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A B S T R A C T

Existing Elaeis guineensis cultivars lack sufficient genetic diversity due to extensive breeding. Harnessing variation
in wild crop relatives is necessary to expand the breadth of agronomically valuable traits. Using RAD sequenc-
ing, we examine the natural diversity of wild American oil palm populations (Elaeis oleifera), a sister species
of the cultivated Elaeis guineensis oil palm. We genotyped 192 wild E. oleifera palms collected from seven Latin
American countries along with four cultivated E. guineensis palms. Honduras, Costa Rica, Panama and Colom-
bia palms are panmictic and genetically similar. Genomic patterns of diversity suggest that these populations
likely originated from the Amazon Basin. Despite evidence of a genetic bottleneck and high inbreeding observed
in these populations, there is considerable genetic and phenotypic variation for agronomically valuable traits.
Genome-wide association revealed several candidate genes associated with fatty acid composition along with
vegetative and yield-related traits. These observations provide valuable insight into the geographic distribution
of diversity, phenotypic variation and its genetic architecture that will guide choices of wild genotypes for crop
improvement.

1. Introduction

Oil palm (Elaeis guineensis) is the most efficient vegetable oil crop
in the world, producing four to ten times more metric tons of oil per
hectare compared to other oil crops [1]. Palm oil is one of the health-
iest, versatile and widely used vegetable oils, representing 40 % of to-
tal worldwide consumption [2] and utilized in food, cosmetic and bio-
fuel industries. However, concerns over the conservation and sustain-
ability of oil palm cultivation [3,4] are growing due to climate change
and increasing global demand. Thus, breeding oil palm cultivars with
traits that increase yield, nutritional value, and adaptation to extreme
conditions while reducing land-use requirements is much needed. Wild
germplasm collections are a valuable source of genetic variation neces-
sary to expand the range of desirable traits within cultivated oil palm
varieties [5].

The discovery and characterization of genes that underlie novel and
desirable traits require analysis of genetic variation in wild populations
of crop relatives. Such programs have been implemented in a variety
of cultivar species, including tomato, rice, potato, wheat, chickpea and
sunflower [6–9]. So far, genetic variation from wild germplasm has been
underutilized in oil palm breeding programs. Our study aims to iden-
tify alleles associated with agriculturally relevant traits in a collection of
wild germplasm from a reproductively compatible sister species of cul-
tivated oil palm.

Oil palm belongs to the genus Elaeis, which consist of two species.
E. guineensis found naturally in Central Africa has been the long-stand-
ing oil palm of commerce in Asia, Latin America and Africa while E.
oleifera inhabits wild groves in Central and South America. Despite be-
ing up to 50 million years diverged [10], the two species produce vi-
able offsprings. Wild E. oleifera, also known as American oil palm, ex
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hibits favorable and distinct traits not found in the commercial E.
guineensis, including tolerance to diseases such as bud rot and lethal
wilt [5]. The American oil palm also produce oil with higher levels of
unsaturated fatty acids, carotene, vitamin E and sterol contents [11].
While American oil palm show broad environmental adaptability [12],
it suffers from extremely low oil yield (0.5 t ha−1 yr−1) compared to the
African oil palm which produce 3–4 t ha−1 yr−1 [11]. Therefore, inter-
specific hybrids have been developed to introduce traits of E. oleifera
into cultivated E. guineensis.

The discovery of quantitative trait loci (QTLs) associated with traits
of interest and identification of favorable alleles unnoticed or unde-
tectable previously allow more efficient marker-assisted-selection (MAS)
[13]. Considering the long breeding cycle of oil palm (10 years) [14],
any undesirable genotype can be identified and removed at early devel-
opmental stages, reducing the time and cost for phenotyping, especially
for traits that are expressed later in development. This, in turn, results in
more efficient use of land space. With MAS, the duration to develop new
oil palm planting materials can be shortened by half needed through
conventional breeding methods.

American oil palms are widely distributed across Central America
and in the northern regions of South America extending into the Up-
per Amazonian Basin. Comprehensive collection of wild E. oleifera seeds
began in 1967 in Costa Rica, Panamá, Colombia, Suriname, Honduras,
Perú, Ecuador, Nicaragua and the Amazon basin of Brazil [15,16]. We
used a genotype-by-sequencing approach (RAD-seq) to characterize this
panel of wild E. oleifera germplasm along with four cultivated E. guineen-
sis palms. We assessed the patterns of genetic diversity and imple-
mented genome-wide association (GWAS) on a panmictic population en-
compassing Honduras, Costa Rica, Panama, and Colombia. Our GWAS
analysis utilized not only a single-locus model but also multi-loci and
multi-trait models [17,18], focusing on different aspects of genotypic
and phenotypic characteristics and combining different model analyses
which increases the power to detect various types of causal loci. We
then identified several candidate genes associated with fatty-acid com-
position as well as vegetative and yield-related traits.

