QUENCHED LIMITING ENTRY DISTRIBUTIONS FOR RANDOM

EXPANDING MAPS WITH NULL TARGETS

LUCAS AMORIM, NICOLAI HAYDN, AND SANDRO VAIENTI

ABSTRACT. We describe an approach that allows us to deduce the limiting return times
distribution for arbitrary sets to be compound Poisson distributed. We establish a re-
lation between the limiting return times distribution and the probability of the cluster
sizes, where clusters consist of the portion of points that have finite return times in the
limit where random return times go to infinity. In the special case of periodic points we
recover the known Pdlya-Aeppli distribution which is associated with geometrically dis-
tributed cluster sizes. We apply this method to several examples the most important of
which is synchronisation of coupled map lattices. For the invariant absolutely continuous
measure we establish that the returns to the diagonal is compound Poisson distributed
where the coefficients are given by certain integrals along the diagonal.
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1. INTRODUCTION

7

2. ASSUMPTIONS AND MAIN RESULTS

2.1. General setup. Let M be a Polish space, and €2, the so-called driving space, be a
Polish space equipped with a measurably-invertible probability preserving system (6, v).

Consider maps T, : M — M (w € §2) which combine to make the a measurable skew
product S: Q2 x M — Q x M, (w,x) — (Qw,T,x). As usual, for higher-order iterates we
denote S™(w,x) = (0"w, T (x)) where T = Tyn-1,0--- 0Ty, o T,,.

Consider probability measures p* € P(M) (w € Q) which combine to form i) a random
measure over M in the sense that w — u “(B) is measurable (VB € %)), and ii) a quasi
invariant family in the sense that u% = T, u* (Vw € Q).

Consider I' € Q x M a measurable subset whose w-sections I'(w) < M have null p“-
measure. The set I' is the so-called random target.

The objects considered above comprise what we call a ‘targeted random dynamical
system’; or simply ‘system’, to be denoted by the tuple (8, v, T,,, u*,T'). Now we introduce
some other objects, derived from the previous ones.

Define the stationary measure fi = {, u* dv(w) € P(M) and S-invariant measure i €
P(Q x M) given by dji(w, z) = du®(x)dv(w). Notice that ji = 7q.[i.

Define I',(w) = B,(I'(w)) (p > 0) and the corresponding w-collection by I',. Moreover,
for U < Q x M whose w-sections U(w) < M are sets of positive p“-measure, put [’ =
Loy © T and define the counting functions

L L
Zg" =3 1¥ and 25 = D1 I¢ (L € Nay). (1)
i=0 =1

Finally, define first hitting times by
Té(x) =inf{j = 1: T!(z) e U(w)}.

and their higher order counterparts by putting TU’l = 717 and recursively

w,f—1
@) = (TTU (fv)),
w,l—1

where w' = 070" @w. Notice that {2} = £} = {7 < L} and {Z5F = 0} = {r' <
L <y e

Notatlon. A R-valued function defined on the product space, f(w, ), is often rewritten
with the random seed in the sup/subscript, like f“(x) or f,(x), which can be seen as an
Q-family of functions defined on M. And vice versa. When integrating a function, we may
simply omit the dummy variable of integration, even if it is a sup/subscript. We leave it for
the reader to infer what variables and parameters are being integrated and were omitted.
Some examples: i) ji(f) ngMf(w z)diw, z) = o, 1y Jo(@)di(w, z) = §, 12 (fo)dr(w),
with (1) = fyy Lul@h(2) = Ty £ 2)d(@); 1) POZE) = Sy 2@l ) =
$o u‘”(Zl‘i’;L)dV(w), with g (fopL =y Zii’pL x)dp®(z). If the aforementioned f is {0,1}-
valued we identify it with the set ' = f~!'({1}), since f = 1p, whereas its partials f,
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are identified with the w-sections of F', denoted F,,, since f, = 1p,. And vice versa. So,
instead of i), we could Write i’) W(F) =S, ILF(w z)dj(w, ) = §o ., Lp, (@)di(w, z) =

§ar 19 (FL)dv(w), with p*(F,) = §,, 1p, (2)dpe (x) = §,, 1p(w, z)dpe ().

2.2. Working setup. Now we upgrade the general setup of section [2.1} To optimize for
generality, we present in abstract terms the conditions which are required from the systems
we’ll work with. In concrete examples, these conditions need to be verified, but one should
keep in mind that they are conceived to accommodate non-uniformly expanding behavior
and random targets which don’t overlap very badly with the regions where uniformity
breaks.

Convention: We'll write lim lima(L, p) to refer to the coinciding value of Llim E) a(L, p)
o0 p~>0 —00 p—

and Lllm lim a(L, p), when they do exist and coincide.
—>00 p—>0

We start introducing new objects and notation. Before items identified with H we
are not introducing new hypotheses, in particular, the following objects are not a priori
assumed to exist — if they do, then the notation to be proposed stands.

Whenever the following limits exist (and the appropriate ones coincide), denote

)
i Lhm Lm\Y (L, p) = hm lim A (L, p) = hm lim A\ (L, p),

p—0 Lowp—0 D © p—0
D ——
) X
where
N (L, p) = pe(ZiF = 4|z > 0). (2)
1)
Ao = hm lim\(L, p) = hm hm M(L, p) = lim lim A\,(L, p),
L— D 550 L—o0 p—0 L—»mp_,o
D —_——
=Xu(p) =xe(L)
where
A Jy 25 = i)
MN(L, p) = pZf, = 012, > 0) = =
§o H 22T > ) () o
- [ xecep 20, jWL ) (@)
= v(w) = ,p)dv ,(w),
Q $o 1 (2 L>O)d1/( ) o ! b
with ;
“Y(ZEE >0
dv, p(w) = a (wip ) dv(w).
S (Z2 > 0)di(w)
I11)
&y = lim lima4 (L, p) = lim lim &5(L, p) = lim lim & (L, p),
L—0o0 p—0 L—o0 p—0 L—w , o p—0
— —_——

+ _
=47 (L) =4 (L)
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where
67 (L, p) = (208 = (15 = 1) = p=(Zgh = 0=1|I§ = 1) = p* (727 < L|I§ = 1). (4)

Notice that, by L-monotonicity, the outer limits always exist provided that the
inner ones do.

IV)
af = lim limay' (L, p) = lim lim o (L, p) = lim lim o' (L, p),
L—0o0 p—0 L—o0 p—0 L—0o0 p—0
— —_——
=0 (L) =ay (L)

where
w w (7w, w w (7w, w w(, _wl— wl| Tw
of (L, p) = (ZFPL =I5 =1)=p (Z*ri =(—1[I§ =1)=p (Trp '<L< T, 5 = 1).
5
. w, b w,d—1 . . w,f—1 wly w,Zfl( )
Notice that {m" < L} < {r" " < L} implies {/" < L <} = {rp) " <

L}\{T{:}f < L} and so
i (L,p) = p (i < LI = 1) — p (2! < LI = 1) = 67(L, p) — &5, (L, p). (6)
Moreover, when &j’s are defined, one has

lim lim 47 (L, p) — lim lim 6%, (L, p) < lim lim a§ (L, p)
L—o0 p—0 L—o0 p—0 L—o0 p—0

. T w < . T Aw IR T . )
g, o (Lop) < Jimy S (L) = Jig, 0 (L)

=« exists and of = & — &y, ;.

p—

R —_—
—&(D) —éy(L)

p—0

where
B S MW(Z;)/’)L >0, 1Y = 1)dv(w)
- §o 12(Tp(w))dv (w) (7)

() S
- J;Z 27 (L7p> SQ ,U/w(Fp<(JJ))dV(CL))dV(W) - J;) L (va)d O,P( )7

with

o (W) = 12 (Tp(w)) e
Woo() = T o) ™ )

Notice that, by L-monotonicity, the outer limits always exist provided that the
inner ones do.

V)
Qy = lim h_m&€<L7p) = lim ma€<L7P) = lim h_H’lOég(L,,O),

L— p—0 L—o0 p—0 L—o0 p—0
—_— (S —

—au(L) —ay(L)
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where
v N S ,LL“’(Z;J;L =/, 1§ = 1)dv(w)
(L, p) = i Zr, _f|§’ =1 = §o 12(Tp(w))dv (w) (8)
- [t ) = [ (i o),
with “(D,(w))
= /vL P w vViw).
W) = T o) ™)

Notice that, when &,’s are defined, one has

lim lim &, (L, p) — hm hm Gpr1(L, p) < lim lim ap(L, p)

L—0 , 0 p—0 —0 L—w , o p—0

lim lim ay(L, p) < lim 1111(1) ay(L, p) — hm lim &y y1 (L, p)

L—o0 p—0 L—o0 L— D 50

= oy exists and ay = Qy — Qyyq.

Now, on top of the features prescribed to the objects in our system throughout section
2.1, we’ll consider the following hypotheses.

H1 (Invertibility features).
1.1 (Degree). Yw e Q,Vn > 1, Vo e M : (T")~ ({x}) is at most countable
1.2 (Covering). IR > 0, N > 1,0 > 0,Yw e Q,Vn > 1,3(y," Jrek.,, with #K., <
- M\Uyer., . Byg™, R) is at most countable,
- infkeKw,n MB"w(B(y:ﬂ’ R)) > L,
- (B(yg™, R))kek.,., has at most N overlaps.
1.3 (Inverse branches). Yw e Q,Vn > 1,Vk € K,
IBy™ ={¢: B(yy", R) = M diffeomorphic onto its image with T} o ¢ = id}
is non-empty, at most countable and so that ¢,7p € IB)" ¢ # ¢ = @(dom(p)) N
Y(dom(y)) = &. In particular, the set 1B(T)) = Upex, 1By is countable and so
that ¢,v € IB(T7}), dom(p) N dom(y) = & = p(dom(p)) N ¢ (dom(v))) = .
The next item follows from the ones above, but we list it together for convenience.
1.4 (Cylinders). Yw e Q,Vn > 1, C¥ = { = p(dom(p)) : ¢ € IB(T")} is countable and
satisfies
- M\ Ugecw € 15 at most countable,
- the cover C¥ has at most N overlaps.

H2 (Hyperbolicity features).

+ —
2.1 (Good/bad sets). Yw € Q,Vn > 1, C’“J splits like C’“J =C¥ | | C¥ in such a way to
Lifexel

form the measurable function G, (w,z) = SEC“ (whose complement in M
0, otherwise

is denoted by G, ). Not including the shrinking size of bad sets.
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2.2 (Distortion on good sets). 30 > 0,3C > 1, Yw € Q,Vn = 1,Yp € IB(T) (i.e.,
¢ = p(dom(p)) € C¥) with £ < G, Y,y e &:
J. Ao pt”" | dom dipsp?" |
o (2) (z) = Loe laom(e) oy _ st e 2)
Jo(y) d:“w|so(dom(so)) dpi
2.3 (Backward contraction on good sets). 3k > 1, D > 1,YVw € Q,Vn > 1,V € IB(T")
(i.e., & = p(dom(p)) € C¥) with & = G¥:
D7 le™" < inf( )HDgp(m)HCO < sup |[De(x)| < Dn™" (k' > k), diam(§) < Dn™",
%)

< On®, where J,

redom wedom ()
where
| Do(z)| = sup [[De(z)v] and [De(z)|c = inf [[De(z)v]
V€T M vHEIH}]\l/[
[v]=1 vi=

are, respectively, the operator norm of the derivative map and its associated conorm.
In particular,

ar = sup su su Do(x)|e ! = 1/inf  inf inf |[Do(x < De™.
L weg <peIB(1%§) xedorrl?(go) || SO( )HCO /WEQ peIB(T ) zedom(p) H 90< )HOP

H3 (Small overlap between target and bad sets).
3.1 (Averaged separation). It holds that

. . n m
lim lim -
Lo p—0 L w FP)

]
RgE
H

3.2 (Quenched seperation). VL > 1,3psep(L) > 0,Vp < peep(L), Vw € Q: Ty, (w) < GF.

Notice: I've included 2.3 to take care of the Lipschitz constant of approximations used
lemma |3] and R1. The objective is to ensure that we are working with neighborhoods
which are inside “differentiability regions”

Notice: The previous hypothesis, being valid even for L = 1, says that the starting cov-
ering presented in hypothesis (H[1.2)) (and therefore the associated covering with cylinder
presented in hypothesis (H]1.4))) is sufficiently refined relatively to the target set I', in such
a way that one can select bad cylinders as in ( as to avoid them including target
points.

