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Abstract

We consider piecewise monotone interval mappings which are topo-
logically mixing and satisfy the Markov property. It has previously been
shown that the invariant densities of the natural approximations converge
exponentially fast in uniform pointwise topology to the invariant density
of the given map provided it’s derivative is piecewise Lipshitz continuous.
We provide an example of a map which is Lipshitz continuous and for
which the densities converge in the bounded variation norm at a loga-
rithmic rate. This shows that in general one cannot expect exponential
convergence in the bounded variation norm. Here we prove that if the
derivative of the interval map is Hölder continuous and its variation is
well approximable (γ-uniform variation for γ > 0), then the densities
converge exponentially fast in the norm.

In this paper we study the approximability of the densities of ab-
solutely continuous invariant measures of expanding interval maps.
This classical problem is of particular interest for numerical simula-
tions where it is important to know at what rate and in which sense
one obtains convergence of the approximating densities. In particular
we provide an example that illustrates the difficulties that can arise
in this context.

1 Introduction

The dynamics of (mixing) expanding piecewise monotone maps has been exten-
sively studied, in particular the spectral properties of the associated transfer op-
erators have been established by notably Hofbauer and Keller [3] [5] and Rychlik
[9]. On the Banach space of functions of bounded variations the transfer oper-
ator has a simple largest real eigenvalue whose eigenfunction is the density of
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the invariant measure. The remainder of the spectrum has then strictly smaller
radius which in particular implies that the correlation functions decay exponen-
tially fast. For a piecewise affine map which satisfies the Markov property the
transfer operator can be written as a matrix, which makes is more practical to
find its invariant density [10]. In [7] it was shown the densities of affine approx-
imations of an expanding piecwise monotone map indeed converge to the actual
density of the invariant measure if the map is piecewise twice differentiable.
This result was by Gora and Boyarsky [2] strengthened to piecewise differen-
tiable maps whose derivatives have bounded variations. In [4] a bound for the
rate of approximation is given for the absolutely continuous invariant measure
for C2 interval maps that are expanding. It is shown that the approximating
probability vectors converge exponentially fast (with the notation of the present
paper) in the L1 sense. Recently Liverani [8] has studied these approximations
emphasising the numerical aspect.

If the approximations are “natural” (piecewise linear Markov approxima-
tions in the terminology of [2]), then [1] the convergence is in fact exponentially
fast pointwise uniformly provided the map has (piecewise) Lipshitz continuous
derivatives.

In a recent paper Keller and Liverani [6] proved a more general result
on the convergence of transfer operators that generalises the approach used in
previous results on the approximability of densities. They prove that in the
convergence in the supremum norm is determined by the approximation of the
map, which in this context is exponential. In this paper we are however in-
terested in the convergence in the bounded variation norm about which the
paper by Keller and Liverani does not make any conclusion and in fact can-
not: Indeed, in section 5 we provide an example which shows that under these
conditions the convergence cannot in general expected to be exponential in the
bounded variation norm. However, our main result, Theorem 8, shows that
the approximating densities convergence in the Bounded Variation norm ex-
ponentially fast if one assumes that the variation of the map’s derivative can
sufficiently well be approximated by variations over partitions (the derivative
has uniform variation—see Definition 4).

In section 2 we introduce uniform variation and define the associated
norm. In section 3 we formulate the maintheorem (Theorem 8) and prove some
properties for the variation of the derivative of an interval map provided it
satisfies the uniform variation property. In section 4 we present a direct proof
of Theorem 8. In section 5 we give the example of a map whose derivative has
bounded variation but not uniformly bounded variation and whose associated
invariant densities converge in the BV-norm at no more than logarithmic speed.
In the Appendix (section 6) we give a proof of the Lasota Yorke inequality for
the uniform variation norm also show that the unitball is precompact in the BV-
norm. The reader will be able to use these two two results to get a shorter and
possibly more general proof of Theorem 8. In this paper however I prefer the
direct approach of section 4 to the general proof because the involved estimates

2



can then be used in section 5 to construct an example of a nice map with very
slow convergence properties.

Let T be a piecewise C1+γ continuous map (that is its first derivative is γ-
Hölder continuous) of the unit interval [0, 1] to itself such that its restriction
to the atoms of a finite partition A = {(aj−1, aj) : j = 1, . . . , J} are monotone
with Hölder continuous derivative T ′, where 0 = a0 < a1 < a2 < · · · < aJ = 1.
We shall furthermore make the following assumptions:
(i) There exists a constant ρ < 1 so that |T ′| ≥ ρ−1 on every atom A ∈ A.
(ii) At the endpoints aj of the atoms of A the map T shall assume one or the
other value of the continuous extensions of T to the closures of the adjacent
intervals.
(iii) T has the Markov property, that is if T (A) ∩ A′ 6= ∅ for some A,A′ ∈ A
then A′ ⊂ T (A).
(iv) We require that there is a positive integer N so that the branches of mono-
tonicity of TN are onto [0, 1]. Without loss of generality we can assume that
N = 1.

We can now define the transfer operator L by:

Lφ(x) =
∑

y∈T−1x

φ(y)
|T ′(y)| ,

for suitable functions φ : [0, 1] → C. On the space BV of functions with bounded
variation the spectral radius of L : BV → BV is equal to 1, and 1 is a simple
eigenvalue with a strictly positive eigenfunction h which we assume to be nor-
malised. Moreover the essential spectral radius is ϑ < 1, where

ϑ = lim sup
n→∞

1
|(T n)′|1/n .

If we put

τ = max{|λ| : λ 6= 1 in the spectrum of L : BV → BV},

(spectral gap), then the convergence of L to the eigenspace spanned by h is
exponential at rate τ < 1, that is

‖Lnφ− hµ(φ)‖BV ≤ const.τ ′n‖φ‖BV,

for every τ ′ > τ , where µ is the Lebesgue measure on [0, 1] and ‖φ‖BV =
|φ|∞ + var[0,1]φ is the bounded variation norm.

