
identify the molecular pathways that vary in response to changes in
DNA sequence and the environment (Cooper et al., 2002; Sieberts
and Schadt, 2007). Furthermore, we must consider the interpretation
of marginal effects of genes when the genes operate in networks
(Cooper et al., 2005). This molecular knowledge has the potential to
provide the functional information required not only to identify and
validate the susceptibility genes that are directly affected by genetic
variation, but also to understand the GRNs in which the susceptibility
genes operate, and how changes in these networks lead to disease
(Hammer et al., 2004; Schadt et al., 2008). Although the above and
many other studies considered whole-genome networks, we consider
an alternative. Why not start from a small molecularly defined and
validated GRN, well described with a precise quantitative model and
infer how much variation would such a GRN explain? Although this
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clearly is an oversimplification, it is a vast improvement over single-
gene marginal associations, and it reflects current knowledge accu-
mulated through molecular biology insights.

The most impressive development in this paradigm has occurred in
plant breeding, where there is a deep tradition of modeling
phenotypes with process-based approaches (the ‘genotype to pheno-
type problem’; Cooper et al., 2002; Koduru et al., 2008). Although,
traditionally, physiological methods have been used to predict
phenotypes for different crop cultivars as they respond to variable
environmental inputs (Sinclair and Seligman, 1996; Hammer et al.,
2004), the most recent trend is to estimate phenotypic outcomes by
directly modeling the underlying gene and gene interactions at the
expression level (Welch et al., 2003, 2005a). In these cases, genes are
typically modeled using Boolean logic, linear units, oscillators and so
on (Welch et al., 2005b; Ravasz et al., 2002). More recently, differential
equation-based expression level models of important plant genes have
been proposed (Locke et al., 2005a, b).

GRN-based models treat a plant as ideally performing, and in a
context in which major effect mutations break the GP map, thereby
enabling analyses. How should we introduce genetic variation into
these models? So far, this integration has relied upon QTL-type
inferences (Yin et al., 2003; Uptmoor et al., 2012). The goal was to
predict environmental effects on plants using different allele combi-
nations of relevant genes, and to better identify the genetic factors
that underlie complex environmentally dependent traits (Reymond
et al., 2003; Tardieu, 2003; Hammer et al., 2004; Quilot et al., 2005;
Malosetti et al., 2006). It has been shown that inferences from QTL-
GRN approaches can be extended to independent genotypes from
the same cross (Reymond et al., 2003). QTL-GRN was also helpful
for in-silico testing of possible allelic QTL or gene combinations
(Podlich and Cooper, 1998).

The logical next step is to integrate GWAS with GRN. Would such
a combined paradigm hold the promise of accelerating inference?
One answer comes from a recent analysis of Wang et al. (2012;
building on Martens et al., 2009; Gjuvsland et al., 2010, 2011 and
others). Wang et al. (2012) starts from a precise GRN model and
supposes that it varies among genotypes due to causal polymorph-
isms. Thereby, a simulated panel of genotypes was used for a GWAS-
style analysis. It was also used to back-estimate the variation (among
genotypes) for the model parameters given the GRN. The GRN-based
approach had far superior power. This is, perhaps, expected as the
GRN model used for the data simulation and back-inference was the
same. Even with this caveat, this analysis gives hope that GRN-GWAS
might account for much more variation than more traditional GWAS
approaches. The question remains, however, what are the best
statistical practices for such an exercise?

FITTING NONLINEAR GRNS

Assume a GWAS panel with the knowledge of genotypes, intermediate
molecular phenotypes and whole-organism phenotypes. Assume
further that the GRN connecting GP is known–from the analysis of
major effect mutations as described above. How would one infer the
genotype-specific values of the parameters in the GRN model? This is
a cumbersome task (Locke et al., 2005b). Evolutionary algorithms
have been successfully applied to simultaneously infer the structure as
well as parameters in such networks (Ando and Iba, 2003; Streichert
et al., 2004), as have other optimization methods. However, we argue
that a more formalized treatment is clearly required and, in particular,
such a treatment should effectively capture and report the uncertainty
in the inference of the parameters or model structure. We highlight
Bayesian methods of network analysis as a powerful alternative tool,

with a particular emphasis on a relatively novel method that has come
to be known as approximate Bayesian computation (ABC), that
remains tractable for extremely complex networks that do not admit
closed-form solutions (in which many other analysis paradigms will
fail). As such, it allows full description of parameter distributions, and
therefore, explicitly capture uncertainty, for even complex models.