2. Materials and methods

2.1. Sampling wild material and phenotype data collection

The wild germplasm collected from South America were
field-planted in four different experimental plots at the MPOB research
station in Kluang, Johore, Malaysia. The field trials for genetic mater-
ial from Brazil, Honduras, Colombia, Panama and Costa Rica were laid
down in two experimental plots, respectively in 1984 and 1986, us-
ing Completely Randomized Design. Genetic material from Peru were
field-planted in 2006 in Progeny Row; those from Ecuador were laid
down in 2009 in Completely Randomized Block. For the current study,
depending on palm availability in the field plots, one to eight palms
were sampled per population. We analyzed a total of 192 palms from 37
populations (Table S1A). All field trials were established at the MPOB
Research Station located at Kluang, Johor, Malaysia. Oil palm field data
collection began 36 months after planting. From the third to eighth
year, 3–5 individual fruit bunches were sampled per palm and analyzed
in the laboratory to measure bunch traits and fatty acid composition
(FAC).

2.2. Bunch Analysis and trait measurements

Bunch analysis [19] was used to record 18 bunch traits. Measure-
ments of vegetative traits [20] were carried out on frond number 17
harvested from eight-year-old palms. Palm height was also measured
from ground level to the base of frond number 41. FAC was character

ized by a method described by [21]. Oil extracted from ripe fruits was
analyzed using Perkin-Elmer Gas Chromatography System. The results
obtained in the form of peaks for individual fatty acids are converted
into percentage using a data integrator available in the analysis software
provided by Perkin-Elmer.

2.3. DNA sequencing

DNA extraction was carried out on 3g of leaf samples [22]. DNA
concentration was quantified using a NanoDrop Spectrophotometer
(NanoDrop Technologies Inc.) and stored at 4 °C until needed. Samples
were sequenced using a set of 96 barcoded adapters custom designed
using a barcode generator [23] with HindIII restriction site overhangs.
The common adaptor was designed with a NlaIII restriction site over-
hang. Each 96-multiplex library was sequenced across two lanes on an
Illumina HiSeq 2000. All sequencing data can be found in the NCBI Bio-
Project PRJNA434010.

Illumina reads were mapped to the Elaeis guineensis 9.1 reference
(EG9, an updated version of the oil palm genome assembly [10]) us-
ing BWA MEM 0.7.9a-r786 [24]. Variants were called using the GATK
pipeline through the HaplotypeCaller program, identifying 5,052,463
single nucleotide polymorphisms (SNPs) segregating among the 196
samples. This set was reduced to 3,649,035 SNPs when only using geno-
type calls supported by at least 8 reads. Aside from 15 outlier samples,
there were 102,189 species-informative SNPs between E. oleifera and
cultivated E. guineensis, defined as loci where the frequency of the major
allele in E. oleifera samples was at least 0.97 and different from the allele
called in the E. guineensis draft reference along with the 4 E. guineensis
GBS samples. Diversity and phylogenetic analyses were based on a set
of 15,404 SNPs under Hardy Weinberg equilibrium (p<0.05) with mi-
nor allele frequency (MAF) of at least 0.03 and whose genotypes were
called in at least 90 % of the 196 individuals. For association studies,
only a subset of samples with phenotypic data were included. Associ-
ation analysis for fatty acid traits was carried out on 77 samples from
Honduras, Costa Rica, Panama, and Colombia using a set of 2439 SNPs
with MAF of at least 0.03 where the genotypes were successfully called
in 90 % of samples analysed. Association analysis for vegetative traits
was carried out on 144 samples using a set of 2272 SNPs filtered using
the same criteria as above.

2.4. Population structure

STRUCTURE [25] was used to assess admixture and population
structure using the admixture and correlated allele frequency model.
Ten independent runs of 10,000 burn-in MCMC iterations followed by
50,000 iterations were performed for 2–8 clusters (K=2–8). Nei’s ge-
netic distance was calculated using the ‘poppr’ R package [26], and hi-
erarchical clustering was implemented using Ward’s method [27] with
the ‘fastcluster’ R package [28]. Principal component analysis was im-
plemented using the ‘SNPRelate’ R package [29].