Definition 1 The nth piecewise affine approximation of T is the transform
Tn : [0, 1] → [0, 1] such that T |A is affine for all A ∈ An =

∨n−1
j=0 T

−jA (the
n-th join) and matches with T at the endpoints of the atoms A.
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Denote by Ln the transfer operator for the n-th affine approximation:

Lnφ(x) =
∑

y∈T−1
n x

φ(y)
|T ′n(y)|

, φ ∈ BV.

Clearly 1 is a simple eigenvalue of Ln with strictly positive eigenfunction hn.
Assume hn is normalised.

For the transfer operator for the map T we obtain for all k that

Lk1(x) =
∑

y∈T−kx

1
|(T k)′(y)| ≤

1
inf h

∑
y∈T−kx

h(y)
|(T k)′(y)| =

h(x)
inf h

≤ |h|∞
inf h

.

Since the eigenfunction h depends continuously on the map T , we conclude that

|Lkn1|∞ ≤ c1,

for all k and n, where c1 is some positive constant.

Theorem 2 [1] Let T be a piecewise monotone interval map which satisfies the
conditions (i)–(iv) (for some γ > 0). There exists a constant C1 such that

varhn ≤ C1, ∀n.

For every τ ′ > τ1/6 there exists a constant C2 such that

|hn − h|∞ ≤ C2τ
′n, n = 1, 2, 3, . . . .

We shall prove that the convergence is indeed exponential in the BV-norm if
T satisfies the stronger property of having uniform variation. In section 3 we
shall then produce an example of a piecewise C1+L map (i.e. the derivative of
the map is piecewise Lipshitz continuous) for which var (h− hnj ) ≥ const.

lognj
for a

suitable sequence of integers nj . That is, for that example the convergence of
the densities is very slow in the bounded variation norm.

2 Uniform variation

If a finite partition P of the unit interval consists of the intervals between the
points 0 = p0 < p1 < p2 < · · · < pm = 1, then we put

var (φ,P) =
m∑
j=1

|φ(pj−1)− φ(pj)|

for the variation of the function φ with respect to the partition P . Clearly,
varφ = supP var (φ,P), where the supremum is over all partitions P of the
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unit interval. (Observe that varφ = var (φ,P), for all partitions P , if φ is
monotonically increasing or decreasing.) Put

Var (φ,P) = |varφ− var(φ,P)| ,
and denote by diamP = maxj(pj − pj−1) the diameter of the partition P .

Let P be a partition of I given by the points 0 = p0 < p1 < · · · < pm = 1
and denote by φP the piecewise constant approximation of φ on the partition P
with discontinuities at the points pj and at the points where φ is discontinuous.
For instance, if φ has no discontinuity on (pj , pj+1] then we can put φP(x) =
φ(pj+1) for pj < x ≤ pj+1, and similarly if φ has discontinuities.

Lemma 3 For every partition P one has

Var (φ,P) ≤ var (φ − φP).

Proof. If the partition P is given by the points p0, p1, . . . , pn, then

Var (φ,P) =
n∑
j=1

(var φ− |φ(pj)− φ(pj−1)|) .

Fix some j and let Q = {q0, q1, . . . , qm} be a partition of the interval [pj−1, pj]
(naturally q0 = pj−1, qm = pj). Then

var [pj−1,pj] (φ− φP ) =
m∑
i=1

|ai − bi|

where

ai = φ(qi)− φ(qi−1),
bi = φP(qi)− φP(qi−1),

i = 1, 2, . . . ,m. Naturally
∑

i |bi| = |φ(pj)−φ(pj−1)|. (Note that all the bi have
the same sign.) Then, since |ai − bi| ≥ ||ai| − |bi|| ≥ |ai| − |bi|, we obtain

var [pj−1,pj ] (φ− φP) ≥
m∑
i=1

(|ai| − |bi|)

= var [pj−1,pj ] (φ,Q) − |φ(pj)− φ(pj−1)|.
Since the partition Q was arbitrary, we conclude

var [pj−1,pj ] (φ− φP ) ≥ var [pj−1,pj ] φ− |φ(pj)− φ(pj−1)|.
Summation over j yields

var (φ− φP ) =
n∑
j=1

var [pj−1,pj ] (φ− φP ) ≥ Var (φ,P).
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The inequality in Lemma 3 is a strict one if φ is not monotone on the atoms of
the partition P .

Definition 4 We say a function φ on the unit interval has γ-uniform variation
for some γ > 0 if there exists a constant U so that

Var (φ,P) ≤ U(diamP)γ ,

for all partitions P of [0, 1]. We shall put Uγ(φ) for the smallest possible choice
of the constant U .

Continuous functions whose variation is γ-uniform are not necessarily γ-Hölder
continuous as the example φ = xγ/2, x ∈ [0, 1] shows. Since φ is increasing,
varφ = var(φ,P) and therefore Var(φ,P) = 0 for every partition P of the unit
interval. Thus φ has γ-uniform variation although it is not γ-Hölder continuous.

If ψ is piecewise Hölder continuous with exponent γ > 0 then we denote
by |ψ|γ the Hölder constant (applied to the intervals of continuity).

Note that for a monotone function φ one has varφ = var (φ,P) and
therefore Var (φ,P) = 0 for all partitions P .

Obviously Var (φ+ ψ) ≤ Varψ + Varφ. In the following lemma we shall
use the well-known inequality varφψ ≤ |φ|∞ varψ + |ψ|∞ varφ.

Lemma 5 Let φ and ψ be two piecewise γ-Hölder continuous functions of
bounded variation on the interval I. Then

Var (φψ,P) ≤ |ψ|∞Var (φ,P)+|φ|∞ Var (ψ,P)+(diamP)γ(|φ|γvarψ+|ψ|γvarφ),

for all partitions P of I.

Proof. Let P be a partition of I and denote by φP is piecewise constant
approximation introduced above preceeding Lemma 3. Then

Var (φ,P) ≤ var (φ − φP),

and
|φ− φP |∞ ≤ |φ|γ(diamP)γ

Similarly ψP is the piecewise constant approximation of ψ on P and ψPφP =
(ψφ)P is the piecewise constant approximation of ψφ.