A Bayesian analysis paradigm proceeds as follows
Suppose we have data, Y, and wish to infer values of parameters, y.
From a Bayesian perspective, we express this as a posterior distri-
bution, calculated via Bayes Theorem as f(y|Y)¼ f(Y|y)p(y)/f(Y).
Here p(y) is the prior distribution. The above assumes the existence
of a model, M, that describes the underlying processes (in our context
a GRN). In other words, the model links the data, Y, to the biological
parameters y. The result of the analysis, the posterior distribution
f(y|Y), fully characterizes the knowledge regarding the parameters,
their uncertainties and the dependencies between them, given the
data, in the form of a probability distribution. This allows for a fuller
characterization of the underlying models. Credibility intervals for
parameter values can then be calculated and goodness-of-fit can be
tested for, allowing for model selection (see below). Posterior
distributions of relatively low variance indicate situations in which
the data leads to a good degree of certainty regarding the parameters
values. Conversely, a high variance indicates that little certainty has
been obtained.

Sensitivity is captured by examining the posterior distribution for
network parameters: parameters to which the network is highly
sensitive will have narrow posterior distributions, whereas those that
have less influence will have higher posterior variance. This property
provides a helpful connection to population genetics–one that may be
used to further validate the GRN model. For example, one might
hypothesize that the extent to which purifying natural selection will
operate can be predicted by a sensitivity analysis of molecular networks.
Spontaneous mutations in components of low local sensitivity cause
smaller deviations in the network output. Thus, purifying selection will
be weak, and functional sequence variation in natural populations will
be appreciable. Drift can then cause the appearance of high-frequency
mutations, possibly resulting in their fixation. In contrast, mutations
causing changes in high-sensitivity components will be eliminated
more quickly, they will typically be observed to segregate in natural
populations at low frequency, and their fixation between species will
not be common. An example of this is seen in Dresch et al. (2010) and
Fakhouri et al. (2010), where the sensitivity of rho enhancer network
was evaluated using different approaches.

Markov chain Monte Carlo (MCMC) methods
The key component of a Bayesian analysis is calculation of the
posterior distribution. This is often challenging, but a commonly used
approach is Metropolis-Hastings Markov chain Monte Carlo methods
(MH-MCMC) (Metropolis et al., 1953; Hastings, 1970). Although
these can be technically challenging to implement, the rapid growth in
computational horsepower that we have experienced over the last few
decades has resulted in an enormous rise in their popularity. This has
led to the production of packages such as WinBUGS (http://
www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml) and Open-
BUGS (http://www.openbugs.info/w/) to allow easier implementation
of the MCMC method. We illustrate the use of an MCMC analysis of
GRN data in Illustrative Example below.

However, despite their flexibility and popularity, traditional
Bayesian methods require that one is able to calculate the likelihood
function, f(Y|y), as, of course, do frequentist approaches. In situations
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in which this calculation becomes impossible or computationally
intractable, an alternative approach must be found. This has lead to
the rise of ABC.

ABC
ABC methods have been developed over the last decade in response to
the recent rapid growth in both the size and complexity of modern
data sets and their underlying theoretical models. They allow
computationally tractable analyses in contexts in which calculation
of the likelihood function becomes impossible. Essentially, they
replace calculation of the likelihood with a simulation step, relying
upon the fact that rapid simulation of data is often possible in
contexts in which calculation has become impossible.