2.5. Diversity and phylogenetic analysis

Fst, Tajima’s D, theta pi and theta W estimates were calculated in
vcftools using window sizes of 1Mb [30]. Phylogenetic trees were gen-
erated using SNPhylo [31]. SNPhylo was also run on a larger set of SNPs
with a minimum 50 % individual call rate, as missing data could be dri-
ven by high divergence from the reference genome. Results were ex-
tremely similar, and topology was identical, indicating that divergence
between samples and the reference did not reduce the accuracy of phy-
logenetic relationships and that including missing data did not result in
higher resolution of evolutionary relationships.
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2.6. Linkage disequilibrium

Linkage disequilibrium was estimated by calculating pairwise corre-
lation coefficient ( r2) values between all SNP pairs with a minimum dis-
tance of 100bp to minimize effects of physically linked SNPs. A non-lin-
ear model based on the Hill and Weir formula [32] was used to fit the
decay rate of r2 as a function of physical distance.

2.7. Genome-wide association study (GWAS) : Linear mixed models

Three separate models were implemented to identify trait associ-
ated loci. First, a single-locus linear mixed model was implemented in
FaST-LMM [17]. Second, a multi-phenotype association model was im-
plemented in GEMMA to identify pleiotropic loci associated with multi-
ple correlated phenotype clusters [33]. Five vegetative trait clusters and
three FAC clusters were analyzed by GEMMA. Finally, a multi-locus lin-
ear mixed model was used to identify associated markers, using both
forward inclusion and backward exclusion steps. Only steps that had
covariates that passed the Bonferroni threshold were considered. When
there were more than one valid step, the step with the maximum num-
ber of covariates was chosen. The model was implemented in MLMM
as an R package [34]. A kinship matrix calculated based on all SNPs
was incorporated into each model as a random covariate to minimize
false positives caused by population structure in the data. A false-dis-
covery rate of 0.05 was used for the single-locus linear mixed model.
The Bonferroni-corrected threshold of 0.05 was used for the remaining
models as proposed by the programs. Since the multi-locus mixed model
requires that no markers are missing, imputation was done using Beagle
version 4.1 [35].

2.8. Validating allelic calls of significant trait-associated SNPs

We selected one trait-associated SNP (14:6491498) to confirm its
polymorphisms. Detailed information of the SNP and samples used for
validation are presented in Table S1B. Forward and reverse primers
were designed to amplify targeted regions containing the SNP. To design
primers, five thousand nucleotides upstream and downstream of the
SNP position were retrieved from EG9 reference. Sequences were ana-
lyzed in the Primer 3 software to design forward and reverse primers. To
ensure specificity, the primers were checked using Primer-BLAST. PCR
products were separated in 1% agarose gels and purified using QIAGEN
gel extraction kit. The purified fragments were cloned using TOPO-TA
Cloning. For each palm, two to four colonies were picked and inocu-
lated individually in LB broth. Plasmids were purified using QIAGEN
plasmid isolation kit, and Sanger sequenced using reverse and forward
primers. Each sequence was mapped to the reference build to confirm
location. Sequences that mapped to correct position were aligned and
alleles were scored. In addition, alleles were also scored from the se-
quence chromatograms.

2.9. Homologous gene annotation

Gene sequences were retrieved from the EG9 reference. Retrieved se-
quences were aligned to the Arabidopsis thaliana TAIR10 reference using
BLASTX. Homologous genes with the lowest E-values were retrieved.

2.10. Strategic conservation of core Wild American germplasm

Palms from Honduras, Costa Rica, Panama and Colombia were an-
alyzed with the intention of identifying a subset of the germplasm rep-
resenting 90 % of the total genetic diversity observed in the popula-
tion. N individuals were randomly drawn across different sample sizes

(N=10–154 individuals) from a total of 154 sequenced palms. For each
sample size, the average fraction of polymorphic sites (number of poly-
morphic loci/total number of loci) across 100 bootstrapped simulations
was calculated as a measure of genetic diversity. A genetic diversity in-
dex was calculated by taking the ratio of this diversity to the total ge-
netic diversity in the full set of 154 individuals (mean fraction of poly-
morphic sites of sample size N / fraction of polymorphic sites N=154).