Then

Var (ψφ,P) ≤ var ((ψφ − ψPφP ))
≤ var (ψP (φ− φP)) + var (φ(ψ − ψP))
≤ |ψP |∞ var (φ− φP) + |φ− φP |∞varψP

+|φ|∞ var (ψ − ψP ) + |ψ − ψP |∞varφ
≤ |ψ|∞ Var (φ,P) + |φ|γ(diamP)γvarψ

+|φ|∞ Var (ψ,P) + |ψ|γ(diamP)γvarφ

6



since |φP |∞ ≤ |φ|∞ and |ψP |∞ ≤ |ψ|∞. 2

If f and g are functions on the unit interval with finite Uγ values, then it is
easily seen that Uγ(f +g) ≤ Uγ(f)+Uγ(g) and Uγ(cf) = |c|Uγ(f) for constants
c. For constant functions c we have Uγ(c) = 0, and similarly Uγ(φ) = 0 for a
monotone function φ.

Let us define a norm ‖ · ‖γ (γ > 0) by

‖φ‖γ = |φ|∞ + Uγ(φ) + |φ|γ
(|φ|γ is the Hölder constant on the intervals of continuity), and introduce for
some partition P of the unit interval the function space

UVγ = {φ ∈ Cγ(P) : ‖φ‖γ <∞}
of functions with γ-uniform variation, where Cγ(P) consists of all functions on
[0, 1] which are γ-Hölder continuous on the atoms P . The space (UVγ , ‖ · ‖γ)
is a Banach space. Clearly UVγ ⊂ UVγ′ for γ′ ≤ γ, and moreover UVγ ⊂ BV
for all positive γ. (Naturally Uγ′(φ) ≤ Uγ(φ) if γ′ ≤ γ.) Observe that since
|varφ− var (φ, {I})| ≤ Uγ(φ) (as diam I = 1), one obtains that

varφ ≤ var (φ, {I}) + Uγ(φ) ≤ 2|φ|∞ + Uγ(φ).

Also note that for the locally constant approximants φn of a piecewise continuous
function φ by Lemma 7 ‖φn‖γ ≤ 3‖φ‖γ .

Let us denote by Sk the inverse branches of T k and put Aϕ for the range
of the inverse branches ϕ ∈ Sk. Note that Aϕ ∈ Ak.
Lemma 6 Let T be a transformation of the unit interval to itself. Assume
|T ′| ∈ UVγ (γ > 0), then L maps UVγ into itself.

Proof. Clearly |Lφ|∞ ≤ |φ|∞|L1|∞ ≤ c1|φ|∞, for some constant c1. To esti-
mate the variation we proceed as follows

Var (Lφ,P) = |varLφ− var (Lφ,P)|
≤

∑
ϕ∈S1

∣∣∣∣var
φϕ

|T ′ϕ| − var
(

φϕ

|T ′ϕ| ,P
)∣∣∣∣

≤ |S1|Var
(

φ

|T ′| , T
−1P

)
.

This implies that ‖Lφ‖γ ≤ c2‖φ‖γ for some constant c2. 2

For the transfer operator and its affine approximations one can now deduce the
Lasota-Yorke inequality

Uγ(Lkφ) + |Lkφ|γ ≤ const. |φ|∞ + ςk(Uγ(φ) + |φ|γ), (1)
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for some ς < 1, for all k and functions φ ∈ UVγ (γ > 0). For a proof see the
Appendix. As a consequence of it one obtains yet another spectral theorem for
the transfer operator on the slightly different function space UVγ (Exercise).

3 Piecewise approximation of the map T

Let φ be a piecewise Hölder continous function on [0, 1] so that Uγ(φ) < ∞
and denote by φn the locally constant function which is constant on intervals
of continuity in the atoms of An. For simplicity’s sake let us assume that φ is
continuous. Then φn is constant on the atoms of An and if P = {p0, p1, . . . , }
is a partition so that each subinterval in An contains at least one point pj then
Var (φn,P) = 0.

Lemma 7 Assume Uγ(φ) <∞ and put φn = φAn . Then Uγ(φn) ≤ 3Uγ(φ).

Proof. Let B be the partition of [0, 1] by the discontinuity points of φ and put
Q = B∨An. Then φn is constant on the subintervals in Q. Let P = {p0, p1, . . .}
be a partition and put

J = {j : |(pj−1, pj ] ∩ {q0, q1, . . .}| ≥ 2} ,

where {q0, q1, . . .} are the cutting points of the partition Q. In other words, J
indexes the subintervals of P that ‘jump’ entire subintervals of Q. These are
the only places that will contribute towards Var (φn,P). We thus obtain

Var (φn,P) ≤
∑
j∈J

|φn(pj−1)− φn(pj)|

=
∑
j∈J

|φ(p̄j−1)− φ(p̄j)|

≤ Uγ(φ)(3diamP)γ

as |p̄k − pk|, |p̄k−1 − pk−1| ≤ diamP ∀k ∈ J , where p̄k is the right endpoint of
the subinterval A ∈ Q which contains pk. 2

It follows that the approximating densities hn in fact lie in UVγ for all γ > 0.
The following theorem, which is proven in the following section, asserts that
convergence of the approximating densities is in fact exponential if we assume
that T ′ has γ-uniform variation.

Theorem 8 Let T be a transformation of the interval which satisfies the condi-
tions (i)–(iv) and let L be the associated transfer operator acting on the Banach
space of functions of bounded variation. If we assume that T ′ has γ-uniform
variation for some positive γ, then there exists a constant C4 and a σ ∈ (0, 1)
so that ‖h− hn‖BV ≤ C4σ

n ∀n. In particular var (h− hn) ≤ C4σ
n, for all n.
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The proof of this theorem is the subject of the next section. We will need the
following tow lemmata in the proof of Theorem 8 as well as in the Appendix
where we outline how to use the standard approach to get the convergence using
the theorem of Ionescu Tulcea-Marinescu with the two Banach space norms
‖ · ‖BV ≤ ‖ · ‖γ and the inequality of Lemma 11.