Notice: Property 3.2 kills 3.1. Also: here we don’t have much dynamical coherence
in the C¥’s in respect to how cylinders compare when n increases. Do we need such
coherence if we want to include Nicolai’s “beta” cut (the one he used for the Pomeau-
Maneville map) at this level of generality in the paper? I'll double check if y;™’s in 1.2
really need to change in both w and n. Also, I've added norms and conorms near the
derivatives in 2.3 to account for the Lipschitz constant of the approximations in higher
dimension (as used in lemma [3] and R1

Notice: T still need to change some Yw € ) to a.s. And change uniform bounds to L,
counterparts.

H4 (Measure regularity).
4.1 (Atomless). Yw € Q, p* is atomless.
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4.2 (Ball regular). 30 < dy < dy < 0,3Cy, Cy > 0, Ipgim < 1, Vp < pdim, Yw € Q:
Cip™ < p*(Tp(w)) < Cop™.
4.3 (Annulus regular). In = 5 > 0,3E > 0,3pgim < 1, Yp < paim, V7 € (0, p/2), Vw € Q:
B 0\ () _ o
e (Tp(w)) p’
H5 (Decay of correlations). 3p > 1 so that
5.1 (Quenched). Yw € Q,VG € Lip,, (M,R),VH € L*(M,R),Vn > 1:

r

G- (HoTh)du” — p*(G)u’"“(H)

—p .
] S n7P|Gluipy,, [ H oo

5.2 (Annealed). Yw € Q,VG € Lip,,,_ (€2 x M,R),VH € L*(Q x M,R),Vn > 1:
[ & wrosman- @
QxM

< n_p”G”Lip(dQ@w)||HH007

where

dognr ((wr, 21), (wa, 22)) = {

oo 9 if w1 # W2 . )
= Li G) = sup Li G.).
dM(xly 1'2)7 if wy = wy de@M( ) weSI]) de( )

H6 (Hitting regular).
e 0
3()\4)221,2621 Ao = 1,Z€=1€3)\g < .
H7 (Return regular).

oo o0
I(ag) =1, 00 > O,Zae = 1,Z€2a5 < 0.

(=1 (=1
We call oy the extremal index.

H[7} (Pre return regular). It holds that
0
I(6w)es1, &1 — g > 0, Y Lhy < o0,
=1
Using the final implication of item VI), it is immediate that (H7) = (H[)), because
=80 —G2>0,>, g =d& =1, and Y, oy <27, lay < .
Moreover, for technical conditions, we assume that the quantities appearing in the
previous hypotheses harmonize so that the following constraints hold. Mostly, they hold
when (polynomial) decay is sufficiently fast.

HS8 (Parametric constraints). It holds that

p+dy v1)+d1

8.1. do(p — 1) > | e

8.2. dop > <% \Y 1> + dl,
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B+di(1 ] . . .
8.3. dy > max{w, H’T‘ll} (I should discard this constraint soon)

8.4.0<0< %W, (I should discard this constraint soon)

8.5. 0 < Kld() —1.

2.3. Main results. The first result to be presented, theorem valid in the general
setup of section expresses hitting statistics (\,’s) in terms of return statistics (ay’s).
Although important on its own, it actually plays an auxiliary role within the paper,
serving the following two purposes (the essential one being the second):

1) Technical: help the proof of our main result, theorem , via its use in the proof of
lemma [2 Be aware that the statement of this lemma can be phrased as to avoid the
dependence on theorem |1} both in the hypothesis and conclusion, but the dependence
on return statistics is still present in the hypothesis. We believe one could bypass both
aforementioned dependencies, in such a way as to write a spin-off of theorem [2| using
exclusively hitting statistics (instead of return statistics), either in statement or proof.

2) Examples: even if the said ‘spin-oft’ could occur, to handle examples, one will always
need theorem to compute the hitting statistics specified in theorem 2| (or its hypothetical
‘spin-off’). This is because return statistics are generally much easier to compute than
hitting statistics, so, whenever facing a concrete example, we calculate the former to
obtain the latter[T]

Theorem 1. Let (0,v,T,,1”,T) be a system as described in section .

Then o —
(HT) = N =—"——"L(0=1) and (HB).

(€51

The essential pariﬂ of this theorem is to conclude the equality, which will be proven in
section . It implies that oy = (3,2, (A,) "

Let us now formulate our main result. It says that the targeted random dynamical
systems being considered have quenched limit entry distributions in the compound Poisson
class.

Theorem 2. Let (0,v,T,,pn~,T') be a system satisfying hypotheses (—(I@,(Iﬂ’) (so
(Ht), by theorem [1]) with the parametric constraints (H8.1)-(H8.5).
Then: ¥t > 0,Yn = 0,Y(pm)m=1 N\ 0 with 3, pn? < © (for some0 < q <

Q(do, d17 n, Ba p)EI) one has

w ( 7wt/ (T oy, v-a.s.
pe (2 el — ) 55 CPDyg, 0, ({0)), (9)

where CPDy (y,), is the compound Poisson distribution with parameter s and cluster size
distribution (Xg)e (see below).

IThe general philosophy is that hitting-related quantities are theoretical and inaccessible, so assumptions
about them should be minimized; whereas return-related quantities are accessible and assumptions about

them can be adopted and should be checked/computed in concrete cases.

2(H|§l) follows from the previous equality and ( because >~ A¢ = Zf:+él_a“l = 1
and ZZ’;I Brxy = (ap)? ZZO:1 Blog — apyr) = (ag)7t (13a1 + ZZOZQ Bay — ZZQ(K — 1)3015) =
(a1)™' (PBag + 22,302 =30+ Day) < (on)~! (14 3,2, TPay) < .

3A quantity to be introduced in 1emma
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Note: If the system has exponential asymptotics in ( and (, the previous
conclusion is still true, but, actually, with fewer parametric conditions being required:
instead of (H.1|)-(HR.5)), only rdy > 1 is needed.

Recall: The compound Poisson distribution with parameter s € Ry and cluster size
distribution (A¢)een., € P(Ns1), D2, A¢ < o0, denoted CPD;y,), € P(N>0) is the
distribution of a random variable M : (Q,.#,P) — Ny given by M(w) = ijl Q;(w),
where N is a Nyg-valued random variable on (£2,.%,P) having Poisson distribution with
parameter v and (Q;)jen;., is a sequence of N3 ;-valued random variables on (£,.7,P)
which are iid, independent of N and whose entries have distribution P(Q); = ¢) = X\
(7,¢ € N5q). Denote R, = 22:1 @;. Then the probability mass function of CPDy ,,), is
given indirectly by

l —s

n n l
CPD, o, ((n}) = Y BN =DB(Ri=n)=Y == 3 [[h (g

=1 =1 (n17"'7nl)Elel =1
ni+...+n=n

Structure of the paper. The rest of the paper is organized into two parts:

I) The first one, until section [6] is headed towards the proof of theorem [ (section [6)),
accomplishing required preliminary results: theorem (1| (section , theorem (section
and lemmas 2] 3| and [4] (section [f)).

Theorem |1}, as we said, has two uses: 1) technical: assist in the proof of lemma [2| 2)
examples (see (II) below): calculate hitting statistics in terms of return statistics, which
are more accessible.

Theorem [3] provides the skeleton of the proof of theorem [2] describing the asymptotics
we are after with a leading term and an error.

Finally, the lemmas are used to tame the above-mentioned leading (section [6.6)) and
error terms (sections [6.2}{6.4)).

IT) The second part applies the theory developed in (I) to examples. We consider certain
random expanding maps of the interval, casting new light on the well-known deterministic
dichotomy between periodic and aperiodic points and recovering the Polya-Aeppli case
for general Bernoulli-driven systems.

3. PROOF OF THEOREM [1I

Let us note that theorem 2 from [16] is generalized by theorem (1| presented in section
2.3l The proof is very similar but presented here for the convenience of the reader.

In the scope of this section, let arbitrarily chosen ¢ € N> and v € N5 be fixed. These
will be used in the forthcoming proof of theorem [I] and lemma [1}

Lemma 1. It holds that
1)V > 0,3L2(n),YL' > L = Ly(n),3p2(n, L, L'),¥p < p2(n, L, L'):

i (ZFL;—L 0 SL > 0,1 = 1) nilT,).
II) ¥n > 0,3Ls(n),YL', L so that L' — L = Lo(n), 3p2(n, L, L") > 0,Yp < pa(n, L, L'):

i (2L > 0.1 = 1) < ni(T,).
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Proof. Manipulating the definitions of &,’s, the associated limits and the finiteness of the
series in the hypothesis it can be shown that: Ve > 0

i) Jko(e) = 1 so that >, ko) K <

i) 3Lo(e) = [2ko(e) v 20] (e _1)7 VL > Lo(e), dpo(e, L) > 0, Vp < po(e, L) one has
2) WH € [L,207] 1 357, kaw(H, p) < 26, [ S0 én = S35 (], p)| < 2e.
b) Vq € [1,2ko(e) v 20],VH € [L,2L7] : |&y — &u(H, p)| <€, |, — ay(H, p)| <€

i) 3L, (¢) = Lo(e), YL > L = Ly(e), 3pi(e, L, I') € (0, AL, po(e,H)), Vp < pile, L, L)

one has > ;- | (L', p) — ax(L, p)| < Ge.

To justify i) use that >, | kdy < 0.

To justify ii.a) start noticing that Ve > 0,3Lg(€), VL = Ly(e) :

+
0 < dy— ay(H) <

- ( (Vk € [1, ko(e)], VH € [L,2L")),

ko(e) ko( i
0< ) & Z an( (VH e [L,2L)),
k=1 k=1
+

because &y = limy, & (L) occurs monotonically increasing in L.
Then consider that Ve > 0,VL > 0,3po(€, L), Vp < po(e, L):

\_/

€
Y (H) — ——————— H,p) <ap(H) + ———
) = ey < MU ) <o)+ g
(Vk € [1, ko(e)>(20)?],VH € [L,2L])
implying
O 0 0 +
Zd Zd (H,p) < Zd e (VH e [L,2L"])
k=1 k=1 k=1
and
0 H H n H c
D kap(H,p) = > kap(H,p)< Y ka(H)+ )] kk()@m)
k=ko(€) k=ko(€) k=ko(€) k=ko(€)
00]
€
< kéy, + (2L ——————
o P

<e+e=2¢ (VH e [L,2L7]).

Finally, combining the conditions and conclusions of the two previous paragraphs: Ve >
0,3Lo(e),VL = Lo(€),3po(e, L) > 0,Yp < pole, L),VH € [L,2L7]:

o Ko(e) ko ( ko(e)
Z kag(H, p) < 2¢ and Z ap — 2€ < Z Z ar + 2,
k=ko (e) k=1 k=1

as desired.

To justify ii.b) one can adapt the argument used above to show the second inequality
in ii.a).
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Finally, to justify iii) start noticing that Ve > 0,3L;(€) = Lo(e), VL' > L > Ly(e):

W(L)— ék(L)‘ < 4/<:§(e) (Vsk, % € {+,—}),

and therefore Ve > 0,3L; () = Lo(€),¥L' > L = Ly(e), 3p1(e, L, L') € (0, A5 pole, H)),
Vp < pi(e, L, L), Vk € [1, ko(e)]:
+
< an(L,p) <an(L)) +
ak( 7p) SOk ( ) 4]{30( )

O %

(Vk € [1, ko(e)])

ay(L') — e
D)~ g < @lLp) <n(D) + 5 (Yh € (L ka(e))
s0 that — s < aw(L',p) = @il p) < 1 (Ve [Lho())
= kOZ(i) |a(L's p) = an(Ly p)l < €,

k=1
and, since the quantifiers were subordinated to those of (ii), we actually get that

ko(e) | ~ N N
< it (L, p) — (L, p)| + 20040 16k (Ls p) —
e+, ko (e ko‘k(L p)+ 2 ko(e ko‘k(L p)
e+26+2€ 6e,

Yoy law(L', p) — éuw(L, p)| ay(L, p)|

as desired
Now we prove I).
Let Lo(n) := L1(n/6) and po(n, L, L") := p1(n/6, L, L"). Consider L' > L > Ly(n) and

p < p2(n, L, L'). Then
i <ZFL;*L 0 SE >0, 1, = 1)

J Zej“’L'_L oTE>0,I§ =1,2¢" = k) dv(w)
Q=1

< L Do (Do) [1287 = kN2 = k) dv(w)

k=1

S| [ e Ctenai e ppavte) - [ e, na e, pavte]
)

(L', p)(Ty) — aw(L, p)i(T',) < 67/sf1(L) = niu(T',), by (iii).

k=1

0

k=1
This concludes the proof of I).