3. Results

3.1. Evaluation of phenotypic data

To examine phenotypic variation in Central American oil palms, we
analyzed 29 different traits across four different countries (Table S2A).
Oil palms exhibited differences in fatty acid content (Kruskal-Wallis Test
P<0.005), such as for C16:0 where Honduras samples had the high-
est values (median: 22.1) while having lowest values recorded for C18:1
(median: 48.5). On the other hand, Colombia showed the opposite trend
and had the highest value for C18:1 (median: 59.9) and lowest for C16:0
(median: 17.2). We assessed the relationship of all traits using Pearson
correlation estimates and illustrated these relationships using hierarchi-
cal clustering (Fig. S1). Vegetative traits showed various degrees of cor-
relation and five trait clusters were identified with strong pairwise cor-
relations (> 0.6). Fatty acid traits were represented as three clusters.

3.2. SNP variation

We genotyped a total of 196 palms, including four cultivated E.
guineensis and 192 wild E. oleifera palms sampled from seven countries
in Central and South America: Honduras (26), Costa Rica (45), Panamá
(78), Colombia (20), Brazil (7), Ecuador (8) and Peru (8). After remov-
ing genotype calls supported by less than 8 reads and markers with less
than a 90 % call rate, 15,404 SNPs were identified for further popula-
tion diversity analysis, resulting in an average SNP density of 1 SNP per
180kb (Fig. S2). Of 64,085 annotated genes, 2122 were tagged with at
least one SNP within the gene, and 20,312 and 21,066 genes had at least
1 SNP within 10kb upstream and downstream, respectively (Fig. S3
shows the distribution of SNPs based on functional annotations across
the genome). Aside from the 15 outlier samples, there were 102,189
species-informative SNPs between E. oleifera and cultivated E. guineensis
(Appendix B).

3.3. Population structure and geographic differentiation

To assess the structuring of wild American populations, we esti-
mated genetic relatedness and population divergence among the 196
palms. Principal component analysis (PCA) revealed five distinct clus-
ters (Fig. 1A), with PC1 and PC2 explaining 40 % and 23 % of the ge-
netic variance, respectively. Although palms from Ecuador and Peru
clustered strongly in the PCA when all countries were analyzed to-
gether, they remained distinct groups when only the two countries were
analyzed (Fig. S4), suggesting that these two populations have some
minimal genetic structure. Palms from Honduras, Costa Rica, Panama,
and Colombia clustered tightly together, except for 15 outlier palms.
Model-based clustering revealed that these outlier palms showing pat-
terns of mixed ancestry (Fig. 1C), distributed along PC2 in the PCA
and positioned intermediate between cultivated E. guineensis and E.
oleifera palms (Fig. 1A). Based on species-informative SNPs, these out-
liers possessed interspecific hybrid genotypes that encompass a com-
bination of E. guineensis and E. oleifera alleles (Fig. S5). When ex-
cluding the 15 outlier palms, populations from Honduras, Costa Rica,
Panama and Colombia show no apparent genetic structure, and FST be
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Fig. 1. Genetic structure and divergence of wild American oil palm populations from Honduras (HON), Costa Rica (CRI), Panama (PAN), Colombia (COL), Brazil (BRA), Ecuador (ECU)
and Peru (PER). A) PCA, B) FST, C) STRUCTURE plot. Asterisks indicate 15 outlier palms sampled from Honduras, Costa Rica, and Panama. D) Hierarchical clustering of Nei’s genetic
distance: blue corresponds to palms sampled in HON/CRI/PAN/COL; yellow, ECU/PER; orange, BRA; red, cultivated E. guineensis palms. Dotted circles and boxes contain the 15 outlier
palms from Honduras, Costa Rica and Panama.

tween these populations is substantially low (Fig. 1B,C). Therefore,
palms from Honduras, Costa Rica, Panama, and Colombia were con-
sidered as a single population group (HCPC). Hierarchical clustering of
Nei’s genetic distance showed that population differentiation was based
on geographic distance, where HCPC palms are most genetically simi-
lar to Brazil followed by Ecuador/Peru and least similar to cultivated E.
guineensis (Fig. 1D).

3.4. Genomic patterns of diversity

To investigate the distribution of genetic variation and genomic sig-
natures of diversification in wild American oil palm populations, we
quantified heterozygosity, allelic richness and genome-wide nucleotide
variation. Since more individuals from HCPC populations were sam

pled and available for sequencing relative to Brazil (7), Ecuador (8) and
Peru (8), there was more variation found here, with 10,030, 372 and
1093 polymorphic sites identified within HCPC, Brazil, and Ecuador/
Peru populations, respectively. Despite the smaller sample size of South
American palms, palms from Brazil, Ecuador, and Peru have higher lev-
els of heterozygosity and allelic diversity at the individual level com-
pared to HCPC palms, suggesting that these populations are more di-
verse (Table 1) and should be prioritized for future studies.