The American statistician John Tukey said ‘Far better an approx-
imate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made
precise’ (Tukey, 1962). ABC methods embrace this spirit by allowing
us to use the model we want to use (in this context, a complex,
nonlinear GRN), but at the cost of providing an approximate answer.
We focus on two ABC methods: those based on accept/reject
algorithms and those based on MH-MCMC.

In general, there are two common responses to intractability of the
likelihood: (i) simplify the model so that the likelihood function
can, once again, be calculated; or (ii) add an approximation
step to the analytic method itself. Although approach (i) above is
possible, it often leads to a model so divorced from reality that
conclusions drawn from it cannot be considered particularly
informative. So ABC approaches follow the intuition of both Box
and Tukey and adopt approach (ii), constructing approximate
answers to the right questions via ABC methods. At this point, we
recall a quote attributed to George Box: ‘All models are wrong,
but some are useful’.

In the case of the paradigm, we suggest the focus on small networks
might be misplaced as they are but a component of larger networks.
However, it might be the most helpful perspective, as larger networks
are generally not described well enough to quantify, nor are they
computationally tractable with the approaches we introduce below.
Application to genetic networks is in its infancy, but will allow
analysis of pathways that are significantly more detailed, and therefore
more realistic, than has been possible using traditional methods.
Furthermore, the resulting posterior distributions allow full charac-
terization of the network, thereby capturing, in full, the degree of
certainty with which those parameters are estimated, rather than
having to rely upon ‘sensitivity analyses’, of the type described in
Dresch et al. (2010), for example, in the context of transcription
networks in Drosophila, in which this uncertainty is assessed in a
somewhat less comprehensive manner.

ABC-accept/reject algorithms (ABC-AR)
This is perhaps the simplest form of ABC method. Suppose we have a
measure of similarity that allows us to determine if two data sets, D and
D0 are similar (denoted DBD0). For example, in the example
application below, in which the data are a vector of gene expression
values, we might use Euclidean distance. Alternatively, a set of summary
statistics might be used. The posterior distribution of the associated
parameters is estimated using the following iterative procedure:

1. Sample parameter values y0 from the prior distribution p(.).
2. Generate a data set D0 using the sampled y0-values (In the present

context, this involves simulating output from the network using
the y0-values.).

3. If D0BD then accept y0.
4. Return to 1.

The resulting set of accepted y0-values form a sample from the
posterior distribution f(y | DBD0) (Ripley, 1982; Rubin, 1984; Tavare
et al., 1997).

The details of this form of ABC analysis are dependent on what is
meant by D0BD. If strict equality is used here, so D0 and D must be
identical, the resulting posterior distribution reflects the distribution
of the parameters given the data, D. However, in practice, in almost all
realistic examples, insisting on an exact match between observation
and simulation is impossible (not least because of issues such as
measurement error or stochastic noise within the GRN), so a measure
of similarity is used. This similarity is often expressed in the form of a
set of summary statistics, which must themselves match, or near-
match, on observed and simulated data. The details of how all this is
done are not always trivial, and a literature is beginning to appear to
help investigators with some of these choices (Joyce and Marjoram,
2008; Nunes and Balding, 2010; Jung and Marjoram, 2011).

A variety of other forms of ABC analysis exist, such as ABC
versions of MH-MCMC (Marjoram et al., 2003). Most useful,
perhaps, is the Sequential Monte Carlo ABC (SMC-ABC) approach
of Del Moral et al. (2006) and Secrier et al. (2009), which is
particularly valuable as the number of parameters grows. In this
variant of ABC-AR, rather than sampling from the prior one samples
from a distribution that changes as the analysis proceeds, and which is
designed to more closely approximate the posterior and thereby
improve analysis efficiency. The application of SMC-ABC of both Del
Morel et al. and Secrier et al. was to simple GRNs. We also note that
the package SysBio (Liepe et al., 2010) implements both ABC-AR and
SMC-ABC, and is designed to integrate with the SBML (Systems
Biology Mark-up Language). However, as ABC methods are extremely
computationally intensive, for reasons of efficiency purpose-built
software is likely to be necessary for any but simple network
representations.