Now we prove II).
Again let Lo(n) := L1(n/6) and po(n, L, L") := p1(n/6,L,L"). Consider L', L so that
L' — L > Ly(n) and p < pa(n, L, L’). Then

M(ZL>OIL/—1 JZ“ @ 1,14 =1)dv(w JZ“ (I = 1,15, = 1) dv(w)
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:JE (I“’ i I;J) dy(w)zLE (I“’ [Z“’L —Z“’L L])civ(w)

J (Z =kt = 1) = (25070 =k 0y = 1) | ()
LZ’“ o (L, P (Tp(w)) = (L' = Ly ) (T ()] dv (),

bUt Z?:l kak (T’ p) = Zl?:l k[dLI:(T7 P) - OA‘LI:Jrl(T: p)] = ZZO:l d('l;)(T? P), S0

This concludes the proof of 1T). |

Proof of theorem[1. Let € € (0,a1/26) and consider a function 7n(e) to be chosen in due
time.

Set Ls(€) be large so that L > Ls(e) = L7 — L > L = 2[L1(e) v La(n(e))].
Set ps3(e, L) to

p1(67 L7 L’Y) A p1(€7 L7 — L7 LPY)/\

p2(n(e), L+ 1,217 —i)Apa(n(e), L/2 + 1,2L7 — 1) '\ .
/\ze[L 207—2L—2] ( np2(n(e), L/2,1) rp2(n(e),i— L/2,1) )

Consider L > Ls(€) and p < ps(e, L). We evaluate the numerator which appears when
expanding ;.

20
Zlgm _ J£ ZE ( g2l _ }If) dv(w)
207 —2L—2

3,1<ng”:£)—£—1 3 f “’sz,]z >du()
i=L

< (7'4LA(T,). (11)
We establish some notation. When i € [L,2LY — 2L — 2] and k € [0,/ — 1], write:

. L
DLt :{22 I >0, [”_1}
) u=i+L+1
L/2
FP =1y iolg>o,[w:1};

O S e ]
R3Gn(i) = Rify o {17 = 1,17 = 0 Vae [073')}: for j & [0,
Saird) = B 0 {If = LI =0 ¥be (i)}, for j € [0,i ~ 1]
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To update the estimate in equation , we’ll apply many approximation steps, to be
identiﬁed with uppercase roman letters and justified only at the very end.
) For i e [L,2LY — 2L — 2]:

U Z‘“ 2T g e = 1) dv(w) — L e (Z;/;”L — (1Y = 1) du(w)( < n()iuT,)

Combining equation (|11)) with approximation (A), while observing that second inte-
w(| =1 piL :
grand above equals u*(,_o Ry /), gives

>

207 —-2L-2 (-1
/l<Zlng:€)_€f1 ZZ; ZJ (R x)dv(w)

< OT4AL + (207 = 3L — 1)n(e)]u(T,). (12)
B) For i € [L,2LY — 2L — 2], k€ [0,¢ — 1]:

| R o) = | (R o)
C) Fori e [L,2L7 — 2L — 2]:

| v (R avte) = | (L) dote)

Combining equation with approximations (B) and (C), gives

i (2 =) = e =3t - | e (Ruh) dv(e)

< [4L +5(2L7 — 3L — 1)n(e)]i(T,). (13)
Now we look to the other side of the equality we are trying to prove.
Notice that

< 3n(e)i(T).

< n(e)iu(l,).

e (k1o =01p =1) |
e (S =+ LT = 1)
-1 SQ R£ £L+k K~ W(Rﬁ £L+k+1 p)dv(w) |
(T [+zk ot S O CREE ) — 1 (REE () (14
[ ) S (RE ) — (uW(RMkH ) + O AT, dv <w>]
+ ZZO%O (€)+1 SQ 1 (R, é+k k) — (Rw A+E+1, p)dv(w)
= [(@u(Lop) = awn (L D) - | i (RLLy) ol

< 2ko(e)O (n(e)i(L,)) + 2 Z f R54L+kk>+/i (R56L+k+1k>dy( ),
k=ko(e)+

%) R ~ .
< 2ko(€)O (n(€)lTy)) + T(ko(€) + €)thy(e)+¢(2L, p)ir(T)) (15)
where steps (%) and (sk) are justified, respectively, with the following two approximations.

aulLep) = aen(Lup) = (1) | v (w)
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D) Forie [L,2LY — 2L — 2], k € [1,¢ — 1] (for other k’s, zeroes pop up):

| v (R o) = | e (Rify) avten| < 3n(ar,).

oo(L

E)

J R£€L+k k)dl/< ) (kO(G) +€)dko(e)+5(2L70)ﬂ<Fp)'
k=ko(e)+1

Now choose 7(€) = €/(ko(€) + 1). Combining equations & (17)), using (ii.a) from
the proof of lemma , and factoring L out (notice L'™7 < ¢), gives:

. (ngv _ g) — 2L (ag(L, p) — g (L, p))g(rp)‘ < 84L7ei(T,). (16)

We can finally evaluate the denominator which appears when expanding A,.

k0(€)+1
i (ng” > o) -y [ﬂ (ng” - h)] + i (ng” > kole) + 2)
h=1
k0(6)+1
= 2| [ B (1 ) ()] + dnguatan AT
h—1 LJQ Fe
2L k‘o 6)+1
Y [h Z f (R25) dvle)
i=0  h=1
where the last line applied (ii.a) from the proof of lemma

Then we consider the following approximation.
F) For h e [1,ko(e) + 1], i€ [L,2L7 — 2L — 2], k€ [0,h — 1]:

| v (R avte) = | e (Ruf ) dvie)| < mtelicr,)

Starting from equation (7)), splitting the ¢-sum into middle (i € [L,2L7 — 2L —2]) plus
tail terms and applying (F,B,C,B) to the middle ones, gives

+ O(efi(I))), (17)

k0(€)+1

i (ngv > o) = (207 —3L—1) [ > (L [ (Rﬁ:,ﬁhfl) du(w)) + O(eﬂ(Fp))]

h=1

+O(4L(kole) + 1)e i) ) + O(e(T,))
= i (zgfv > 0) — 2L koiﬂjg 1 (Rjj,f’H) dv(w)

h=1

< 3L0(e(T,)) + O(L - L7 "e(T,)) + O(ef(T,)) + AL 2 f REE, ) du()

ko(e)+1

< 8L7O(efu(T))) + 4L Z Ju Rwhh 1 dl/( )
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where it was used that L771 > ¢71.
To take care of the summations on both sides of the previous inequality we observe
that, when ¢ = 1 is given to the “ay(L, p) side of” equation ({14]), one gets

(L, Z) | Rl vt

< (Ko(€) + 1)éuy()+1(2L, p) (L) < 2€fu(T),

where (E) and (ii.a) from the proof of lemma [1| are applied.
Therefore

oo(L

S LA

h= ko 6)+1

i (225 > 0) —2L704(L, )T, )|

< 8L'O(efu(T,)) + 4L (a1 (L, p)e "efu(T,) + 2€fu(T,)) + 4L7efi(T,)

< 20L°0(efu(T,)) + 4o (L, p) LL " Lefu(T,)) < 12 - 2L7O(eia(T,)). (18)
Since a1 (L, p) is e-close to oy and € € (0, a;/26), the previous equation sets i (Z%fW > O>

far from zero, so we can really work with [L(Z%F > () as a denominator.
Combining the estimates given in equations and gives:

~ 2LY

H (er B 6) Qg
P 2L (0%

2 (ZFP > 0) !

ﬂ (leﬁﬂ _ g) _ L, Z)l(z[;)l Lp) ~ <ZZL7 > 0)

2 (ng” > 0)

(L, p) — i (L, p) Oy Qg

<
al(La p) Qaq

_|_

i (225 =€) 27T, ) (@u(Lp) = (L)) +

2L7(T, )L, p) = i (L, p)) — 242l (7207~ )|

< ai(L,p)
iz >0
(L, p) — api(L,p) o — e
al(va) Qi

42 - 207 €UT,) + SEL el 19 2 [1¢ji(T, )

i (ng* > 0)

(L, p) — w1 (L, p)  aw — cusn
al(La P) Qg

EQE

i 0(6) Oég(L, P) - O‘€+1(L7 P) c i 0(€>
= <a1 la —0<e>>2> V) (al T —0<e>>2>
ag(L,p) —app1(L,p) oy — ayyq
ozl(L,er) B aq . (19)

where the last inequality applied the control

R ~ (2L
2w,y 1] S|P =0) o
1 © 2L7(T,) (a1 — O(e))?’

— sup
i (lem > 0) a

zza1—0(e



16 LUCAS AMORIM, NICOLAT HAYDN, AND SANDRO VAIENTI

which is due to equation ([18)).
Passing lim,_,o limy,_, hmp_,g over equation 1} we observe the RHS going to zero

and we find that
A~ 2L _
i =) o

L—o0 p—0 [)/ (Zlgf’y > O) (03]
Alternating between lim sup’s and lim inf’s lets us reach the desired conclusion.

Now we prove each of the approximations used above. Many of them rely on initial
inclusions which are indicated and whose justification is left to the reader.

Proof of A) One can check that
{ZF;/;HL =017 = 1} A (Dﬁzm)c - {Zlcj,;zm . 1}

c {Z;’HL =017 = 1} u D2

w,?

which gives an inequality that, after integration, can bound the LHS of A) by {., 1( DL I dv(w).
Then we calculate

J 1 (D Ydu(w) = J pe (Z A S o L 0 1 = 1) dvw)
Q Q

but 2LY —i > L+1< 207 —L—-2>14 L+1> Ls(e) = La(n(e)) and p < p3(e, L) <
p2(n(e), L+1,2L7 —1), so (I, lemma [1) apphes, implying that the last integral is bounded
above by n(e)iu(T,). O

Proof of B) One can check that

RyGon (DS O FSD e | (@) RE,,0) @ RUGo o (DI O FLP).

w,i w,i w,i w,i
j=i—L/2

Then we calculate
J e <FL/2> dv(w) = J e (Z;J;W > 0,1 = 1) dv(w) < n(e)i(T,),
Q Q

where the inequality follows from an application of (II, lemmal|l|), since i —L/2 > L —L/2 =

Lja = Ly(n(e)) and p < ps(e, L) < pa(n(e), L2, ).
And also

J Mw (Di/iQ,LW) du(w) _ f ,Uw <Z§‘1;/2+1w,2LW—i7L/271 o Tj/Z-H - 0’[81 _ 1) dl/(w) < W(G)ﬂ(rp),
Q Q

where the inequality follows from an application of (I, lemma : 207 —i > Lh+ 1 <
27— Lo =2 > i, Lo+ 1 = Ly(n(e)) and p < ps(e, L) < paln(e), b + 1,2L7 — i),
The consequence is the approximation

i

[ () vt = [ | L] @) Bt 0 | av(e)] < 20(0a0,)

j=i—L/2
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However,

) %

el U @ mit o Jae) = [ e (L R |ane)

j=i—L/2 j=i—L/2
< | (i) dote) | e (REE)dvto) < [ e | L) REE) |dv(e) +n(ar,)
Q Q Q i1
where the last inequality follows from the inclusion

i, L . i—%
Rwlk - U Rwlk ) Fw,z’
j=i—L/2

and the estimate
f p (Fi;L/2> dv(w) = J i (Z}u:_Lm > 0,17 = 1) dv(w) < n(e)a(T,),
Q Q

with the inequality following from another application of (II, lemma : i—(i—L/)2)=

L2 > L(n(e)) and p < ps(e, L) < pa(i1(e),i — o, ).
The conclusion follows from aforementioned approximation and the previous control.

Proof of C') One can check that
RZ.;,LZ,O - (TZ;_L) 1RLL (Ti—L) 1RLL RZ,LZ,O - Fi_-L/z,

0i—Lw1,0° w 0—Lw,1,0 w,t
which gives an inequality that, after integration, can bound the LHS of the expression we
need to control by ., 1“( . L/Q)du( ) < n(e)i(',), where the later estimate is identical

to that obtained at the end of the proof of B). O

Proof of D) One can check that
i1

R (DY ORI < | (@) TS, W G) € REL L O(DYPT UENR). (20)

7 7 j=i—L/2 7 7
The corrective sets F, / ? and DL/ >L7 are treated again as in the proof of B), implying
that

‘ i—1 A

| () v = e | L @it ) |dvie)| < 20T, (20
@ @ j—i—L/2
J
However,
i1 i—1
w i— i,L w oL .
[ U @mositnm | = | | U st Jar
Q@ j=i—L/2 Q j=i—L/2
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where the last inequality follows from the inclusion
i

w,l,kc U ,l,k UF

j=i—L/2

and the respective estimate of the corrective set using (II, lemma (1), precisely as in the
end of the proof of B). O

Proof of E ) One can check that

U U (73)" 97wl+kk(L j) < (TH)™ {ZGML k()+£IL_1}

J=1k=ko(e)

Therefore, integrating, manipulating and using invariance over and over:

L oo(L)
f U U T] 93wl+k k<L j) Z f wl-‘rk k) dl/( )
j=1k= kO k= ko(é

< f i (287 > hofe) + .13 = 1) dv(w)
Q
= Qo(e)+¢(2L, p) (L)) < (Ko(€) + €)tg(e)+2(2L, p)a(T,).