There is an excess of rare alleles segregating in HCPC, with single-
tons representing more than 40 % of all SNPs (i.e., only one individ-
ual carries the minor allele), and 33 % of SNPs having minor allele fre-
quencies (MAF) between 0.01 and 0.05. On average, genome-wide LD
decays to a baseline r2 = 0.20 and r2 = 0.10 within 4kb and 10kb,
respectively (Fig. S6). Overall average Tajima’s D is negative for the
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Table 1
Genetic diversity estimates in Elaeis oleifera.

Country N HO HE F NA

HND 23 0.014 0.017 0.86 1.017
CRI 37 0.022 0.024 0.82 1.024
PAN 74 0.021 0.025 0.81 1.025
COL 20 0.017 0.021 0.84 1.020
BRA 7 0.033 0.034 0.49 1.033
TAI 8 0.040 0.042 0.54 1.041
PER 8 0.056 0.057 0.30 1.056

HCPC population (-1.8), with an average nucleotide diversity of θπ
=3.35e−07 and θ W =2.76e-06, in which θ W being significantly larger
than θπ reflects the excess of rare alleles segregating in these popula-
tions. The excess of rare allele frequency indicates either population ex-
pansion after a bottleneck or positive selection. The shape of the maxi-
mum-likelihood phylogenetic tree built from the HCPC populations indi-
cates patterns of population admixture (Fig. 2B). Furthermore, F values
indicate that HCPC populations show a higher level of inbreeding rel-
ative to the other populations (Table 1). Combined with field observa-
tions that note extreme population fragmentation within the HCPC pop-
ulations, these results indicate that the genetic patterns observed here
likely reflect a genetic bottlene ck followed by population expansion and
admixture.

3.5. GWAS

We identified SNPs associated with fatty acid composition (FAC) and
vegetative and reproductive traits in the panmictic HCPC populations
(Fig. 3D,E, Fig. S7). In addition to the single-marker linear mixed model
(LMM), we also implemented a multi-variate LMM and multi-loci LMM
to increase the statistical power of detecting SNPs associated with poly-
genic traits and SNPs that are pleiotropic. We identified 8 loci associ-
ated with vegetative traits, 2 loci associated with reproductive traits and
23 loci associated with fatty acid traits (Table S2B). Here, we also pre-
sented the locations of the loci and the effect of the significant SNPs on
their associated traits. The phenotypic variance explained by correlated
SNPs of FAC was typically larger than those from vegetative and yield
traits. Most of the trait-associated SNPs were found in intergenic re-
gions, while eight SNPs with synonymous mutations were found within
genic regions.

We also identified several pleiotropic SNPs that affect multiple cor-
related phenotypes, suggesting that these traits share common genes

and/or biological pathways. For instance, SNP 1:28380657 is associ-
ated with highly correlated leaf area (LA), leaf area index (LAI) and F
traits (r > 0.6), while SNP 10:17957276 is associated with both mean
bunch number (MBNO) and mean fresh fruit bunch (MFFB, r=0.9).
For the case of FAC, certain saturated and unsaturated fatty acids
may be genetically correlated by sharing the same causal markers.
Positively correlated saturated (C14:0, C16:0) and unsaturated (C18:2,
C18:3) fatty acids share four common SNPs (3:34413159, 4:140445547,
5:85517312, 13:27681245). Furthermore, SNP 3:34413159 is associ-
ated with two sets of correlated fatty acid phenotypes with different
saturation types (C18:1/IV and C14:0/C16:0/C18:2/C18:3, Fig. S7C).
From the single-locus LMM and the multi-trait LMM, we found eight
common SNPs associated with both C18:1 and iodine value (IV), a mea-
sure of the degree of unsaturation in oil. As expected, the most abundant
unsaturated fatty acid C18:1, accounting for 40 % of the total fatty acid
composition, is positively correlated with IV, as it is a major contributor
to oil unsaturation level in oil palm collections. The negative correlation
between C18:1 and C18:2 suggests that any increase in C18:1 would
likely spill over into C18:2. Based on the pattern of FAC correlations,
these eight common SNPs are likely associated with genes that primarily
regulate C18:1 and thus drive changes in IV as a consequence. Further-
more, SNP 3:34413159 is associated with unsaturated fatty acids C18:1,
C18: 2, and C18: 3 as well as the level of unsaturation, IV. The same
SNP also influences the saturated fatty acids (C14:0 and C16:0), which
are negatively correlated with C18:1, a key driver of the IV level. As one
of the main objectives of interspecific hybrid breeding is to increase the
level of unsaturation (IV), the appropriate SNP genotype could be used
to select for palms with higher IV at the expense of saturated fatty acids.