Model selection
Another form of analysis that is likely to prove useful in the network
context is model selection. Model selection analyses will provide a
direct way of linking genotypic variation to the pathway. For example,
suppose a SNP, S, has an effect on a particular parameter, yp, of the
pathway (for example, because it suppresses gene expression). We
might model this by supposing that the individuals in the study
population have values of yp that depend upon whether the SNP is
present or absent. In a Bayesian context, we proceed by supposing
that, for each individual, yp is drawn from one of two prior
distributions, p1 and p2, and that the choice of distribution is
determined by the SNPs.

Clearly, as the number of SNPs available for analysis increases, so
will the number of parameter prior distributions. This can be
managed by defining the prior distributions for SNPs (say) as a
function of meta-information about that SNP, such as functional
annotation information.

When full details of a pathway are unknown, model selection can
also be used to determine which of two (say) possible representations
of a pathway best fit the data. In general, we proceed by including an
indicator variable for the specific representation being used at any
given moment. For example, in the ABC-AR framework given earlier,
we include a variable I to indicate which model is being used in any
given iteration. We then define a prior pM over the space of possible
models, and define a prior distribution pM,y for the parameters in
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each model. We can then adapt the AR algorithm, by replacing step 1
with a new compound step:

1a. Sample a model M from pM; sample parameters for model M
from pM,y.

The rest of the algorithm proceeds as before. Now, each accepted
iteration will also have a choice of model associated to it. The
posterior probability of each model is obtained by integrating out
over parameter values at the end of the analysis. So, the posterior
probability of model 1, say, is the frequency with which model 1 was
used in the accepted iterations. Posterior model probabilities are best
interpreted in terms of Bayes Factors (ratios of likelihoods). For
example, applications in a network context, including an application
to the mitogen-activated protein kinase signalling pathway (Krauss,
2008), see Toni et al. (2009a, 2009b) and Toni and Stumpf (2010).

Although this analysis is straightforward in a general Bayesian
context, we note that model selection in an ABC context is more
problematic, and remains an active area of research (for example,
Robert et al., 2011).

ILLUSTRATIVE EXAMPLE

As an example of the analysis of GRNs using the methods discussed in
this review, we show results of an analysis of a nonlinear model of the
pathway producing expression of Drosophila ‘gap’ genes that pattern
the anterior/posterior axis of Drosophila embryos, originally analyzed

in Papatsenko and Levine (2011). This is one of the best-characterized
transcriptional networks; an abundance of available functional and
genomic information allows us to build quantitative models at
multiple levels.

The Drosophila gap gene network provides early response to
maternal gradients in the Dropsophila embryo segmentation pathway.
The gap gene’s concentration is set up through cues from maternal
genes and mutual repression between the gap genes. Using a modular
approach, the gap genes can be divided into network domains, where
each domain contains a toggle switch corresponding to a pair of gap
genes. The toggle switches resemble the phage lambda bi-stable
switch, except the gap genes concentrations are positionally operated
through the maternal genes’ gradients with synthesis rates
for competing components changing along the anterior–posterior
(AP) axis.

Based on this principle, Papatsenko and Levine (2011) developed a
dynamic model for gap gene expression, which exploits elements of
fractional site occupancy. The model accounts for diffusion of the gap
genes along the AP axis through a system of differential equations and
requires five to seven parameters to fit quantitative spatial expression
data for gap gene expression gradient. In their paper, Papatsenko and
Levine show how the model can account for large effect mutations
in the network with a shift in gap gene concentration. The model
is illustrated in Figure 1.

In this simple example, the network is sufficiently small that it can
be solved numerically. Papatsenko and Levine therefore utilized a

Figure 1 (a) Gene regulatory network for Drosophila gap genes, showing relationship between input genes (Bcd, Cad, Hb, Tll) and output genes

(Kni,Hb,Kr,Gt). (After figure 1 of Papatsenko and Levine (2011)). (b) Concentration of Gap genes along the anterior posterior axis of the embryo. Model was

fitted to this data. Hb, hunchback; Gt, giant; Kr, Kruppel; Kni, Knirps.
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Metropolis optimization algorithm for fitting their model, where
the objective function was based on a measure of correlation between
the model and the data. Different fitting ranges were defined for the
gap genes along with the length of the embryo.