Proof of F) One can check that

il L.L7\e i2L07 —i L.LY
Rwhkm(D') th CRwhkUD“

It remains to reapply the justification used in the proof of (A) to get that

§o 1D v (w) < n(€)AlT,). O
n

4. AN ABSTRACT APPROXIMATION THEOREM

The following theorem approximates the probability distribution of an arbitrary sum
of binary variables in terms of the distribution of a suitable sum of independent random
variables. More precisely, to build the ‘suitable’ independent random variables, one splits
the first sum into smaller block-sums, and each of them is distributionally mimicked by a
new random variable, with the collection of new ones being taken to be independent.

Theorem 3. Consider n = 0, L > 1, N € Nx3 large enough so that L < [%J, and

(Xi)Y arbitrary {0, 1}-valued random variables on (X, 2", Q). Denote N} := Mt € N>3E|
and (Z].L);V:,LO_l given by ZJL . l]-‘tj-é)L IXI

4 Although L need not divide N + 1, we pretend this is the case, for simplification purposes, i.e. to
neglect possible remainder terms associated with the fractional part — which shouldn’t play a role in the
asymptotics (of either the error and leading terms).

5 This is the first instance in the text where the letter L is used to measure block-size, where L is
fixed. Before, L was iteration-time and eventually sent to infinity, as in definitions (I-VI) of section
However, through the text, these use cases merge, in the sense that the block of size L iterates the maps



LIMITING LAW FOR ARBITRARY SETS 19

Let (ZL)j 0 ' be an mdependency of Nxo-valued mndom vamables on (X, X Q)H satis-
fying ZL ~ ZL (J= 1) and (ZjL)j:O 1 (%L)
Denote WLb t= Zj u ZL (0 <b< N;,—1)and Wt := WO N1~ L~ Similarly notation

with ~’s erased is adopted, in which case W coincides with W := Zi:O X;.
Then:

]@(W —n) — Q(W" = n)‘ < (RYN,L,A) + R¥(N, L, A) + R¥(N, L)) ,

where
N/ -1
RN, L,A)= 2 qrengic Z ’Q< Wi an, 1= q—U) —@(ZJ-LZ )@<W]'I:&-A,N£—1:q_u) :
N’ —1
R*(N, L, A) Z Q(Zf =1, Wl a1 >1) and

A
with the convention that, for b > a, Wk, =0 and Q(W}, = 1) = 0.

Proof. Notice that by using a telescopic sum and the given independence, one has
N -1

QW =n) — QP = m)| < Y QU s + Wy, =) = QT + Wiy s =)

§=0

-1 p
Z Z@(W()L,j—l =) ‘Q(M/;%Nifl =n—1)— Q(ZJL + W]+1 Np-1 =N~ l)‘ :
We now estimate

‘Q(W]{JN’L—l = ) Q(ZL + W+1 Nj—-1 7= Q)‘
q
<) |@
u=0

Z ‘ =u, W+1 N -1 =9~ u) — @(ZJL = U)Q(Wﬁi—l,Nz—l =4q— “)‘ = 2 Rj(w)].

u=0

—UW+1N'_1—Q )_Q(Zj —UW+1N’—1—q_U)‘

L times: much before the L-limit we are inclined to see L as a fixed block-size, much closer to the L-limit
we are inclined to see it as growing iteration-time. It is implicit that every time this merger occurs we’ll
eventually want to take the L-limit. There is a special situation where this is not the case, to be seen in
1emma and lemma item (3), where we’ll be equally interested in L = 1 and L — o

6For the statement of the theorem, it seems unimportant that the domain of the mimicking random
variables is that of the original ones, but this is used in the proof. Of course, (X, 2, Q) then has to be
a rich enough space in order to accommodate the existence of such mimicking random variables. This
won’t be an issue in our application.
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We single out u € {0, ¢} from the previous sum,

RyO)] = [QUZF=0.Whny 1 = a) = QUZF = QW xy 1 = a)
— (@i = @)~ QZE = LWy g1 = )
~(QUVE sy = @)~ QZE = 0)0QWEyy 1 = a)) |

— | QZF = 0@V = @) = QZE = LWy = 0)

and, similarly, for the other end

|Rj(CI)| = @(ZJL = Q)@(I/Vﬁ-l,N’L—l = 1) - @(ZJL = qam/ﬁrLN’L—l = 1)‘

to conclude that X
q q—
DR (w)] <4 )R (u)
u=0 u=q

Foru =1,...,¢—1, we expand |R,;(u)| using the triangular inequality, where we include
intermediate terms using the time gap A, to get the following three components

Rs(w)] < |QZF = u,Whiny oy = 4= ) = QZE = 0, Wyany 1 =4~ )
+|QZE = 0 Whan 1 =4 w) - QZF = ) QW s w1 = 4 — u)
+ @(Z]'L = U)@<Wj+A,N’L—1 =4q— u) - @(ZJL = U)Q(Wﬁrl,N’Lq =4q— U) )

where the entries in the RHS are denoted, respectively, by [R3(u)|, |R}(u)| and |R3(u)|.
It follows that

N;-1

@(Wzn)—@(WLz ‘ Z ‘@ WOJ 1+VVJN/ 1:n>_Q(W({:j+W]+1N/—1:n)‘

is <-bounded by the sum of the three components evaluated in the next paragraphs.

First:

N;—1 N -1

L n q
IpIINCTHETES Sy Sl
=0 ¢=0u=0 =0 qe[2,L]

Np -1

Z max Z IRj(u)| = RY(N, L, A),

=0
where n is incorporated into < because it is a constant in the sense that no limits in n
will be taken at all.
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Second:
Ni—1 n g Np-1
IDINNCADIEETD) max Z R2(u)
j=0 q=0u=0 oo €l
N} -1
Z QZ +1]+A 1/1) ::RQ(N>L7A)7

where the < step 1nc0rp0rated n and used that
Ay = {ZL = u, W+1N/ | =¢q—u}, By = {ZL =1, W+AN’—1 =q—uj
= Au\Bu> Bu\Au = {Z]L =4, le—/i-l,j+A—1 = 1}

\%

q—1 q—1 q—1
= Y IR = ) 1Q(A) - QB < Y, QZf = u, Wiy jiay 2 1)
u=1 u=1 u=1

< QUZF =2 LW/ a0 2 1)

J

Third:

Ni -1 Nj -1

Z Z ]R?’ <4dn 2 max Z ]R3

320 q=0u=0 7=0 9€[2,L]
N} =1 (j+1)L—1 (j+A+1)L—1 N+AL+L i—L
<> ) >, QX =1QX =1)= )] > QX =1QX; =1)
j=0  I=jL  i=(j+1)L i=0  1=0v(i—L—AL)

A

where the < step incorporated n and used the following: (with ¢’ = g — u)
@(Vvﬁrl Ny -1 = q) = Q(Z]L-i-l =1 WJ+1 Ny -1 = ¢)+Q(z] i1 =0 V[/j+1 N -1 = q)
Q<Z]L+1 0, W+1 N, -1 = q) = @<Z]L+1 0 W+2 Nj—1 = q)
= @(M/Jeer/—1:Q>_@(ZJL+1/1 W+2N’ 1:‘1,)

|Q( j+1N’71_Q) _ |Q( j+1/1W+1N’ =q')
-Q(W. ]+2 N -1 =4 ol Q( =1 W]+2 Nj -1~ q)|
but, with A := { j+1/1WJL+1N’ o =q}and B:={Z}, > 1, WJLHN_ = ¢}, one has
A\B,B\A c {Z},, > 1}, implying

’Q(W +LN, -1 = =q) - Q<W]a—2,]\/£—1 =q¢)| < Q<ZJL+1 > 1)

(j+I+1)L—1

= 1QWfiny 1 = @) = QWi 1 = )l S QZf > 1) < QX =1)
L
i=(j+1)L
A—1 (j+A)L-1

= |QWf,, v =)= Q(WgﬁA,N’L—l =q) < ), QZ21) < Z Q(X; =1)

=1 i=(j+1)L
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q—1 qg—1 (j+A)L-1
= DRI < Y QZ =u) ), QXi=1)
u=1 u=1 i=(j+1)L

(G+1)L—1 (j+A)L—1

< DY QX =1)QX; = 1).

I=jL  i=(j+1)L

5. BOREL-CANTELLI TYPE LEMMATA

The objective of this section is its final lemma [4, which will be used in the proof of
theorem 2] Lemma [4] will follow from lemmas [2] and [3] The later lemmas are essentially
independent, although lemma [2| uses return statistics in its hypothesis and relies on the-
orem [l in its proof. We believe that the dependencies in the last sentence might not be
intrinsic and could be untied.

Lemma 2. Let (0,v,T,, u*,T') be a system satisfying hypothesis (H7') (so (Ht]), by the-
orem . Then:

— A(Zf, = 1) »
lim lim £ = © N =a 22
B L DA,y e ) S 22
and .
_ nlZg =n
lim an = (3 ) A = agh, (= 1) (23)

Proof. Using (H[T]) (for the following items (i.b-ii)) and (H6) (items (i.a,iii-iv)), it holds
that: Ve >0

i) 3o(€) = 1 so that
a) Xy CAe <6,

o+
BVL>1 S fadl)< S lag<e
=Ly (e) =Lo(€)
11) VL = 173P1(57L)7VP < PI(G,L>3

Go(L) — /(L +1)2 < du(L, p) <ao(L) + e/(L+1)> (Ve =1,...,L+1)

L+1 +1 n
=L (€) =Ly (€)

iii) VL > 1,3ps(e, L), ¥p < ps(e, L):

(L) — 6/(50(6))2 < ML p) <elL) + €/(6o(€))* (V= 1,.... Lo(e)).
iv) ILo(€) > lo(e), ¥ Lo(e):

o= Me(L)] < ¢/ (o)), = Mel(L)] < e/(La(€)® (V0 =1, Lo(e))

+

= | M(L)= Me(L)] < 2¢/(Co(€))? (V= 1,...0Ly(c)).
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v) (due to items (iv-v)) 3Lg(€), VL = Lo(€),Ips(e, L), Vp < p3(e, L):
*
(L, p)= Ae(L)] < 3¢/(Lo(€))” (V0 =1,... . lo(e), Y3k € {—, +})

= [N(L, p) — M| < de/(Lo(€))? (V0 =1,...,4(e),Vk € {—,+})
lo(e) lo(e)

Lo(e)
= [ D (E=DN(L,p) = D (£~ 2, bole)de/(bo(€))* <

Now, considering any € < 1/5>,,7 (A, L > LO( ) and
evaluate the quantity of interest, /j(ZI@p >1)/(L

u(zk = 1) = Lu”(Z%”L 1)dv(w) = j (U efw>du<w>

7=0
L

;JZ (T2, (67 w))dv(w J (2208 = £+ 1)dv(w)
Qeo

= (L+1Dl,) - L (Z (A (L, p)) pe (2t > 0)dv(w)

to(e)—1
— (L+ (T f( 2 Ol ) “(Z2F > 0)dv(w)

-] S (L) | i (225 > 0)dv(w)
@\ r=ty(e)
to(e)-
— (L + 1)j(T 2 MzZE =t+1) - L Z O (L, p) | (228 > 0)dy(w)
(=0 2=l (e)

Lo(e)
= (L+1ud,) - (Z (¢ - 1)>\e(L,P)) azg, > 0)

(=1

_ L ST (=1L, p) | (255 > 0)dv(w)

l=Lp(e)+1

where (%) applied a typical Venn diagram argument using overcounting and correction.
Then we consider the following two estimates.
First, we have that:

£o(e) £o(€) 0

Z(Z—l))\g(L,p) < Z(E—l JAr + 4de < Z — 1)A\¢ + 5e and

=1 =1 /=1

23

p < pi(e, L) A pa(e) A ps(e, L), we
+ 1)a(T,), starting with its numerator:
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Lo(€) ) Lo(e) 0 0
DU=DA(L,p) = D(C=DA—de=>(L=1A— D ({—1)A —4e
=1 =1 =1 =Lo(e)+1
(ia) o
> Y (0—1)A - 5e.
=1
Second, with v (z) = inf{j > 0: T € I',(#’w)}, we have that:
0 L+1
w w w,L N
o< [ | N e-nwe |t ome < Yz -0
@\ t=to(e)+1 0=Lo(e)+1
L+1 L L+1 L o ‘
= Z (Y 2k = tor, =5) < 3, L) AZ7 057 = L,(57)7'T,)
t=lo(e)+1 J=0 l=ly(e)+1 j=0
L+1 L+1
= Z 520&5 —J.p)j 2 Z KOML Jsp) | (L)
f:€0(€)+1 7=0 j=0¢= eO )

< Z Z Gy(L —g,p) | + lo€)agye(L —j,p) — (L + 1)arso(L —4,p) | @(I,)

L L+1 (i)
<[>, D) talL—jp)|aT,) < 2e(L+1)(T,)

5=0 6=l (e)+1

Combining what we got so far, it follows that:

pzg, > 1) _ (LA DA,) - (i (0= )X = 5e) u(Zf, = 1)

(L+Dar,) (L +1)a,)
R A DR N Ol
- (Z“ b0 ) L+ VA(T,)
Az, =1 1
(L+1)g(r) TS O — 5e
and
(ZE = 1) - (L +1)iUTy) = (22, (€ = D)Ar + 5¢) i ZE = 1) = 2¢(L + 1)ju(T,)
(L + 1)/l<rp) ~ (L + 1)N(Fp)
z MZE > 1)
- 1- <;£Ag—1+5e) (LH—W—%

N 1) N 1— 2
(L+1)aT,) ~ D2, A+ 5e
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Considering the final two inequalities and passing lim,_,¢ limy,_, mp_,o we observe that

i 0 (L + 1(T,)

Alternating between lim sup’s and lim inf’s lets us reach the first desired conclusion.
Finally, to take care of the second desired conclusion, it suffices to note that

pze, =n)  pZg, = 1) j(Zf, =n)

1
(L+DTy)  (L+1Day) a(Zg, > 0)°

then take the appropriate limits and apply the first conclusion we’ve just proved (to obtain
aq), together with the definition of A,,. [ |

Lemma 3. Let (0,v, T, 4, T') be a system satisfying hypotheses (H2.3), (H3.9), (H4.9),

(H4.3), (H5.1) and (H5.9) with the parametric constraint (H8.1)).
Then: ¥t > 0,¥n = 1, VL = 1] 3p. (L) > 0, ¥p < py(L) small enough so that

N, := [ﬁp)J >3 and N, | = Netl e N> one has:
Varl/(w,[;,n) < Ct,L ’ pq7 vq € (07 Q(d07 dlv , B? p))a
where

Ny =1 (j+1)L—1
w, 7[/ w, ,L, w, w,p
Wor(w) = Y pe(Z90 =), Z90h DL I = Ly 0 T,
j=0 I=jL

and q(do, d1,n, 8,p) is a positive quantity to be presented in the proof (which can be written
explicitly).

Proof. Let t,n and L be as in the statement. Fix a € (0,1). Set pyar(L) < psep(L) A Pdim
small enough so that N,* < N/ ;. Consider p < pyar(L) as in the statement and w € Q.

"See footnote

8See footnote

9The notation Z;J’p s in parallel to that of Z]-L in theorem They, on purpose, resemble that Z;’;L
introduced in equation . However notice the slight difference: the latter sums L + 1 terms while the
other sums have L terms.
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For a given j € [0, N} ; — 1], write ' = 6/"w and notice that

N;,L_l N;,L_
n w w,p, w ] L—
B} = 3 B (w27 =) = 3 B (S b o 7L = )
Jj=0 §=0
No—1 N’ -1
= 3B (St o T o T =) = D) By (5 (55 Ty 0 T = )
N, -1 |
w L—1 w L
= > B (1 I o T =) = Y B (i (25 = n))
Jj=0 §=0
Z (25" =n) = N, (25" =)

Now fix A := N,* < NAL. Then:

E,((0})?) = f 22 = (227 = )y (w)
1,7=0
1(+A)A p L=
. 2 2 J G2 = (29 = n)d(w)
N’ N;IJL 1

pL
+ 2 Z Z J pe(ZePt = n),u“’(Z}“’p’L =n)dv(w)
Q

i=0 j=(i+A) A (N, ~1)+]
— (D) + (I]).

Immediately we get that

W[ 7W,p, W[ 7W,p, lw
wZgrt =) <p(Zprt =) < Y W, (0) S Le®

= (I) £ Lp" AE, (WE*) = Ap™N,i(Z* = n).

Most of the remaining work is to control component (I7).
Fix w € Q and, for a given 7 € [0, N] ; — 1], write o’ = 0'w. Moreover, consider

r e (0,p/2), ve [0,L — 1] and denote by

Uv,w’ = Fp(ng,)y Z}U,r,w’: B(Uv,w’cv T>Ca [—;U,r,w’: B(Uv,w’a T‘), (24>

respectively, the p-sized target with seed w’ v-steps ahead; its diminishment by radius r;

and its enlargment by radius r. They relate as U v < Uyt TU -
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Moreover, dynamical counterparts of those in equation are denote by

n
w',p,L v\ —1 v\ —1 c
(Z&Ph =y = Uy, = | | AT o o () @) 'Vt |
0svi<...<vp<L-1 | I=1 ve[0,L—1]
\{Ul:lzlv---vn}

C

- +
(Tﬁ)_l Uy N (Tsf)_lUv,w’

~ )=
D)

Z/_{r,w’ = |_|

o <..<vp<L-—1

~
Il
—

ve[0,L—1]
\{vi:l=1,...,n}

C

(T;)’ ) - (}v,w’

+
(T(;ljf)_l U’Ulvwl A

~ )=
D)

Zj_{r,w’ = |_|

o<vi<...<vp<L—1

~
Il
—

ve[0,L—1]
\{vi:l=1,...,n}

describing

- the locus of points which hit the p-sized target exactly k times during the time
interval [0, L — 1] when given the random seed w';

- the diminishment of the first by radius r, in the sense that hits are considered in
a r-stringent way (at least r-inside the p-sized target) and non-hits are considered
in a r-stringent way (at least r-away from the p-sized target);

- the enlargment of the first by radius r, in the sense that hits are considered in
a r-permissive way (at most r-away from the p-sized target) and non-hits are
considered in a r-permissive way (at most r-inside the p-sized target).

They relate as Z/_{r,w’c Uy CZJ,;MJ/.
Finally, define

B 1,1, EZ/_{T,UJ’ N 1,$€Z/[w/
/ / +
¢$ ('T) = O)LE € Z/[wlc and ¢$ ('/I;) = O7x Eur’w/c
linear interp., otherwise linear interp., otherwise

T +
They relate as ¢} < 1y, <9 .
+ . . +
The Lipschitz constant of ¢% is bounded by the inverse of d (Z/{w/, Z,{M,IC). On the other

hand, for a point x € U,, to be minimally-displaced in such a way as to reach er{ s
either: a) some of the hits in its finite-orbit is consequently-displaced to an extent which
now makes it at least r-away from associated p-sized target, or b) some of the non-hits
in its finite-orbit is consequently-displaced to an extent which now makes it at least -
inside the associated p-sized target. In either cases, the associated image point of x has
to be consequently-displaced by distance at least r. When the said image point being
consequently-displaced happens to be the last one in the orbit of x, i.e., its L — 1 iterate,
by the expanding feature of the system ( this is when x has to be displaced the
(H3.2

least: no more than /a1 (see hypothesis (H3.2) to recall the definition of a,). Therefore
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+ (&
rlap—1 < d(Z/Ing{,,.,w/ ‘)7 SO

+ !
Lipy,, (¢%) < (ap—1)/r < DeL Ly
er/ fw’ . +w + o

104 [Lipa,, = 165 [0 v Lipg,, (62) =1 v Llpdu( “) = Lipy,, (¢%') < (DY) /r,

where the last equality follows from p sufficiently small.
Now we start looking at (/1) directly:

/ + /

j W22 = ) (290 = ) (w) — j P29 = ) (%) dv(w)
Q Q

/

| ezt = o ug vte)  |i(zp = g (0 yivt)

. , 7 "
< [ Wt = wrSave) = L5 a0zt = ),
Q P p
where the last inequality is because

w w W't - (H4.3) o7
Iu (¢r><:u (UT,OJ/\UTW Z/’L Uvrw \Uvrw) S Lp_ﬁ

The approximating term that appeared above is transformed as follows:

! + ! ! + /
| ezt = G ave) = [ (1 97 vt

/ + /
1 (H{Zg(j_i)Lw/’p’LoT(J,;i)L:n} gbf )dl/(w)

/

| izt = @havie) - |

Q

(=) Ly =)Ly p, W o N
00 (ZgJ pL _ n)pd (gb,, )dl/(w) — U (]].{Zg(j—i)Lw/,p’L:n} OT(J i) ¢ ) dl/( )

:f "
9]
e L(@—z) VP16 iy, 1dw(w) < ((j — i)L) P Db,

Whereas the new approximating term which appeared above is transformed as follows:

! +w’ w +w
f :U’w (IL{ZQU’»p,L:n} ¢r )dy(w) = J‘ % (H{Z‘,""’.’L:n} ¢r>dy(w)
QO Jj—1 J—

Q
+ G-i)L +
_ f n{ZP,Li_n}gbrdM:f L0y 0 897 6,dj (25)
Qx M J Qx M
and
1, oSU*“L(E dfi — 1, o ydfi- Js dji
R r (25" =n} r
x M Qx M Qx M
(HE2)

+
< (UG- Z')L)*PHQ%HLide@M < ((j—4)L)"De" ' )r.
Finally, we notice that

. T . (HE3)
(Z" = n)j(d,) — W(Z5" = n)?

+
< ﬂ(ngL =n) JQ p (o =1y, )dv(w) < pB#(ZS,L —n).
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Combining the previous four steps, we arrive at

w w w w ~ Tn ~ L L — eL_l
\ f HZEPE = (2 = m)dv(w) — (25" = )| S LIS = )+ (=)
which implies
N -1 N -1 o -1
(an < Y N (wEt e L = G- n )
im0 (A AN, 1)+ P
/ / ~ p,L 2 7 ~ p,L / eLil —p+1
< NN, —A) [ (Z5 =n)” + Lp—ﬁ,u(Zo =n) |+ N, , (AL) .
Then we can conclude the following about the variance:
var, (") = E((;")°) — (B, (W)
S APONUZLT = n)
+ N (N, —A) A(ZP’L =n)? + LﬁA(Zp’L =n) |+ N E(AL)_erl
p,L p,L H{4g pg:u 0 p,L r
2.
- Ny Mzt =n)*.
do A7 ~( ook I , ekt Cot1
S ApTN(ZgT =n)+ N, Lp—ﬂ,u(Zé” =n)+ N, . (AL)7?
(*) n NN, e(=p+1)
< Npo‘Lpd0 + Npr—ﬁ iy V)
p r
(%) te t t gD
< - Lp® 4+ ——pvn=P 4 el 7P - p Y
a(l,)e a(T,) () N(Fp)a(_p+l)
( ' Lpdo—adl + p’wn—ﬁ—dl + eL—lL—ppado(p—l)—’w—dl
(*%*) de*Oédl + pwnfﬂfdl + pado(pfl)7w7d17

where (x) uses N’  i(Z5" =n) < (N, + DL @(Z§" > 1) < 2N,L'L(T,) <t and t is

incorporated into the < sign; (xx) uses the choice r := p* for a given w > 1; and (% » *)

incorporates L dependent quantities on <. Notice that ¢t and L dependent constants being

incorporated inside < is associated to the use of a constant C; , in the statement.
Finally, we need to choose (o, w) € (0,1) x (1,0) so that

dy > ady Oé<g—(l)/\1=§—(1)
wn > B+ d ie. quw> &by :
ado(p—1)>w+d1 U}<Oéd0(p—1)—d1
which admits a solution if, and only if,
B+di
d d B v1l+d
ptd vlz—odo(p—l)—d1<:>d0(p—1) s

n d1 dO/dl
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This is guaranteed by the parametric constraint (, so there exists some solution
(cvg, wy) to the system. Actually, the space of solutions forms a triangle and one can select
(cvg, wy) as its incenter, a function of dy, dq,n, 5 and p, whereas the strictly positive margin
this choice opens in the inequalities of the original system is denoted by q(do, d1,, 3, p).
With such a choice, we obtain that

var, (mﬁm) < Ct,L ’ pq(do,dhn,ﬁ,p) < C't,L ' Pq 7VQ € (07 Q(d(]u d17 7, 57 p)) :
|

Lemma 4. Let (0,v,T,,v°,T) be a system satisfying the hypotheses (H2.3), (H5.9),

(1'.) ([.) (['-) (I'-) and (Iﬂ) with the parametric constraint ( -

Then: Yt > 0,Yn = 1,V(pm)m=1 \ 0 with 3, pn? < o (for some 0 < ¢ <
q(do,d1,m, B,p)), denoting N, := [mj and N, | = NPLH?L one has:
1)

/
Npm,L_l

lim lim Z ,uw(Z;-J’pm’L =n) =ty \,, V-a.s.