3.6. Population differentiation of yield traits and associated markers

While genetic data suggests that HCPC populations are panmic-
tic and unstructured, there is some phenotypic and genetic variation
within these countries. The distributions of five traits, MFFB, MBNO,
C16:0, C18:1, and C18:2, differed between countries (Kruskal-Wallis
Test, P< 0.05, Table S2A). MFFB- and MBNO-associated marker fre-
quencies differ among HCPC populations, reflecting potential adaptive
divergence. Consistent with previous observations [11], Panama palms
had the highest median values for both MFFB and MBNO (Table S2A,
Fig. 4A), with two markers showing a significant excess of G and T
alleles at SNPs 3:82372832 and 10:17957276, respectively (chi-square
test, P < 0.0005). The presence of these alleles increase the trait values

Fig. 2. Distribution and phylogenetic relationships of wild HCPC populations. A) Geographical distribution of sampled palms across Honduras (purple), Costa Rica (orange), Panama
(pink), and Colombia (green). B) Unrooted neighbor-joining MLE phylogenetic tree.
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Fig. 3. Phenotypic and genetic architecture of HCPC traits. A) Hierarchical clustering of correlated vegetative/reproductive traits resulted in five distinct clusters. Cluster I: leaf length
(LL), fractional interception (F), leaf area (LA), leaf area index (LAI); Cluster II: mean fresh fruit bunch (MFFB) and mean bunch number (MBNO); Cluster III: leaf width (LW), frond index
(FI), and leaf area ratio (LAR); Cluster IV: petiole cross section (PCS), leaf dry weight (LDW), frond dry weight (FDW), and vegetative dry matter (VDM); Cluster V: trunk dry weight
(TDW), height (Ht), and height increment (HI). B) Hierarchical clustering of correlated FAC traits resulted in three clusters. Cluster I: C18:2, C18:3, C14:0 and C16:0; Cluster II: C18:1
and IV; Cluster III: C18:0 and C14:0. C) Distribution of effect size and minor allele frequency of trait-associated SNPs. Grey corresponds to FAC traits; yellow, vegetative traits; green,
reproductive traits. Clusters were determined based on a minimum pairwise Pearson correlation coefficient r > 0.6, P<0.05. D) Manhattan plot of GWAS single-loci model analysis in
vegetative and reproductive traits. E) Manhattan plot of GWAS single-loci model analysis in fatty acid traits. Different colors indicate different traits. Associated markers (FDR corrected
p-value < 0.05) are noted using a red triangle symbol on each point.

for MFFB and MBNO (Fig. 4), suggestive of patterns of local adaptation
arising from divergent selection among the HCPC populations.

3.7. Functional annotations of candidate genes

GWAS has been used to discover causal loci that regulate important
traits in many staple crops [36,37]. We identified a total of 55 trait-as-
sociated SNPs and some interesting candidate genes within 20kb of
these SNPs (Table S2B). Among the genes associated with vegetative
and yield-related traits is proline-rich receptor-like protein kinase (PERK8)

linked to MBNO-associated SNP 3:82372832. Transgenic Arabidopsis
PERK mutants form flowers with an abnormal appearance and im-
paired fertility, suggesting that the PERK8 gene may have an important
role in flower development and consequent development of oil palm
bunches [38]. Another SNP associated with Leaf Area (13:29551843)
is linked to a gene homologous to an auxin glycosyltransferase protein,
UGT74D1, and overexpression of this gene in Arabidopsis causes a
curled leaf phenotype [39], indicating that it is involved in regulating
leaf morphology. We find several interesting genes associated with FAC
traits, some of which are involved in fatty acid biosynthesis pathways.
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Fig. 4. MFFB and MBNO variation in wild HCPC populations. A) Population phenotypic divergence of reproductive traits (MBNO and MFFB). B) Genotype frequency divergence of MBNO/
MFFB-associated SNPs 3:82372832 and 10:17957276. C) Distribution of genotype effects on MBNO/MFFB trait value. Purple corresponds to Honduras; orange, Costa Rica; pink, Panama;
green, Colombia.