Lemma 9 There exists a constant C5 (depending on ρ, var log |T ′| and Uγ(log |T ′|))
so that for every interval A ⊂ [0, 1] on which T k is one-to-one (similar state-
ments hold true for Tn):
(I) For every partition P of A one has

VarA

(
1

|(T k)′| ,P
)
≤ C5 sup

A

1
|(T k)′| (diamT kP)γ .

(II)

varA
1

|(T k)′| ≤ kC5 sup
A

1
|(T k)′|

where the constant C5 depends continuously on ρ and Uγ(log |T ′|).
Proof. Let Q be a partition of A. Assume Q is given by the points y0 <
y1 < · · · < yQ. Since |(T k)′| is γ-Hölder continuous, i.e. |(T k)′(y)− (T k)′(y′)| ≤
c1|T ky − T ky′|γ for y, y′ ∈ A (where c1 is some constant that depends on the
Hölder constant of |T ′| on intervals of continuity and |T ′|∞), we get that the
variation over the partition Q is then (for diamQ small enough)

var
(

1
|(T k)′| ,Q

)
=

Q∑
j=1

∣∣∣∣ 1
|(T k)′(yj−1)| −

1
|(T k)′(yj)|

∣∣∣∣
=

Q∑
j=1

1
|(T k)′(yj)|

∣∣∣∣1− |(T k)′(yj)|
|(T k)′(yj−1)|

∣∣∣∣
=

Q∑
j=1

1 + qj
|(T k)′(yj)|

∣∣∣∣log
|(T k)′(yj)|
|(T k)′(yj−1)|

∣∣∣∣ , (2)

with some numbers qj for which |qj | ≤ c1(diamT kQ)γ . Hence, letting diamQ
go to zero, one obtains

var
1

|(T k)′| ≤ sup
A

∣∣∣∣ 1
(T k)′

∣∣∣∣ varA log |(T k)′|

≤ sup
A

∣∣∣∣ 1
(T k)′

∣∣∣∣
k−1∑
`=0

varT `A log |T ′|

≤ sup
A

∣∣∣∣ k

(T k)′

∣∣∣∣ var log |T ′|,
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This proves the statement (II) of the lemma.
To prove the inequality (I), let P be some partition of A. Equation (2)

yields an upper bound for the variation (as diam Q → 0)

var
1

|(T k)′| ≤
∑
P∈P

sup
P∩A

∣∣∣∣ 1
(T k)′

∣∣∣∣ var P∩A log |(T k)′|

and a lower bound for the variation with respect to P

var
(

1
|(T k)′| ,P

)
≥ (1− c1(diamT kP)γ

) ∑
P∈P

inf
P∩A

∣∣∣∣ 1
(T k)′

∣∣∣∣ varP∩A
(
log |(T k)′|,P) .

Using Hölder continuity, the inf term in the lower estimate works out to be

inf
P∩A

∣∣∣∣ 1
(T k)′

∣∣∣∣ ≥ (1− c1(diamT kP )γ
)

sup
P∩A

∣∣∣∣ 1
(T k)′

∣∣∣∣ ,
for P ∈ P . We can finally estimate as follows (as diam P ≤ diam P):

Var
(

1
|(T k)′| ,P

)
≤

∑
P∈P

sup
P∩A

∣∣∣∣ 1
(T k)′

∣∣∣∣ (varP∩A log |(T k)′|

−varP∩A
(
log |(T k)′|,P))

+c2(diamT kP)γ sup
A

∣∣∣∣ 1
(T k)′

∣∣∣∣ varA
(
log |(T k)′|,P)

≤ sup
A

∣∣∣∣ 1
(T k)′

∣∣∣∣ (VarA
(
log |(T k)′|,P)+ c3(diamT kP)γ

)
≤ C5 sup

A

∣∣∣∣ 1
(T k)′

∣∣∣∣ (diamT kP)γ ,

for some constants c2, c3. In the last two inequalities we used that with some
constant c4 = Uγ(log |T ′|)

VarA
(
log |(T k)′|,P) ≤ k∑

`=1

VarTkA
(
log |T ′|, T `P) ≤ c4(diamT kP)γ

1
1− ρ

,

since T k is one-to-one on A and diamT `P ≤ ρk−`diamT kP . Similarly varA
(
log |(T k)′|,P) ≤

c4
1−ρ(diamT kP)γ .

Put C5 = max(c3 + c4/(1− ρ), var log |T ′|). 2

Let Sk denote the inverse branches of T k. If ϕ ∈ Sk, then we denote its range by
Aϕ which in fact is an atom in Ak. If k < n then every inverse branch ϕ ∈ Sk
has a corresponding inverse branch ϕ̃ of T kn whose range Aϕ̃ ∈ Ak coincides
with Aϕ.
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Lemma 10 For every ϑ′ > ϑ there exists a constant C6 (depending continu-
ously on T ) so that for all k < n:
(I) ∣∣∣∣1− |(T kn )′ϕ̃|

|(T k)′ϕ|
∣∣∣∣
∞
≤ nC6ϑ

′(n−k)γ .

(II) ∣∣∣∣ 1
|(T k)′ϕ|

∣∣∣∣
γ

≤ C6

∣∣∣∣ 1
|(T k)′ϕ|

∣∣∣∣
∞

and similarly for ϕ̃ instead of ϕ and Tn instead of T .