L—00 00

j=0
2)
N, o1
lim lim u“’(Z;u’pm’L > 1) = tay, v-a.s.
L—=00m o £
7=0
5[]
Ny —1
. 097w 7 _ _
Trlbl_r)réo ]-ZO p (T, (P w)) =t, v-a.s.,

Proof. Let t,n and (py,)m=1 be as in the statement. Consider L > 1 and m large enough so

that p,, < pyar(L), N,,, = 3 and N’ .1 = 3. Denote also Qﬁg’"(w) = j.v:"bfl ,u“(Z;J’p’L
Using Chebychefl’s inequality combined with lemma 3] we get that

varl,(Qﬁﬁ’") CirL

a? a?

(k" — B, ()] > o) <

and therefore, since ), _, pm? < o0, Borel-Cantelli lemma let us conclude that

lim |205" — R, (205")| = 0, v-as.

m—00

On the other hand,

S A T OOV G/ o WL o)
v Pm L ﬂ(rpm) 2 0 L,U(Fpm> (ZIL‘p 1 > 1) L

10See footnote
Hgee footnote
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p(zh—t=n
so, by lemma the definition of A, and noting that ( I) implies % < LCypy,
we have that
lim lim E,(205") = tax A,

L—00 m o0

and therefore, combining the previous two centered limits, conclusion (1) follows:

lim lim QITL" = tag \,, V-a.s.
L= m o0

For (2), it suffices to repeat the argument noticing that the new expectation will be
( L 1>

1
driven by tr(”—m)) whose double limit is tay.

For (3), it suffices to fix L = 1 and n = 1 in the above argument, and after the
Borel-Cantelli step, notice

ﬂ(P m) ~ m—
E,(20,) = tﬂ(Pz | +a(T,) "5t

6. PROOF OF THEOREM

6.1. Applying the abstract approximation theorem. Let t > 0, n > 1 (n = 0 is the
leftover) and w €  be any. Actually, at finitely many instances of the argument, we will
restrict w to be taken in a set of full measure. To be seen in due time.

Fix, once and for all, (pm)m=1 \ 0 fast enough so that »; _,(pm)? < oo, for some
0 < q < q(dy,dy1,m,3,p). For example, p,, = m~% is adapted to ¢ (but not 7/2) while
pm = €™ is adapted to any positive q.

Fix L > 1. We won’t choose it as a function of other variables, i.e., it will consist of a
new free variable.

Define N, := [mj Let v € (0,dy) and set A, := p,,~". We'll consider m large
enough (depending on L) so that N, = 3, A, = 2, p, < pua(L), L < [F2H] and
Ay < N}, ;. Lastly, define N, | = ¥ntl e N>ﬁ.

We want to study

w,N, N, w,m N;n’L G+DL-1 w,m N w,m
pdy,, =) = (S T =) = | X B T 3 M=
J= =] ":an,LL

where Ilw,m = :H_Fpm(eiw) ) TZ)
To harmonize with the notation of theorem |3, we write
L™ = X0 (M, By, 1) — {0,1} (i € [0, Np] 0 Nxp) and
S I = BT X = 20 (M Bar, 1) — Nao (j € [0, N, ,~1]0N>0).
Then one can plug in the variables here to those of the theorem [3] namely

N:=Np, (X, 2 Q):=(M, B, 1) Xi:=X;"", Li=L, A=A, N}:=N}, |, Z1:=7Z2"™",

12866 footnote
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to obtain that

N/ -1
w [ 7w,Nm _ W Z Zwm,L
I <erm n) 0 Z; n
j=0

<4 (R (N L A) 4 R (N L A + R (N, 1)
where objects being invoked are presented in theorem [3|and, since N, and A, are (or will
be) functions of m, we'll actually write R/, ,,(Np, L, A,) = R'(w, m, L), and, similarly,
R?*(w,m, L) and R3*(w,m, L).
6.2. Estimating the error R!'. Recall that
R(,lu7m(Nm> L7 Am) =

N’r/nA,L 1 q—1 Nr’n,L*1 N;n,L*1
L L L L
> omax 3l (20—, Y e g | (2 = Y 20 =g
2L
o el k=j+Am k=j+Am

Recycling the construction and notation used in the proof of lemma |3 to control the
term (I1): for a given j € [0, N}, | — 1], writing w’ = 67*w and considering 7 € (0, p,/2),

/

- + -+
v € [0, L — 1], we once again have the objects: Uy, Uy rw's Uvrw's U s Ur s Ur s % and

+ /
¢ . Then:

N/ -1 N -1
w wm,L w,m,L w w,m,L w w,m,L
pe | Zem =, Y ™ =g | —p (Zj fU>u >zt =g—u

k=j+Am k=j+Am
(J+1)L-1 Nim
w w,m _ w,m I
i=jL i=(j+Am)L
(j+1)L—1 Nin
w w,m __ w w,m _
—H Z I = | p Z L7 =q—-u
t=jL i=(j+Am)L
L—1 Nm—jL
W’ w'\m W', m
e (S S g
1=0 i=AmL
L—1 Nm_(]+Am)L A
/ / AmL, 0 mL,
_:uw Z[lw,m:u MG w Z [@ w,m:q_u .
i=0 =0
. w’ ApmL) W gAML
— ‘lj/ <]]_Mw,ﬂ_{vvjw,m,L,Am:qiu} O Tw, ) 'LL (:H_uw/) /,L ]]_{ij,m,LyAm:qiu}
wm, L Am Np—(j+Am)L aAmelym Np—jL yuw',m _
where we used that V; = >0 I , and thus ;"\ 7" I} =

L,A
‘/jwvmv yRAm OTﬁmL’

<

+
W[ LW A L w’ gAmLy/
M (qbr ]]'{V;"’m’L‘Am:q_u} o Tw’ ) — M (I].uw,) H (ﬂ{VW‘m’L’Am—q_u}>‘ )

J
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* . o o . . .
¢ means that either ¢ or ¢* will make the inequality true,

w’ w’ iw’ AmLyy
< ( ¢ yemLdm g O ijL> — <¢r >M9 (:H.{V'Jf’-’vm,L,Am_q_u}>‘

o' LW W' Ame/
+ [u (@)_u (1)1 (tmiin )
=: (A) + (B).
Now notice that
(HB.1) -
(4) < (AnL) |t

where

ZAi

(A L)y el )y

E

(

and
L om s - (H4.3) Ly o
<B> < ,UQA fw (‘/j b Am q— u) % (UT,w’ \Z/[r,w’) < ,UGA " (V; Lo q— 'LL) L_B

Therefore

/
m,

N q—1
7?,1 Np, Ly A < max A, L
m 2 qe[lﬂ; l(

N, -1

Nonp =1 L r
< ; ZA mL) Pl 1/7“4—L— ;) qe%%n]ﬂ

pm?

< Nn(AnL)Pe" ™ r + Nyp—,

(j+A)L+1 < N, — AL L+1 < N,

LAm
because V;"m =m takes values between 0 and N,,, —

6.3. Estimating the error R?. To start
-1 G+ A1

mL
Rem (N, LAR) = Y p2(Z0™0 =1, > zg™r =1
j=0 k=j+1

m L_1]+Am 1

Z Z me LZ;:,m,L > 1)

7=0 k=j+1
where we reverse the double sum and single out the k = j + 1 terms

N! LHAm— 2 (k—2) A (Nm’L—l) L
Iuw(ZgJ,m,L > 17 Z]:J7m7L > 1) + Z IUJUJ(Z;:;’TT,L > 1’ Z’:J,m,L > 1)

= ) 2

k=1 j=(k—Am+1)v0
=:(I)+ (II)

To estimate (I) we notice that:

Ny, o+ Am=2 (k=2)A (N}, 1 —1) (j+1)L—1 (k+1)L—1

(H< > 2 oY o “Ir, (0w) A (T, (8w)) (1> i)

k=1 j=(k—Am+1)v0 i=jL l=kL
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N+ Am=2 (k=2)A(N;, 1 =1) (j+1)L—1 (k+1)L—1

2 Z

k=1 j=(k— Am+1)v0 i=jL kL
N, +Am=2 (k=2)A(N), 1 =1) (j+1)L—1 (k+1)L—1

) >

k=1 j=(k—Am+1)v0 i=jL  I=kL
= (Igood) + ([bad)
where W' := §iw.
To estimate (Izo0q) We begin evaluating the following:

(G2 0T ) 0 (17T, (01

Wl (€0 (T T, 0w)
< X W) e

N

i (T ) 0 (T 7T, (07) 0 G

Iuw/ (Fpm(w,) A (TL/_i)_lrpm (Ql—iw/) A Gﬂz)

g=p(dom(p))eC’y’,
@eIB(T,):
EnTp,, (W)#D

where, from ( ID ¢ € IB(T ") implies 1| ,(dom(p)) = Jo " [go*(,uel | dom (p))], and so

5 [ [ Jaome)] | (p(domi)) A (T 7T, (67))

< = K (€)
£ as above [Jcpil [90* (MG |dom cp))]] (cp(dom(cp)))
SUP e Jo~ (x) ,uel ! \dom (dom(gp) A gpfl(Tl”')*lem (Glﬂ'w/)) o

h 13 aszak:)ove ianE& J‘p_l(aj) Mel ' ‘dom((p (dOHl(gO)) 8 (6)

(H12.2) Iy , 1. ! ,
2 0, 0w S i () R (i T, ()N ( g 5)
(HL.2) ¢ as above ¢ as above
T i, (W) N (BT, (), D — 1))

D i WD, (B)N Gl + D=0 )% < (D, (00)) (1= [+ (1) ]

Then

Ny, p+Am =2 (k=2)A(N], 1 =1) (j+1)L—1 (k+1)L—1

(AEED D YR Y SR NCS (EOR P TR

k=1 j=(k—Am+1)v0 i=jL  I=kL
Ny, A =2 (k=2)A(N;, 1 =1) (k+1)L—1 (G+1)L—1 ’
l . N —k
- D) (m D) 3 = s ])
k=1 j=(k—Am+1)v0  I=kL i=jL

where, for each [ fixed, as ¢ runs, we have | —i € [kL —jL — L+ 1,kL —jL + L — 1], so

Ny, +Am=2 (k=2)A(N), 1 =1) (k+1)L—1 kL—jL+L—1

< Z 2 Z (Mle<Fpm (Qlw)) Z S0 [pmdo+8—nd0]>

k=1 j=(k—Am+1)v0 =KL s=kL—jL—L+1
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N/, p+Am=2 (k=2)A(N;, —1) (k+1)L—1 kL—jL+L—1
LR

k=1 j=(k—Am+1)v0 I=kL s=kL—jL—L+1
Ny g +Am=2 /(k+1)L—1 (k=2)A(N;, 1=1) kL—jL+L—1

<Y (Y wmea) [N TS e
k=1 I=kL j=(k—Am+1)v0 s=kL—jL—L+1

where s € [L + 1,3A,, L] so

N;,L7L+Amf2 (k+1)L—1 3A,L
< Z ( Z ,U 9 ))) < 2 u° [undo_i_pmdo])

k=1 l=kL u=L+1

Ny p+Am=2 /(k+1)L—1
Y ( Moue (T, (fw ))) (L2704 (AR L) p™)

k=1 I=kL
where for the first term in the square bracket we’ve used that, for a > 1, Zf:m n <
m~! together with @ — kdy < —1, which is guaranteed by (HS8.5|), whereas for the second
we've used that u° is increasing and the summation interval is bounded above by 3A,, L.
We'll leave ([aq) to the end.
For (1I), we consider L' < L and proceed as follows

Z Zme 1’ Z](:,m,L > 1)