For instance, IV-associated SNP 5:21628085 is linked to a gene ho-
mologous to the well-characterized Arabidopsis TRANSPARENT TESTA8
(TT8) gene, known to not only be involved in flavonoid biosynthesis and
seed coat color but also the accumulation of C16 and C18 fatty acids
[40]. Similarly, genes that are responsible for seed coat pigmentation
in sesame were also found to affect variation in oil content and com-
position [41]. A SNP associated with C18:0 (14:6491498) is linked to
a gene homologous to glutathione transferase 7 (GSTU7), which belongs
to a family of GSTU proteins involved in the accumulation of fatty acyl
derivatives with chain lengths that vary in length from C6 to C18 [42].
SNP 5:3306822 is in a gene homologous to PEX4 and was associated
with two saturated fatty acids: C18:0 and C14:0. PEX4 is known to reg-
ulate peroxisomes, which are sites of fatty acid β-oxidation [43]. The
relationship between peroxisomal β-oxidation and long chain fatty acids
has been well studied in other organisms [44].

3.8. Strategic conservation of core HCPC populations

Maintaining genetic resources in the field collection requires a large
land area and incurs high cost, especially for perennial tree species
such as E. oleifera. Considering the long breeding cycle of oil palm, ge-
netic material that shows good potential for improvement, particularly
those that are incorporated into breeding programs, need to be con-
served to ensure long-term availability for future exploitation. Because
HCPC populations are highly inbred, with most trait variation driven
by low frequency alleles, it is important to reduce genetic redundancy
while maximizing genetic diversity. Based on computer simulations,

sampling approximately 70 individuals (out of a total sample size of
154) will likely capture at least 90 % of the total genetic diversity ob-
served in wild HCPC populations (Fig. 5). A sample size of 70 individu-
als shows marginal sampling variance of nucleotide diversity, indicating
a saturation point at 70 individuals at which sampling more individuals
will not influence diversity estimates (Fig. S8).

4. Discussion

4.1. Distribution of genetic diversity

In this study, we examined natural diversity in wild American oil
palms originating from Honduras, Costa Rica, Panama, Colombia,
Brazil, Ecuador and Peru. While the species center of origin has not been
identified, it has been suggested that the American oil palm was intro-
duced into the upper Amazon Basin from Central America. This infer-
ence was based on observations that Amazonian oil palms are generally
found in anthropic soils within regions occupied by humans [45–47].
Our analyses rule out Central America as the species center of origin.
Individuals from Central America show much lower levels of genetic
diversity compared to individuals within the Amazon Basin, including
Brazil, Ecuador, and Peru, (Table 1), consistent with a previous RFLP
marker study that showed similar results [48]. Ecuador and Peru in-
dividuals have the highest allelic richness, with heterozygosity that is
twice that of HCPC individuals. Furthermore, HCPC populations have a
relatively high degree of inbreeding and are strongly marked by recent
bottleneck episodes that make it unlikely that HCPC populations repre
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Fig. 5. Conservation of core HCPC populations. Genetic diversity index across different sample sizes based on computer simulations. Genetic diversity index indicates the estimated pro-
portion of genetic variation captured for each sample size. Each dot represents the mean value of 100 iterations per sample size. A regression curve showing variation patterns of genetic
diversity of each sample size against those of the total sample size (N=154). Genotype missing rate=5%.

sent the species center of origin. Based on our results, we suspect that
the migration was in the opposite direction, and that HCPC popula-
tions originated from the Amazon basin and dispersed northward from
South America to establish populations in Central America and North-
ern Colombia.

Dispersal into Central America must have occurred after the forma-
tion of the Panama isthmus that bridged North and South America. This
event led to one of the largest biological exchanges between the previ-
ously disconnected landmasses, known as the Great American Biotic In-
terchange [49]. There is evidence that plants were the first organisms to
migrate between North and South America [50,51]. Although the timing
of the complete closure of the Panama isthmus remains controversial, it
has been estimated to have occurred between 3–23 Mya [51,52]. This
time frame is much later than the estimated 50 My divergence time of
the American E. oleifera and African E. guineensis species [10] but is con-
sistent with our genetic distance and diversity metrics. Further analyses
of coalescence time, migration rate and effective population size could
estimate this divergence as well as confirm the American oil palm cen-
ter of origin.