Proof. Given ϑ′ > ϑ then for any ϑ′′ ∈ (ϑ, ϑ′) we can find c1 so that 1
|(Tk)′| ≤

c1ϑ
′′k for all k. Since T k is one-to-one on the atoms of Ak we conclude that

diamAk ≤ c1ϑ
′′k for all k. Now let k < n and observe that ϕ(x) = ϕ̃(x) on the

endpoints x of atoms in An−k. Therefore, by the mean value theorem,∣∣∣∣1− |(T kn )′ϕ̃|
|(T k)′ϕ|

∣∣∣∣
∞

≤ c2

∣∣∣∣log
|(T kn )′ϕ̃|
|(T k)′ϕ|

∣∣∣∣
∞

≤ c2 max
B∈An−k

(
varTkB log |(T k)′|+ varTknB log |(T kn )′|)

≤ c2 max log |(T k)′| 2 (diamA)(n−k)γ

≤ (n− k)c3ϑ′′(n−k)γ

for some constants c2, c3.
To proof part (II) we proceed similarly

∣∣∣∣ 1
|(T k)′ϕx| −

1
|(T k)′ϕx′|

∣∣∣∣ ≤ c2
1

|(T k)′ϕx|
k−1∑
j=0

∣∣log |T ′T jϕx| − log |T ′T jϕx′|∣∣
≤ c2

1− ργ
1

|(T k)′ϕx| |log |T ′||γ |x− x′|γ .

The statements now follow if we choose C6 = max(c3, c2 |log |T ′||γ /(1− ργ)). 2

In the following we shall use the fact that h and hn are γ-Hölder continuous.
Let C7 be a constant so that the Hölder constants |h|γ , |hn|γ are bounded by
C7.

4 Proof of Theorem 8

We shall present a direct proof of Theorem 8 although it can also be proven
using the usual method involving the Ioncesu Tulcea-Marinescu inequality. In
the next section where we present an example with logarithmic convergence
speed, we will need the explicit estimates for the terms I, II and III.
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We have to show that var(h − hn) ≤ c1σ
n for some σ < 1 and some

constant c1. Assume k < n and given an inverse branch ϕ ∈ Sk let, as above, ϕ̃
be the associated inverse branch of T kn which has the same range Aϕ = Aϕ̃ ∈ Ak.
Then, for any k < n,

var(h− hn) = var (Lkh− Lknhn)
= var

∑
ϕ∈Sk

(
hϕ

|(T k)′ϕ| −
hnϕ̃

|(T kn )′ϕ̃|
)

≤ var
∑
ϕ∈Sk

1
|(T kn )′ϕ| (hϕ− hnϕ̃)

+var
∑
ϕ∈Sk

hnϕ̃

(
1

|(T kn )′ϕ̃| −
1

|(T k)′ϕ|
)

≤ I + II + III + IV,

where Sk are the inverse branches of T k and their ranges are the atoms of Ak.
We use the identity var fg ≤ |f |∞var g+ |g|∞var f to split the estimate into the
four terms which we estimate separately. Notice that varLkn(h − hn) ≤ I + II
and var (Lk − Lkn)hn ≤ III + IV .

For the first term we get

I =
∑
ϕ∈Sk

∣∣∣∣ 1
(T kn )′ϕ

∣∣∣∣
∞

var TkAϕ (hϕ− hnϕ̃)

≤ ϑ′k
∑
ϕ∈Sk

(
varAϕ h+ varAϕ hn

)
≤ c2ϑ

′k.

Using Lemma 9(II) we estimate the second term as follows

II =
∑
ϕ∈Sk

|hϕ− hnϕ̃|∞varTkAϕ

(
1

|(T kn )′ϕ̃|
)

≤ c3κ
n
∑
ϕ∈Sk

varAϕ

(
1

|(T kn )′|
)

≤ c3C5κ
n
∑
ϕ∈Sk

max
Aϕ

1
|(T kn )′ϕ̃x|

≤ c4κ
n.

Using Lemma 10, the third term becomes

III =
∑
ϕ∈Sk

∣∣∣∣1− |(T kn )′ϕ̃|
|(T k)′ϕ|

∣∣∣∣
∞

varTkAϕ
hnϕ̃

|(T kn )′ϕ̃|

12



≤ nC6ϑ
′n−k ∑

ϕ∈Sk
varAϕ

hn
|(T kn )′|

≤ nC6ϑ
′n−k ∑

ϕ∈Sk

(∣∣∣∣ 1
(T kn )′

∣∣∣∣
∞

varAϕ hn + |hn|∞varAϕ
1

|(T kn )′|
)

≤ nC6ϑ
′n−k (ϑ′kvarhn + |hn|∞C5c5|hn|∞

)
≤ nc6ϑ

′n−k,

for some constants c5, c6, where we used Lemma 9(II) once more.
For the fourth term we have to use that |T ′| has uniform variation. As

before

IV =
∑
ϕ∈Sk

∣∣∣∣ hn
(T kn )′

◦ ϕ̃
∣∣∣∣
∞

varTkAϕ

(
1− |(T kn )′ϕ|

|(T k)′ϕ̃|
)
,

where

varTkAϕ

(
1− |(T kn )′ϕ̃|

|(T k)′ϕ|
)

= varAϕ

(
1− |(T kn )′ϕ̂0|

|(T k)′|
)

≤ c7 varAϕ log
|(T k)′ϕ̂0|
|(T kn )′|

= c7

k−1∑
`=0

varT `Aϕ log
|T ′|
|T ′nϕ̂`|

with some c7, where ϕ̂` = T `nϕ̃T
k−`. In order to estimate the variation term

inside the sum for a given value of `, consider on T `Aϕ the partition Q` induced
by T `An. Notice that |T ′n| and |T ′nϕ̂`| are both constant on the atoms of Q`.
In every atom Q ∈ Q` there is (by the mean value theorem) a point yQ so that
so that |T ′(yQ)| = |T ′n|Q|. The points {yQ : Q ∈ Q`} form a partition of T `Aϕ
which we shall call R`. As log |T ′| has γ-uniform variation, one obtains:

varT `Aϕ log
|T ′|
|T ′nϕ̂`|

= VarT `Aϕ (log |T ′|,R`) ≤ Uγ(log |T ′|) (diamR`)
γ .