Nyo kL—1 kL+L’—1 (k+1)L—1
L L Ly
SV D IRE S D VI A D D
k=1 i=(k—1)L I=kL I=kL+L/
N/
L kL—1 kL+L'—1 kL—1 (k+1)L—1
77L b 7L ”L 77L
3 (8 S e e (5 e S e
k=1 i=(k—1)L I=kL i=(k—1)L I=kL+L/
and, denoting w’ = 0w,
Nyop kL+L'—1
<2 2 H (T (0w)
k=1 I=kL

N g+ Am=2 prq (k+1)L—1
* Z Z > w ( W A (THHT,, (07w N G )
—(k—1)L I=kL+L'
JnL kL—1 (k+1)L—1 i
£ N 3 (M) @) T 0 W) G
k=1 i=(k—1)L I=kL+L'

::([]rest) ([I ood) (I[bad)-

BThe interval where s ranges basically has length 2L and it is translated by L when j moves one
unit, therefore the original and the new interval overlap by half, so eventual repetitions are more than
compensated by a factor of two.
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The term (I],est) won’t be improved, whereas the term (IIy,04) is approached just like
(Igo0a), as follows:

Npor (k+1)L—1 kL—1

lw N K

Lood) Z 2 P, (0w) DT (=) [pm® + (I — i) %]
k=1 I=kL+L’ i=(k—1)L

where, for each [ fixed, as ¢ runs, we have [ —i € [L/ + 1,2L — 1], so

NiL (k+1)L—1 2L—1
lw — K
(X <rpm<elw>>) (5 o o)
k=1 l=kL+L' u=L'+1

L

NiL k+1)L 1
Z ( 0w (el ))) (L/D—ﬁdo-‘rlLD-‘rlpmdo) ]
bad)

I=k
Now we combine and (Ilpaq) and their domain of summatlonﬁ to see that

Np i+Am L Nm, '
(Tbaa) + (I 1paa) <Z Z i Z Z (Gl n Iy, (0'w))

7 TSIZ/J;L];LJrL’ =0 s=L+L'

Z Z Aiw g@l (sz))

s=L"1=0

Combining the bounds of (Iz0q) and (I/gp0q), we conclude that

5Ny,
RE s (Nows L Ay Z W (L, (0')) (L’°‘”d°“ (AL pu®)
'm L kL+L'—1 Ay L Ny, )
+ Z Z M L ( Z Z/ﬁ “ ge NIy, ('w)).
k=1 I=kL s=L"1=0

6.4. Estimating the error R®. Here we use (H4.2) to see that

N"L

R Naws L AR) = ) Z 1 (T, (0'w)) " (T, (6'w))

1=04=0v (i—A,, L)
Nm,

< AL Pmdo Z Neiw(rpm(eiw))’

1=0

which, noticing that A,,L < (A,,,L)**!, reveals to be bounded above by RZ (N, L, Ay,).

MNotice that the initial L'-strip of the first component of the original summation has already been singled
out inside (I[lyest)-
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6.5. Controlling the total error. Put r = p,,* (w > 1) and L' = L* (0 < a < 1).
Then

m,L

w w,Nm L w Z w,m,L

It ( T, —n) 2 Z;77 =n
Jj=0

5N,
N L )

Ny r kL+L —1 AmL N,

20 2 H )+ 3 > G AT, (W),
k=1 I=kL s=L' i=0
Until this point, parameters v (accompanying A,,, see section @, w (accompanying ),
and « (accompanying L), which are local to the proof, were not fine-tuned.
In the last equation, we need the exponents accompanying p to be strictly positive. In
particular, we need

w>ﬁ+d1

v1pv—w—d;>0and dg—v(0+1) > 0.

B+dq 1) +d
("d—vo)“, which is guaranteed by (H!

_VVe’ll take double limits of the type lim; o lim,, o on the RHS. Initially, taking the
lim,, ., we use that, by lemma ,

The space of solutions (w,v) € (1,00) x (0,dpy) to those inequalities is non-empty if p >
Pi8 2))

5Nm

lim Z uel“’(Fpm(Qlw)) = 5t, v-a.s.
m—00
1=0

and, by similar argumentﬂ,

Niwt kL+L/'—1
lim Z Z s 0'w)) = tL* !, v-as..
m—a0

k=1 I=kL

Finally, using hypothesis (H3.1)) and noticing that 9—rdy+1 < 0 ) (by (H 8.5)) and a—1 <
0 (by design), we conclude that the RHS under the double limit limy_, hmm_,oo goes to
0. The same thing occurs if we adopt the double limits lim, | lim, 00, limy,_,o lim
and lim, , lim . Therefore

m—>00

lim lim |u* <Zw R n) — p” Z ZomE — |l =0, v-as..

L—o0 M—0 Pm

15Adapting the argument of lemma [4| item (III) to the new term, we see that the new v-expectation
is tL*1, but the variance lemma used therein, lemma [3] would need to be adapted as well, what we
omitted.
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6.6. Convergence of the leading term to the compound Poisson distribution.
N1 A
It remains to show that p* (ij’"dL Z;"’m’L = n) to CPDyq, (0, ({n}).
Due to the independence and distributional properties of the Z;J’m’L’s (see theorem :

N, -1

il Z Z]me =n

7=0

- X [T wEmi=0 3 [leE=m

I=10<g1<...<i<N], =1 | je[O,N], . —1] (n1,...,ny)eNL | i=1
\{jiri=1,...,0} ni+...+n;=n
) N S| ’
* m,L m,L
=) [ wzmt =03y > ezt =ny
j=0 1=1"" j;€[0O,N} ;—1] (ny,...,n;)eNL | i=1
i=1,...,1 ni+..+tn=n
Nppp—1 nq l N1
(%) w ;m,L m,L
P [T wzmt =0y Y T] p(ZEE =) |
Jj=0 =1" (n1,...,my)eNL | i=1 j=0

ni+...+n;=n

where i) o(1) refers to a function g(w,m, L) so that limz_,., lim,, . |g(w, m, L)| = 0, v-
a.s.; i) equality () included 1/1! to account for j;’s not being anymore increasing and used
that the error terms that come from different j;’s being equal are small, as one can see in
the case when two j; agree; and iii) equality (xx) uses that a product of sums distributes
as a sum of products.

We then notice that, by lemma 4]

’
Npm,Lil

lim lim Z /ﬂ(Zf’pm’L =n;) = tag\,,, v-a.s.

L—0 o0 oy
and
N -1 N -1
. - L . - L
lim lim p(Z:™ =0) = lim limexp In (1 — ez = 1)>
L—>ow0 oo J L—0 o : I
J=0 J=0
N1
. T L _
= lim limexp —p(Z™ = 1) +0(1) | = e v-as..
L— J ’
m—00 j=0
Therefore
!
B " (te)! :
Lh% lim |p® Z ZM = | — et 2 T H An;| =0, v-a.s.
m—e j=0 =1 " (ny,..,m)eNL, i=1
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N1
< lim lim |~ 2 Z;"’m’L =n | — CPDyqa, 0, ({n})| = 0, v-ass.,

L= m— o0 =0

where the equivalence is because the former term is precisely the density of such a com-
pound Poisson distribution (see equation (H[10J)).
As a consequence,

W, Nm V=1 w W, Nm w X W, M,
PR = n) = CPDiy o ((nh)| < @ =y = | Y 2 =
N;n,Lfl
w ~w,m,L
+ K Z Zj =n _CPDtalv(AZ)Z({n})
7=0
= T [§*(Z5)" = n) = CPDyoy i, ({n))
N;n,L_l
< 1 T w W,Nm_ W w,m,L

+ lim m [Lw Z Z;u’m’L:n —CPDtm,()\e)e({n})

L—00 m—ao0

= 0, v-a.s.

We then conclude that lim /ﬂ(Z;J;Zm =n) — CPDya, (0, ({n})’ = 0, v-a.s., as desired.

m—00

7. EXAMPLES

Consider a system (0, v, T, u*,T') as described in section .
Define

(m € Nxy) Per,(T) := {we Q| T (w)nT(0™w) # &, 3m’ < m : T T(w)nD (0™ w) # &},
(26)
the set of random seeds which bring the target to itself in m iterates (and not earlier).
Define
Per(T |_| Per,, (T (27)

the set of random seeds which bring the target to itself at some point in time.
Define

0 k-1
Per(T) := |_| ﬂ 0~ Me=1 Per,, (T), where Mj,_; = Z m;, (28)
(M) ycN>1 k=0 i=0

the set of random seeds which bring the target to itself infinitely many times. The periods
taken for such returns to occur are prescribed in (my)g.
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Define
APer(T") := Q\ Per(T"), (29)
the set of random seeds which never accomplish even a single return.
Define

K—1
(K € N3y) EvgAPer(T) := |_| (ﬂ 0~ Per,, (T) ﬂ@‘M’“APer(F)) ., (30)
(mk)f:701CN>1 k=0
the set of random seeds which produce K returns (with periods (my,); '), but no returns
thereafter.

Convention: we stretch K to also take values K € {0, o0}, by letting
EvypAPer(T) := Per(T") and EvpAPer(T') := APer(T).
Notice that
0= || EviAPer(D).
Ke{0,00}UN>,
Associated to a random seed w, there are some quantities of interest, entailed by the
previous construction, that we’ll want to keep track of. For w € 2, let

K(w):= K, when w € EvgAPer(T") (K € {0,000} U N5;) (31)
be the amount of returns w produces, and
(mo(w) := o0) ,if K(w) =0,
(M) = { (mo(w), ma (W), . . ., M ()1 (@), My (W) = 20), if K (w) € Noy,
(mo(w), my(w),...) , 1if K(w) = o0.
(32)

be the associated vector of periods, with co appended at the end (if it ends), where, of
course, (my, (w))f:(g)_l is obtained from the sequence of m;,’s appearing in the union within
equations or , respectively, in such a way as to determine where w belongs to.
Note that we put oo at the end of a tuple (if it ends) to mean that the orbit went to a no-
return trip. Also, observe that the quantities K (w) and (mk(w))ii(g)
of I', but we omit this from our notation.

Agreeing that sup @ = 0, let
Mr(w) = sup{my(w) : k€ [0, K(w))} € N5y U {0}, (33)
My = sup{Mr(w) : w e Q} = sup{m = 1: Per,,,(I") # &} € N5, u {0}, (34)

are also dependent

Er:='"{ Kw)>0:we || &vgAPer(T') y € Nog U {oo}. (35)

Ke{0}UN>,

The previous definitions were introduced in very general terms. From now on, we adopt
additional conditions which let us conclude that «a,’s exist and can be represented with

16The quantity Kp can turn out to be unimportant in relevant cases. For example, with a full shift
random driving and maps T, = Ty (), one has Kr € {0, 0}, because if there is some concatenation of
maps producing a return, they can be concatenated over and over. But we include this definition for
completeness.
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explicit formulas. The intent is not yet to put conditions which imply (HL)-(HS),(H[T),
but only (H7)).

C 1. Consider finitely many maps of the unit interval (or circle), T, : M — M, for
ve{0,...,u—1}. For ease of exposition, say that u = 2.

C2. Consider that the maps carry a family of open intervals A, = (O,;)i, (I, < ©)
so that M\, O,; is at most countable and T,lo,, is invertible onto its image and
differentiable with inf{T,/(z) > 1:2€ O,;} > 1

C3. Let Q = Noy? and consider that Nsg = NC LN, with N° and N! being the set of even

0, if w;j € N°
and odd numbers, respectively. Set T, := Tx (., where T;(w) = 1; Z Z:j E N (jEZ).
As usual, consider 6 : Q0 — § to be the shift map.
Note: The usual case where Q = {0,...,u — 1}* and T,, = T, is basically a simpler

version of the present one, so it can be treated with the exact same arguments and lead
to the exact same results.

For the moment, we assume nothing else about the measure v, which is only considered
to be # invariant. Important examples are Bernoulli and Markov measures, but also
what we call restricted Bernoulli measures, given by v = (w(0)n° + w(1) + n*)%, where
w(0) + w(l) = 1, n° e P(N°), n* € P(N') and 7°(2n) = n(n) = n'(2n + 1) (¥Yn = 0), for
some 1 € P(Nxg).

For n > 1, let AY = \/;-:01 (T7) ' A#,w). For n = 0, we adopt the convention Aj =
{(0,1)} (Vw € Q). Write O = [Jpe 4o O (co-countable) and, for z € Oy, denote by A (z)
the element of A% containing x. In particular, x € O%(x) implies that = is a point of
differentiability for T77. As said before, now we aren’t interested in showing (H[J), but to
avoid confusion we notice that taking B(yy", R) = B(0.5,0,5) = (0,1) makes AY = C¥
(Vn = 1).