Based strictly on SNPs, Ho recorded in this study is lower than
Ho across E. guineensis breeding populations (0.220−0.260) [53] and
E. guineensis Angola material (Ho =0.400) [54] but inline with previ-
ous observations in wild E. oleifera [55]. Among the molecular mark-
ers available to-date, SNPs generate highly reliable demographic evi-
dence particularly in small-sized populations of non-model species [56].
Our simulation analyses show the reliability of diversity estimates using
SNPs in sample sizes as low as 25. This implies the importance and sig-
nificance of our findings towards creating informed choices to oil palm
breeders and plantation managers for effective use of wild E. oleifera ge-
netic resources.

The current research revealed genome-wide LD decays to a baseline
r2 = 0.20 and r2 = 0.10 within 4kb and 10kb, respectively (Fig. S6).
In cultivated E. guineensis crosses, LD extended over larger distances,
between 20kb - 120kb at r2 =0.20 [57,58]. These differences are
likely due to a combination of selection, mutation, migration, popula

tion size and mating patterns [59]. Our study revealed that LD de-
cay more rapidly in E. oleifera, an outcrossing species as compared to
self-pollinated plants such as tea, potato and tomato [60–62].

4.2. Phenotypic diversity and trait architecture

We observed considerable phenotypic variation segregating among
these populations and identified several alleles associated with key agri-
cultural traits (Table S2). Phenotypic variation in most traits appeared
to be driven by low frequency alleles (Fig. 4C), likely due to 80 % of
SNPs having a minor allele frequency less than 0.1. It has been docu-
mented that variation in complex traits is enriched for low-frequency
alleles [36,63]. We found that alleles associated with FAC explain a
larger percentage of phenotypic variance (53 %) compared with vege-
tative and yield-related traits (33 %). In maize, the phenotypic varia-
tion explained by FAC-associated markers reached up to 83 %, which
contrasted with 5% of the explained variance for vegetative traits [36].
Yield-related traits are usually highly polygenic and controlled by nu-
merous alleles, as seen in studies of crops and domesticated animals
where hundreds of SNPs were found to be associated with yield-re-
lated traits [36,64,65]. These patterns indicate that FAC traits may have
a simpler mode of inheritance relative to vegetative and yield traits
and thus are likely influenced by fewer genes with large effects, mak-
ing FAC traits relatively more straightforward to breed for. We note
that there are no significant correlations between FAC and yield-related
traits (MBNO/MFFB/MABW, Fig. S1), indicating that it is possible to
breed for high-yielding palms with different saturation profiles for com-
mercial plantations. For example, oil palms that possess high stearic
acid are desirable as it opens opportunities for its utilization as cocoa
butter substitute and other products, i.e massage oils, shaving cream
and lotions [66]. We confirmed the allelic calls of a SNP associated with
stearic acid content (C18:0) (SNP 14:6491498) using an independent
Sanger experiment (Fig. S9). This associated SNP (14:6491498) poten-
tially has important implications in oil palm breeding and genetic engi-
neering programs.
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4.3. Relationship between yield and sexual reproduction in oil palm

MBNO and MFFB are major economic traits that determine oil palm
crop productivity because they reflect the number of female flowers pro-
duced [67]. The sex-ratio defined by the proportion of female to to-
tal inflorescence ultimately defines the number of bunches produced
in oil palm. Sex ratios vary significantly among individuals, with some
trees found to be nearly all male or female depending on the genotype
and environment. Trees grown in conditions of high moisture and nu-
trients tend to produce more female flowers, while drought stress and
defoliation can trigger an increase in male flowers [68]. Selection for
high-yielding genotypes inevitably confer an increase in female flower
production, and when grown in favorable conditions, the production of
male flowers is close to zero [69,70]. Alternatively, breeders have se-
lected ‘supermale’ genotypes to provide sufficient pollen to pollinate
high-yielding varieties with high female-male ratios. Several QTLs as-
sociated with sex-ratio variation have been previously identified in E.
guineensis [70].

5. Conclusions

Our study documents the genetic and phenotypic diversity of a panel
of wild American oil palm populations. The genetic characterization of
the American oil palm germplasm will ensure that the resources are
adequately conserved and screening for useful traits will provide op-
portunity for greater use by breeders. Our results provide a catalog
of SNPs associated with agronomically valuable traits that will aid in
marker-assisted selection and molecular transgenic breeding programs.
Future studies focused on understanding variation in sex-ratios as well
as genes associated with responses to environmental stress, such as dis-
ease, drought, higher temperatures and nutrient deficiency, will be im-
portant for breeding productive palms in the face of climate change.
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