Moreover, since

diamR` ≤ 2 diamQ` ≤ 2 diamT `An ≤ 2 diamAn−` ≤ 2ρn−`,

we deduce that

∑
ϕ∈Sk

∣∣∣∣ hn
(T kn )′

◦ ϕ̃
∣∣∣∣
∞

varT `Aϕ log
|T ′|
|T ′nϕ̂`|

≤ ϑ′k−`
∑

ψ∈Sk−`
VarAψ (log |T ′|,R`)

≤ c8ϑ
′k−`ργ(n−`),

13



and, with some c9:

IV ≤ c8

k−1∑
`=0

ϑ′k−`ργ(n−`) ≤ kc9θ
n−k,

where θ ≥ max(ϑ′, ργ), θ < 1.
Finally with a suitable choice for k, say k = n/2, we get that

var(h− hn,P) ≤ I + II + III + IV ≤ c11
(
ϑ′k + κk + nϑ′n−k + kθk

) ≤ c1σ
n,

for all n and for some σ < 1. 2

5 Example

In this section we present a map T of the unit interval to itself which is piecewise
C1+L and for which var (h−hnj ) converges subexponentially fast to zero as the
sequence nj goes to infinity. As before hn are the densities for the n-th natural
affine approximation Tn of T .

As in the proof of Theorem 8 let us consider (for a suitable sequence of
n-values)

var (h− hn) = var (Lkh− Lknhn) ≤ I + II + III + IV,

where as above I+II+III ≤ c1(ϑk+κn+nϑn−k) for k < n, where the numbers
ϑ, κ < 1 are as above. We shall now construct T so that the fourth term IV can
be estimated from below (polynomially in lognj). We shall proceed in four steps.
We shall construct the map (i); then estimate the conditional variation logT ′

from below for a certain partition (ii) and from above for some finer partitions
(iii); and finally we shall obtain lower bounds on the variation var (h− hn) (iv).

(i) We approximate T in the following way in C1 by a sequence of piecewise
C1+L-maps Vj , j = 1, 2, . . .. Let P be some large integer which is to be chosen
later and put V1 for the piecewise linear map V1(x) = Px mod 1, for x ∈ [0, 1].
Then V ′1 is constant equal to P on P subintervals of length 1/P that form a
partition A of [0, 1]. The quantities ϑ′ = (P − 1

3P )−1 and ϑ = (P + 1
3P )−1 will

be a lower respectively upper bound for the contraction rates for the inverse
branches of the maps Vj and T . Choose β ≥ 2 logϑ

logϑ′ (β > 1), and define a
sequence of integers n(m) = [βm] ([·] denotes integer part). That is m ∼
logβ n(m). The sequence of positive numbers αm = ϑn(m), m = 1, 2, . . ., is at
least exponentially fast decreasing to zero (αm ∼ ϑβ

m

). Note that ϑ′n(m)/2 ≤
αm−1.

Suppose we already constructed the maps V1, V2, . . . , Vm−1, and let us
now proceed to find Vm. First, denote by Hj the union of (open) intervals on
which the derivative V ′j is constant (in fact equal to P ). Then Hm−1 is the

14



disjoint union of (finitely many) intervals, say Im−1,1, Im−1,2, . . .. Each of these
intervals Im−1,` is divided into [|Im−1,`| 1

mαm
] + 1 (| · | denotes the length of the

interval) many pieces and on the middle of each of these pieces we replace the
constant value P of the derivative V ′m−1 by a squiggle which is a piecewise affine
curve whose left and right thirds both have slope 1 while the middle third has
slope −2 (that is, the second derivative V ′′m is on 1 on the left and right thirds
of the interval which we modify and V ′′m = −2 on the middle third)

�
�

�
�A

A
A
A
A
A
AA�

�
�
�

Squiggle

of length αm (the length of a squiggle is the euclidean distance between the
left and right endpoints) so that the left and right endpoints of the squiggle
connect with the constant value P of the derivative V ′m−1. In this way we find
the derivative V ′m of the map Vm. This completes the construction of Vm.

Since the squiggle over its length rises by the same amount above the
constant value P as it dips below P , its average (over its length) is equal to
P . This implies that the integral Vm of V ′m assumes the same value on the
endpoints of the squiggle as Vm−1 did before we replaced the straight linesegment
of its derivative V ′m−1 by the squiggle. This implies that Vm(x) = Vm−1(x)
for x outside the squiggles which were introduced at the step m (i.e. for x ∈
[0, 1] \ (Hm \Hm−1)).

Also observe that V ′m ≥ P − 2, since we modified the derivative by intro-
ducing the squiggles, thus lowering the given constant derivative P by at most
the value 2. In particular, when we choose the value of P large enough (i.e.
larger than 3) than all the approximates Vm will be expanding interval maps.

For the Lebesgue measure (sum of the lengths of subintervals) of the
‘linear set’ Hm of Vm (i.e. Hm = {x ∈ [0, 1] : V ′m(x) = P}) we obtain

|Hm| = |Hm−1| −
∑
`

([
|Im−1,`| 1

mαm

]
+ 1
)
αm

≥ |Hm−1|(1 − 1
m

)

= |Hm−1|m− 1
m

≥ |H1| 1
m
.
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Thus |Hm| ∼ 1/m. Let us furthermore observe that the numberMm of squiggles
of length αm is

Mm ∼ |Hm| 1
mαm

∼ ϑ−β
m

m2
∼ ϑ−n

m2
, (3)

and the total length of the αm-squiggles is |Hm−1 \Hm| ∼ 1
m2 .

It follows from the construction that all the maps Vm are C1+L on the
atoms of A (in fact 2 is a Lipshitz constant for all the derivatives V ′m), and their
derivatives satisfy 1/ϑ ≤ V ′m ≤ 1/ϑ′. By Arzela-Ascoli the maps Vm converge
in C1 to a limit T which is piecewise of class C1+L.

Clearly, T has the Markov property and is topologically mixing (in fact
N = 1). It thus satisfies the conditions (i)–(iv) (with ρ = ϑ′).

If An =
∨n−1
j=0 T

−jA denotes the n-th join of A, then ϑ′−n ≤ |An| ≤ ϑ−n

(cardinality) and ϑn ≤ |A| ≤ ϑ′n (length) for every atom A ∈ An.