Of course, such networks include a noise component, both in
underlying gene expression and in error of measurement of those
expression values. An optimization approach, such as that used in
Papatsenko and Levine, will struggle to deal with this, but a fully
Bayesian approach remains possible, as we demonstrate using a
MCMC analysis. We present results for both a standard MCMC
analysis and the ABC variant of MCMC. For a more detailed overview
of both methods, see Marjoram and Tavaré (2006).

We show the results of such a Bayesian analysis, in terms of the
resulting predictive power, in Figure 2. In the top row, we show the
observed levels of expression (y axis) for each of the four measured
genes at each of 100 points sampled along the AP axis of the embryo
(x axis). Each gene corresponds to a single column of the figure: Hb,
Gt, Kr and Kni (reading left to right). In rows two to four, we show
the fits resulting from analyses of that data. In each row, the y axis
represents the predicted expression levels. In row two, we show the
results obtained by Papatsenko and Levine using a Metropolis
optimization algorithm. We note that in that paper they chose to
focus on a domain of interest in which the gene expression gradients

were greatest, indicated by the region between the two vertical, dashed
lines on the plots. In row three, we show results obtained by sampling
a single set of parameter values from the posterior distribution
resulting from an MCMC analysis of the entire length of the anterior–
posterior axis. In row four, we show results obtained by sampling a
single set of parameter values from the posterior distribution resulting
from an ABC analysis of the entire length of the anterior–posterior
axis.

The figure shows that both the MCMC and ABC analyses fit well.
We note in passing that the fit resulting from both the MCMC and
ABC analyses over the domain of interest is significantly better than
that resulting from the analysis of Papatsenko and Levine, despite
the fact that the former analyses fit over the entire length of the
embryo. The benefit of the Bayesian approaches is that full posterior
distributions are obtained for each of the parameters. As an
illustration, we show the posterior distributions resulting from the
MCMC analysis in Figure 3. We show posterior distributions for four
parameters: the cooperativity, C, the synthesis/decay rate, alpha and
node-specific binding affinities, K1 and K2. The ABC method
typically results in slightly wider posterior distributions for para-
meters due to the increased tolerance allowed in the analysis. This will
likely to be reflected in a reduction in predictive power (seen in
Figure 3). Thus, it is important to stress that when exact calculation of

Figure 2 Predicted power of analysis of anterior–posterior gap genes for Drosophila. The x axis corresponds to the anterior–posterior axis of the embryo.

The y axis indicates the observed (fitted) levels of gene expression in rows 1 (2–4). Top row: observed levels of expression for each of four measured genes:

Hb, Gt, Kr and Kni (reading left to right). Row two: fits from Papatsenko and Levine optimization approach. Row three: results sampled from posterior of
Bayesian Markov chain Monte Carlo method (MCMC) analysis. Row four: results sampled from posterior of approximate Bayesian computation (ABC)

analysis. Vertical lines show the domain of interest of Papatsenko and Levine.

GWAS is dead, viva la GWAS
P Marjoram et al

85

Heredity



likelihoods is possible, standard Bayesian approaches, such as MCMC,
should be used. However, for more complex (and possibly, therefore,
more realistic) networks, an exact MCMC analysis will be impossible,
whereas the ABC approach will remain tractable.

CONCLUSION/FUTURE DIRECTIONS

We are in the middle of a golden age of genetics in which we are
discovering unheralded numbers of polymorphisms that are (margin-
ally) associated with phenotypic variance. Although the efforts so
far represent a great leap forward, true understanding will only be
obtained when we move from association to causation by building an
integrated GP map. In doing so, we will not only increase analytic
power of discovery, but also move a step closer to impacting human
health, as well as animal and plant breeding, in more effective ways.
At the same time, we note that stochastic elements that are likely to be
present in many networks will mean that complete predictability will
never be attained (a statement that is also likely to be true for systems
that lack genuine stochasticity, but which are highly complex and will
likely therefore never be fully characterized).