C4. Consider that there exists K,Q > 1 and 8 € (0,1] so that u* = hy, Leb satisfies:
i) (w,x) — hy(x) is measurable, ii) K~ < h, < K (Yw e Q), and i) h,, € Holg(M) with

._ () = Do ()]
Hg(hy,) = supxgcyiy FRERDE <Q (VweQ).

C5. Consider x : Q0 — M a random point so that

({weﬂ 2 (0w ﬂﬂol"w Vi > }) =1, (36)

I=1n=0

where the intersection appearing above is, for every w € ), a co-countable set.

Important examples are what we’ll call projective random points z, given by z(w) =
Tin(mo(w)), Where Tj(w) = w; (j € Z), (z,)h_y (N < ) is a sequence of points in M and
m: N5y — {0,..., N} is a function. If N = o0, one could choose m = id.

C6. WithT'(w) = {z(w)} (we ), consider that My < 0.

To illustrate, for deterministic targets z(w) = z, two noticeable cases occur:
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i) Pure periodic points x, i.e., when there is some m, = m(x) > 1 so that x is (mini-
mally) fixed by any concatenations of m, maps in (T;,)"Z;. In this case, Per,,, (I') = €,
My = m, and K = 0. These examples can be constructed explicitly.

ii) Pure aperiodic points x, i.e., when x isn’t fixed by any finite concatenation of maps
in (T,)"Z}. In this case, Q = APer(I'), My = 0 and Kr = 0. These examples are not
necessarily easy to be constructed explicitly, but, once the maps are fixed, the set of
pure aperiodic z’s is generic, because it is given by

M| U Fix(T,, , ©...0Ty),

p=1 (vo,...,vp—1)€{0,...,u—1}?

which is co-countable.

A) Calculation of (oy)en.,

Now we calculate ay’s for systems (0, v, T, 1, T") as described in section satisfying
conditions (Cf1)-(d6).

Consider £ > 1 and w € ). Actually, at finitely many instances of the argument, we
will restrict w to be taken in a set of full measure. To be seen in due time.

Consider

(=D (K(w)—1)
L= mp(w) = Mok () (W). (37)
0

and po(w, L) = po(To(w), ..., 7r(w)) so that p < po(w, L) implies
Vie [1, L\{My(w) : k € [1, K(w)]} one has T! B(x(w), p) n B(z(0'w),p) = &,  (38)

which can be guaranteed noticing that

a) returns occur precisely in the instants { M (w) : k € [1, K(w)]} and not in between (by
minimality),

b) T7 is continuous on z(w) (Vi > 1), a.s., because, by ((2) and (Cfj)), one has z(w) € O¥.
Because of the previous constraint, one could actually have started with L’s of the form

L = My, nkw)(w), qr = € (so still satisfying equation (37))), in the sense that other choices

of L are superfluous from the viewpoint of the quantity we’ll study, Z:fllf. Then one

could consider p;(w, L) = p1(7o(w), ..., 7r(w)) < po(w, L) so that p < p;(w, L) implies:

VE < k, k' k€ [0,q, A K(w)] one has

M
Mk—k’(e k’(“’)w)

My (w)— My (w) M (w) oMy (@) gy My, (w)
TGMk’(w)w B(ZE(Q * w)7 p) - AMQLAK(W)("J)_Mk(W) (23(9 Cd)) ) (39>

which can be guaranteed noticing that

M, ., (6Mr (@), » M, ., (6Mr (@), w w w
a) TOJMZ/(I:)(M )x(eMk/( )w) = x(0"k-* (G )ng-( )w) = x(@Mk( )w) e OMqLAK(w)(w)_Mk("J)7
a.s., where the first equality is due to the return times within My (w)’s, the second one

is due to the equality in the overbrace above and the inclusion follows from (Cf2) and
(B,
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M / 9]\/[ ’<w)w . . .
b) TBMIZ('L)(W V) is continuous at z(#M“w), a.s., because, again by ( and (,

M (w)
one has x(0Mw @) e O F 7w )
( ) Mk,k/<9Mk/<w)w)

The point with condition (39) is to say that for whatever intermediate starting point
in time, Mj/(w), the ball that lives there is small enough so that its image into any
other further intermediate point in time, My (w), fits inside the injectivity domain of the
map which evolves the system for the remaining time, from M;(w) to My, k() (w). In
particular, under iteration, the ball at time zero grows inside the interval but never enough
to wrap around or break injectivity. Therefore, if a initial condition in the ball at time
zero iterates as to miss the target at some intermediate point in time, it won’t revisit it
in the remaining time considered (until M, . K(w)(w)), because, due to expanding feature
of the maps, only a break in injectivity would allow for such a revisit to happen. In
other words, given an initial condition, if we are to code the sequence of hits within times
Mi(w), ..., Mg, nk(w)(w), they will be formed by 1’s in a row (possibly none) followed by
0’s in a row (possibly none).

Then, for w, L and p as above, one has:

&7 (L, p)p(Tp(w)) = p(Zigy = € = 1,15 = 1)

1B
€

m > 1Y >0-1,1I5 =1
JEIM(@):helLar AK ()]}

. (1&1@ S 1) if 01 < K(w)
0 , otherwise

- {MW (1;@71(@ _ 1) if (-1 < K(w)

0 , otherwise
so that
.
w ((TMe—1 (W=7 (gMe-1(w) w (TMe(@=1 (gMe(w)
(I T ) (@O L)
1, B ) o i hE o) AT
S PAT,) R R M. Jf 0= K(w) +1,
()
0 Jif 0> K(w) + 2
Moreover (for w and L chosen as above), for all € > 0, exists pa(w, L, €) = po(7o(w), . .., Tr(w), €)

so that for all p < pa(w, L, €)

Leb ((Té\/lzfﬂw))—lrp(gMeq (W)w))
Leb(T, ()

= [JTM O @(w)] '+ Oe),

and there exists p3(w,€) = (e/Hg(hw))l/B so that for all p < p3(w, €)
hy(2) = hy(z(w)) + O(e), Vz e B(z(w), p).
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We can use (Cf1)), ((4) and ( qg) to pass to controls that are uniform on w and then
integrate: for any € > 0, L > L, := {Mr = sup,,eq Menk(w)(w) and

1/5
. ) €
p < ps(Lye) = min p1(vo, ..., vL) A min p2(vo, ..., VL, €) A (é) ,

(v0,-..,vr,)€ {0,1}L+1 (v0,-.-,vr)€ {0,1}L+1

one has

hu(3(w)) + O
|, utat@)) + 0@ivte)
(L, p) = hu(a(w)) + O(¢)
|| hutat@) + 0@vte)
0 i 0> K (w) +2

[(JTL”"l(”(z(w)))l +O(e) — (JTiV’““)(:I,-(w))) - 0(6)] Jif £ < K(w)

dv(w),

[(JTwa““”(aﬁ(w)))_1 + 0(6)] it f= K(w) +1

then taking iterated limits of the type lim, limj, Ep one finds that

( ~1 ~1
h he(2(w)) [(JTéw_l(w)(x(w))) _ <JT£/[Z(”)($(W))> ] Lif 0 < K (w)
| hutat@avte)
Q
Qp = A ho(z(w)) [(JTKIZ_I(UJ)@(UJ)))A] Jif 0= K(w) +1 dv(w).
he(z(w))dv(w)
JO JQ
L0 Jif 0> K(w) + 2
(40)
The following diagram helps one to visualize how the integrand in equation , with
the prefactor M% suppressed, changes

a) when w is found in each of the portions making up € = | |xc(g0yon., EVEAPer(l)

(read the different lines),
b) as ¢ grows (read the different columns).

(=1 (=2 t=3
1/JTQTZ10 ( ) 1 1/JT;:lz()(w)+m1(w)w(x)
JZT“)() CITO@) () JTT) (1)

gmo (W),

we Per(T): [ 1— 1/JT5LO(W)(ZB),

we APer(T) : ( 1 : 0 , 0 ;.90
we EviAPer(T): | 1 — 1/JT0°“) (2), W , 0 .0
—1 JTm1 -
w € EvoAPer(T): | 1 - 1/JT£n°(w)(af), / moewm (x)’ _ 1 5] ,.0.
JTUJ ( ) JTw o ( )JTgmo(w (:C)
(41)

Now we want to consider what else can be said about equation when more structure
is assumed. Let us adopt the following additional hypothesis.

C7. Consider that v(APer(I')) = 1.
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The takeaway is that adding condition ((f7)) to ((f1)-((J6)) makes one conclude that (),
is pure Poisson.

That is because, in this case, considering the second line of equation (with Shha(?%
Q w

O%:{l,?fézl | )

re-factored in), one has simply

0,if £ =2
In the opposite case, we substitute condition ((J7)) with the following one.
C8. Consider that v is Bernoulli, v(Per(I')) = 1 and that x : Q — M 1is a projective
random point. Moreover, assume that hy(z(w)) L <JT;Z}1($))w(x(9MJ(W)w))>j, which hap-
pens, for example, when h, =1 (Yw € Q).

The takeaway is that adding condition ((f)) to ((f1)-((J6)) makes one conclude that (),
is Polya-Aeppli.
Notice that v(Per(I')) = 1 and the independence of hy,(x(w)) from the rest implies

o = JH JTRE (@(6™ f H 7T (a0 ))]_1dv<w>,

then, after we make the point in I) that <w — JT;nAj;(:fg (x(@MJ(“)w))> is independent
“ J
under v, we will find that

Qe = ﬁfg [Jngj($1w<x(9Mj(w)w))] dv(w ﬁf |:‘]TWI\L/} @, (x (QM ) ))] 1dV(W)7

J=

which, we’ll argue in II), equals

ay = []f [T ) g []ﬁ) [JT7) 0 (w)] ™ du(w) = (D — 1)D™,

where D! := SQ[JTUTO “) ()] Ly (w), as desired.
Let us make the points that are missing.
I) Notice first that

v(mo(w) = io, M1 (w) = i1) = v(mo(w) = o, Mo(0°w) = 1) = v(Tper,y(r) Lo-10 per,, (1))

= V(Lper;, () (Lo-io per;, () = V(mo(w) = io)v(mo(w) = i),
where the first equality in the second line is because (7;)’s are independent under v and

the indicator functions can be expressed in terms of disjoint blocks of (7;)’s, namely
ﬁ'o, c. pﬁio—l and ’ﬂ'io, c ;ﬁ-io+i1—1- On the other hand

v(mi(w) = i) = Y v(me(w) = io, my (w) = iy)

10
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= Z v(mo(w ) (mo(w) = 41) = v(me(w) = i).

So combining the two previous chains of equality, we find that mg and m; are independent,
ie., mg L mq.

Once again, since (7;); is an independency under v, whenever two random variables
X and Y can be expressed as X = ¢ o (m,...,m,—1) and Y = o (T, ..o, Tigris—1),
then X 1 Y. Similarly for 7 instead of w. This is the case for (JT'(2(:)), Lng()=io) L
(JT;}O_(.% o 9’0(-)), 1m1(~):i1)-

Therefore

V({w:[JT;”O(w)(a:(w))]_l a, [JTI) (a(gmo) ))]‘1:b})
= 20w ({o: VTR en] ™ = 0. [T, w(0°w)] ™ = bmo(w) = io,mo(#w) = ir |

o 11

Y ({ [JT (2(w))] ™ = a,mo(w) = zo}) v ({w [T ((07°w)] " = by mo(00w) = z1}>]

0 11

K
- [Zy ({w : [JTZO(:E(W))]_l = a,mo(w) = io})] [ZV ({w ; [JTil(a:(w))]—l =b,mpy(w) = 21}>]
=v ({w : [JTZ?O(“)(:C(LU))]_I = a}) v <{w : [JTUC”O(”)(:U(w))]_I = b}) :

On the other hand
v ({w: 1)o@ @) = b))

= S (fo: TR = o TG, @] = 1))

—Z ({o: [T @ @@)] ™ = a}) v ({o: [T (@] =b})
v ({w : [JT;"O(“’)(x(w))]_l = b}) .

So combining the two previous chains of equality, we find that

JT"O (2 () L ITy ) (2(™00)-)),

as desired.
IT) Notice that

L T8 o) dv(e) = 3w ({w T oo™ )] " < o} )

. Zby ({ [T (2(w))] ™ = b}) - L [T ) ()] d(w),

where we have used the last equality in I).

B) Check if a; > 0 and >, ?ay < @
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It holds that a; > 0 because the quantity found in the first column of diagram is
bounded below by 1 — 1/dy;, > 0.

Moreover, considering the integrand of equation (40]), we see that ay is at most (1/dp, ),
therefore

since dpin > 1.
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