(ii) Let us next estimate VarTk−1A (logT ′,Rk−1), for A ∈ Pk, k < n, where
Rk−1 is a partition of A whose diameter ϑ ≤ 2ϑ′n−k and whose cardinality
|Rk−1| is bounded from above by ϑ−(n−k). Since in our case T k−1A = [0, 1] for
all A ∈ Ak, we therefore get that (recall that by construction T ′ > 1)

VarTk−1A (logT ′,Rk−1) = Var (logT ′,Rk−1).

If we put k = [n/2] and n = n(m), then |An−k| ≤ Mm by (3) for large
enough m. We can therefore conclude that the total length of those squig-
gles of lengths ≤ αm which are subsets of single atoms of the partition Rk−1 is
at least |Hm+1| ∼ 1

m+1 . Every such squiggle contributes 4
3 -times its length to

the variation Var (logT ′,Rk−1). Hence

Var (log T ′,Rk−1) ≥ 4
3
|Hm+1| ≥ 1

m
. (4)

(iii) Now let ` < k − 1, and let us find upper estimates for VarT `A (logT ′,R`)
for A ∈ Ak, where R` are partitions whose diameters are bounded above by
2ϑ′n−`. Clearly, whenever A ∈ Ak, then

ϑl−1−` ≤ |T `A| ≤ ϑ′k−1−`.

Suppose we have a squiggle of some length s. If we approximate by a locally
constant function which is constant on intervals of lengths < s/3 say, then the
conditional variation can only be produced by those intervals which contain
corners (kinks) of the squiggle (of which there are four in each squiggle). Hence
if we only consider squiggles of size ≥ αm−1 we get

VarT `A∩([0,1]\Hm) (log T ′,R`) ≤ diam (R`)4Nm2|T `A|(1− |Hm|), (5)
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(since all squiggles of lengths ≤ αm dwell on Hm) where Nm is the total number
of squiggles of lengths ≥ αm−1. We estimate (β > 1 large enough):

Nm =
m−1∑
k=2

Mk ∼
m−1∑
k=2

1
k2αk

≤ 1
mαm−1

.

On the other hand for squiggles ≤ αm we get as before

VarT `A∩Hm (log T ′,R`) ≤ 4
3
|T `A| · |Hm| ∼ 4

3m
|T `A| (6)

(the variation of a squiggle is 4/3 times its length). As |T `A| ≤ ϑ′k−1−` if
A ∈ Ak, we now obtain from equations (5) and (6)

VarT `A (log T ′,R`) ≤ 4
3m

|T `A|+ 8|T `A|Nmϑ′n−`

≤ ϑ′k−1−` 1
m

(
4
3

+
4ϑ′n−`

αm−1

)
,

as Nm ≤ 1/mαm−1. Hence, since by assumption ϑ′n−`α−1
m−1 ≤ 1, (as ` < k =

[n/2]) we get

k−2∑
`=0

VarT `A (logT ′,R`) ≤ 6
m

k−2∑
`=0

ϑ′k−1−` ≤ 6
m

ϑ′

1− ϑ′
. (7)

(iv) Let us now complete the estimate of the variation in our example. As above,
let Aϕ ∈ Ak be the ranges of the inverse branches ϕ ∈ Sk of T k, and consider on
T `Aϕ the partition Q` induced by T `An. (As above, |T ′n| and |T ′nϕ̂`| are both
constant on the atoms of Q`.) In every atom Q ∈ Q` there is (by the mean value
theorem) a point yQ so that |T ′(yQ)| = |T ′n|Q|. The points {yQ : Q ∈ Q`} form
a partition of T `Aϕ which we shall call R`. One obtains for ` = 0, . . . , k − 1:

varT `Aϕ log
|T ′|
|T ′nϕ̂`|

= VarT `Aϕ (log |T ′|,R`) ,

and
diamR` ≤ 2 diamQ` ≤ 2 diamT `An ≤ 2 diamAn−` ≤ 2ϑ′n−`.

Therefore, if we use the estimates (4) and (7) which we deduced above, we
obtain:

varAϕ log
∣∣∣∣ (T k)′(T kn )′

∣∣∣∣ = varAϕ
k−1∑
`=0

log
∣∣∣∣ T ′T `T ′nT `n

∣∣∣∣
≥ varAϕ log

∣∣∣∣ T ′T k−1

T ′nT
k−1
n

∣∣∣∣− varAϕ
k−2∑
`=0

log
∣∣∣∣ T ′T `T ′nT `n

∣∣∣∣
17



= VarTk−1Aϕ (log T ′,Rk−1)−
k−2∑
`=0

VarT `Aϕ (logT ′,R`)

≥ 1
m
− 6
m

ϑ′

1− ϑ′
.

If we choose P large enough so that 6ϑ′
1−ϑ′ ≤ 1

2 , then

varAϕ log
∣∣∣∣ (T k)′(T kn )′

∣∣∣∣ ≥ 1
2m

.

This finally allows us to estimate the term IV from below by

IV ≥ c1
1

2m

∑
ϕ∈Sk

hnϕ

|(T kn )′ϕ̃| ≥ c1
1

2m
inf hn ≥ c1

4m
inf h,

for large enough n and some positive constant c1. Consequently, since we chose
k = [n/2], we obtain

var (h− hn) ≥ IV − (I + II + III) ≥ c2
m
− c(ϑk + κn +nϑn−k) ≥ c3

m(n)
≥ c4

log n

for some positive constants c2, c3, c4.

6 Appendix

In this section I would like to present the main ingredients that are necessary to
prove Theorem 8 in a more general functional analytic way. That approach as
recently become the preferred way to obtain such convergence results and here
I would like to take the opportunity to show how the space of functions with
uniform variation fits into that framework.

The main part of the argument invokes the two-norm theorem of Ionescu
Tulcea-Marinescu which is used to prove the spectral gap for the transfer opera-
tor on the space UVγ . Then Theorem 8 follows using [6] (provided the unitball in
UVγ is precompact which is shown in Lemma 12). In the following two lemmas
we thus prove the ‘Lasota-Yorke inequality’ (Lemma 11) and precompactness of
the unitball in UVγ in BV.