In this review, we have considered what we have learned so far from
the recent flood of GWAS and other data, and in what directions that
evidence suggests we should next turn. We do not intend this review
as an opinion piece regarding whether GWAS should be labeled as a
success or otherwise. We regard this argument to be one of semantics
more than content. GWAS has found a large number of polymorph-
isms associated with phenotype, and will continue to do so. However,
it is equally clear that much heritability remains unexplained. Our
belief is that now that we have determined what percentage of
heritable variation can be explained by polymorphism using marginal
statistical analysis (and often using relatively common polymorph-
ism), we face a fork in the road in which one path is labeled ‘more
data’, whereas the other is labeled ‘more biology’. Although both paths
are clearly useful, we believe there is much to be gained by considering
the latter fork and exploiting the ability of biological knowledge to
inform statistical analysis as we attempt to move from association
to function, and it is on this perspective that we have focused in
this article.

Here, our focus has been upon incorporating biological insight via
explicit modeling of underlying pathways. However, we also note

that there is a growing trend to incorporate biological information
into the prior distribution when searching large numbers of SNPs
for association with phenotype. For example, one can take informa-
tion from annotation databases such as PANTHER (http://www.
pantherdb.org/). This can be viewed as a way of increasing power in
the face of increasing multiple comparison penalties.

Potential new analysis flow
An advantage of a fully Bayesian analysis of pathways, such as we have
proposed here, is that the sensitivity to a given parameter is fully
described in the resulting parameter posterior distribution. Given this,
we envision the following flow of analysis. Using a Bayesian analysis
for each genotype, the parameters important for GRN function are
determined. A combination of whole-organism and GRN-specific
molecular phenotypes is used. We then infer which GRN perturbation
results in which whole-organism phentotype. The relative sensitivities
of the phenotypes to perturbations in different GRN nodes and paths
are evaluated to select the best targets for disease treatment. When a
perturbation of the parameter is detected in a certain genotype, a
localized search for the polymorphisms affecting this parameter is
made using GWAS-like approaches, focused on specific nodes and/or
paths in the GRN. The analyses among genotypes sharing that
polymorpshism are then merged to more precisely characterize the
effect of the polymorphism on the GRN behavior, much as in a
regular GWAS.

This combination of GRN and GWAS approaches will ultimately
enable collapsing of the effects of multiple polymorphisms—
including those of low frequency—into larger groups of ‘shared’
functional effect. The GRN state, and the effects of groups of
functionally similar polymorphisms on that state, could then be
compared between individuals experiencing different environ-
ments, or between those who are healthy and those who exhibit
disease.

Finally, we note that analysis of GRNs such as those we have
described here can be extremely computationally intensive, particu-
larly for a method such as ABC. However, ABC approaches also
provide several avenues for optimization. In particular, ABC demands
repeated simulation from models, and the number of repeats is likely
to be very large—the more simulations we perform, the greater the
level of agreement between observed and simulated data that can be
insisted upon, and therefore the greater (typically) the level of
accuracy that can be obtained. It is therefore possible to ‘parallelize’
algorithms and run them over multiple computational nodes, rather
than have one node independently simulate data over and over again.
N nodes will decrease the analysis time by roughly a factor of N,
compared with a single node. This can be achieved on computational
‘clusters’ or, perhaps more cost effectively, by exploiting Graphical
Processing Units, which provide extreme increases in computational
efficiency when the repeated unit (here the simulation) is relatively
straightforward.

In conclusion, we are in the midst of a golden era of genomics,
offering the potential to move from association to causation.
However, the success of GWAS is likely to be limited by a number
of factors. In this paper, we have discussed some of those factors and
offered a possible paradigm for moving forwards form this point in a
way that addresses some of those limitations.
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