Lemma 11 Let T be a map on the interval satisfying the conditions (i) to (iv)
and so that T ′ ∈ UVγ for some γ > 0. Then for all φ ∈ UVγ and all large
enough k:

Uγ(Lkφ) ≤ C7|φ|∞ + ςk(Uγ(φ) + |φ|γ),
where ς < 1 and C7 > 0.
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Proof. For an arbitary partition P (refining the partitionA) of the unit interval
we obtain for ϑ′ ∈ (ϑ, 1) by Lemma 5

Var (Lkφ,P) = Var


∑
ϕ∈Sk

φϕ

|(T k)′ϕ| ,P



≤
∑
ϕ∈Sk

Var
(

φϕ

|(T k)′ϕ| ,P
)

≤ I + II,

where by Lemma 9(I)

I =
∑
ϕ∈Sk

sup
1

|(T k)′ϕ|VarAϕ (φ, T−kP) + |φ|∞
∑
ϕ∈Sk

Var
(

1
|(T k)′ϕ| ,P

)

≤ c1ϑ
′kVar (φ, T−kP) + C5|φ|∞

∑
ϕ∈Sk

sup
Aϕ

1
|(T k)′| (diam P)γ

≤ c1ϑ
′kUγ(φ)(diam T−kP)γ + c2|φ|∞(diam P)γ ,

where in the last step we used in the second term that

sup
Aϕ

1
|(T k)′| ≤ c3 inf

Aϕ

1
|(T k)′|

(as T ′ is γ-Hölder continuous) for some c3 and that the eigenfunction h is
bounded away from 0. For the other term we get

II = (diamP)γ
∑
ϕ∈Sk

(∣∣∣∣ 1
|(T k)′ϕ|

∣∣∣∣
γ

var φϕ+ |φϕ|γvarAϕ
1

|(T k)′ϕ|

)
.

To estimate the Hölder norm of 1
|(Tk)′ϕ| we get for any x, x′:

∣∣∣∣ 1
|(T k)′| (ϕx)−

1
|(T k)′| (ϕx

′)
∣∣∣∣ ≤ 1

|(T k)′| (ϕx)
∣∣∣∣1− |(T k)′|(ϕx)

|(T k)′|(ϕx′)
∣∣∣∣

≤ c3
|(T k)′| (ϕx)

k−1∑
j=0

∣∣log |T ′T jϕx| − log |T ′T jϕx′|∣∣
≤ c3ϑ

′k| log |T ′||γ |x− x′|γ
1− ργk

and therefore (c4 > 0) ∣∣∣∣ 1
|(T k)′ϕ|

∣∣∣∣
γ

≤ c4ϑ
′k|T ′|γ . (8)
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(This estimate improves on Lemma 10(II) as the right hand side makes the
dependency on T explicit.) Since |φϕ|γ ≤ ργk|φ|γ we get

|φϕ|γvar
1

|(T k)′ϕ| ≤ kC5ρ
k|φ|γ sup

Aϕ

1
|(T k)′| ,

and using Lemma 9(II) we obtain (as diamT−kP ≤ ρkdiamP):

II = (diamP)γ


c4ϑ′k|T ′|γ ∑

ϕ∈Sk
varAϕ φ+ ργkkC5|φ|γ

∑
ϕ∈Sk

sup
Aϕ

1
|(T k)′|




≤ c5(diamP)γ
(
ϑ′kvar φ+ ργkk|φ|γ

)
.

Hence

Var (Lkφ,P) ≤ c6
(
(ϑ′ργ)kUγ(φ) + ϑ′kvar φ+ ργkk|φ|γ + |φ|∞

)
(diam P)γ ,

and since

var φ ≤ var (φ, {I}) + Var (φ, {I}) ≤ 2|φ|∞ + 2Uγ(φ)

we finally obtain

Uγ(Lkφ) ≤ C7|φ|∞ + 2kc6ςk(Uγ(φ) + |φ|γ),

where C7 ≤ 2 + c6 and ς = min(ϑ′, ργ). A slightly larger value of ς will make
the term kc8 absorb for large k. 2

For Hölder continuous functions on the unit interval it is easily found that in
our setting:

|Lkφ|γ ≤ c1|φ|∞ + ςk|φ|γ ,
for some constant c1 > 0 and some ς < 1 which we can assume to have the same
value as in the previous lemma. We thus obtain the estimate that is so central
to an application of the theorem of Tulcea and Marinescu, namely

Uγ(Lkφ) + |Lkφ|γ ≤ C7‖φ‖γ + ςk(Uγ(φ) + |φ|γ).

Note that since by Lemma 7 ‖Tn‖γ ≤ 3‖T ‖γ for all n, the inequality

Uγ(Lknφ) ≤ C7|φ|∞ + ςk(Uγ(φ) + |φ|γ),

holds for all n if we slightly increase the constant C7.

Lemma 12 The unitball of UVγ is precompact in BV.
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Proof. Given a sequence {hj ∈ UVγ : j = 1, 2, . . .} so that ‖hj‖γ ≤ 1 ∀j we
have to show that there is a subsequence that converges in the Bounded Vari-
ation norm. For simplicity’s sake let us assume that all the hj are continuous.
Since a subsequence converges in the supremum norm we can without loss of
generality assume that hj converges in the supremum norm. Hence, for any
ε > 0 there exists N(ε) so that |hj − hk|∞ < ε for all j, k ≥ N(ε). Let us
denote by |P| the number of intervals in a partition P and let P be a partition
so that diamP < ε

1
1+γ and |P| < 2/diamP < 3ε−

1
1+γ . Since by assumption

varhj − var (hj ,P) ≤ (diamP)γ ∀ j, we get

var (hj − hk) ≤ var (hj − hk,P) + 2(diamP)γ

≤ |hj − hk|∞|P|+ 2(diamP)γ

≤ ε|P|+ 6ε
γ

1+γ

≤ c1ε
γ

1+γ

for all j, k ≥ N(ε). Hence hj converges in BV. 2

References

[1] V Baladi, S Isola and B Schmitt: Transfer operator for piecewise affine
approximations of interval maps; Ann. Inst. Henri Poincaré, Vol 62, 1995,
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