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For ergodic systems with generating partitions, the well-known result of Ornstein and
Weiss shows that the exponential growth rate of the recurrence time is almost surely
equal to the metric entropy. Here we look at the exponential growth rate of entrance
times, and show that it equals the entropy, where the convergence is in probability in
the product measure. This is however under the assumptions that the limiting entrance
times distribution exists almost surely. This condition looks natural in the light of an
example by Shields in which the limsup in the exponential growth rate is infinite almost
everywhere but where the limiting entrance times do not exist. We then also consider
φ-mixing systems and prove a result connecting the Rényi entropy to sums over the
entrance times orbit segments.

Keywords: Growth rate of entrance times; φ-mixing; Rényi entropy.

1. Introduction

Let T be a map on a space Ω, then {T i(x)}∞i=0 defines the orbit of x ∈ Ω. For a set
A ⊂ Ω, the entrance time τA of a point x into set A refers to the time that takes
for the orbit of x to first enter set A. In particular, if x ∈ A, τA refers to the return
time of the point x: the time that it takes the orbit of x to return for the first time
to set A. For invariant probability measures µ the Poincaré Recurrence Theorem
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states that a point in a positive measure set returns to that set are almost surely
finite. In other words, τA(x) < ∞ for almost every x in A, provided µ(A) > 0. In
1946, this result was quantified by Kac who showed that for ergodic measures the
expected return time is the reciprocal of the measure of the return set. If the space
Ω has a generating partition A then in 1993, Ornstein and Weiss [10] proved for
ergodic measures µ that 1

n log τn converges to the entropy hµ almost surely, where
the nth recurrence time τn(x) = τAn(x)(x) measures the time for x to return to its
initial n-cylinder An(x).

Intuitively, the entrance time should behave similar to the return time in ergodic
systems, as in such systems when a point x travels long enough it tends to forget
where it started. If we assume Ω has a partition A, then it is natural to consider
the exponential growth rate of entrance times to the n-cylinders An(z) centred
at an arbitrary point z. However, Shields [14] in 1992 constructed an example in
which 1

n log τAn(z)(x) does not converge for almost every x. In fact the lim sup goes
to infinity almost surely. Here we impose an additional assumption in order to
get convergence in probability to the metric entropy. We require that the limiting
entrance times distributions exist almost everywhere.

We then also give a condition under which the convergence is almost surely. We
then also look at φ-mixing measures and show that they satisfy this condition and
thus have almost sure convergence of exponential growth rate of entrance times. In
the last theorem we consider the Rényi entropy which was first introduced by Alfréd
Rényi [12] in 1961 in order to generalise the Shannon entropy. Here we generalise
a result of Ko [8] which had been proven for return times to entrance times. For
φ-mixing systems we obtain in Theorem 5 a relationship between entrance time and
the Rényi entropy.

In Sec. 2, we state definitions, basic facts and the four main theorems that we
will prove in this paper. Theorem 1 proves the convergence of the entrance time in
probability while Theorem 2 proves the almost convergence of the entrance time
under an additional assumption. Theorem 4 verifies that additional assumption for
φ-mixing measures. Theorem 5 considers the sum of measures of n-cylinders visited
by a point along its orbit until it enters a set, and proves that it converges to a
constant in terms of the Rényi entropy and metric entropy for φ-mixing systems.
The proofs of Theorems 1 and 2 are given in Sec. 3, the proof of Theorem 4 is in
Sec. 4 while the proof of Theorem 5 is given in Sec. 5.

2. Main Results

Let Ω be a space with a probability measure µ and T : Ω → Ω be a measur-
able map. We assume µ is T -invariant and ergodic. Let A = {Pi} be a gener-
ating partition (finite or countably infinite) and denote by An =

∨n−1
i=0 T

−iA =
{⋂0≤i≤n−1 T

−i(Pji) : Pji ∈ A} its nth join. The elements of An are referred to
as n-cylinders. We denote by An(x) ∈ An the n-cylinder which contains the point
x ∈ Ω.
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The theorem of Shannon–McMillan–Breiman (see e.g. [9]) states that for any
T -invariant ergodic probability measure µ and generating partition A of Ω,

lim
n→∞

1
n
|logµ(An(x))| = hµ (1)

for almost every x ∈ Ω, where hµ is the measure theoretic entropy of µ. This
asymptotic formula was first proven by Shannon [13] in 1948 for stationary Markov
chains and then subsequently strengthened by McMillan and Breiman to its present
form for finite alphabets and then extended to countably infinite alphabets (with
finite entropy) by Chung [3] in 1961 and Carleson [2] in 1958. In other words, the
measure of the n-cylinder which contains x decays exponentially with rate roughly
the metric entropy.

For any x ∈ Ω and set A ⊂ Ω, let us define now the entrance time of x into the
set A by

τA(x) = min{i ≥ 1 : T i(x) ∈ A}.
We call τn(x) = τAn(x)(x) the nth recurrence time of x; it is the first time that
x returns to the n-cylinder which contains x. Ornstein and Weiss proved in [10]
for finite partition, and in [11] for countably infinite partition (provided that hµ is
finite) that for almost every x,

lim
n→∞

1
n

log τn(x) = hµ (2)

assuming µ is ergodic. Intuitively, the entrance time τAn(z)(x) should behave sim-
ilarly to the recurrence time τn(z) = τAn(z)(z) as in (2), since when points travel
a long enough time in ergodic systems they tend to forget where they start and
hence whether starting at the point x or z should not matter. However, Shields
constructed in 1992 an example of a dynamical system in which the entrance time
fails to converge [14]. Here we prove that 1

n log τAn(z)(x) converges in probability
to hµ provided the system has an almost sure entrance times distribution.

In the following we adopt probability notations that for events A,B ⊂ Ω we
denote µ(A) by P(A) and µB(A) = µ(B∩A)/µ(B) by PB(A) (assuming µ(B) > 0).
For z ∈ Ω, n ∈ N and t > 0, put

Fn
z (t) = P

(
τAn(z) ≥ t

µ(An(z))

)
= µ

({
x ∈ Ω : τAn(z)(x) ≥ t

µ(An(z))

})
and if B = An(z) we put

FB(t) = Fn
z (t).

We shall require that the limit limn→∞ Fn
z exists almost everywhere. For a num-

ber of classes of positive entropy systems this limit is e−t a.s. There are however
examples of ergodic zero entropy systems that have other limiting distributions.

The following two theorems prove convergences of the entrance time: Theorem 1
proves the existence of the limit and convergence in probability under the assump-
tion that the limiting distribution of entrance (or return) times exists almost every-
where. Theorem 2 gives a sufficient condition under which the convergence is almost
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sure. Let us note that there are many examples when the limiting entrance/return
times do not exist. The example of Shields is one of them. Also, Downarowicz [5]
has given examples when the limiting distribution exists along subsequences of full
density and where the limit can be made to decay arbitrarily slowly, in particular
so slow as to violate the condition in Theorem 2.

Theorem 1. Suppose for almost every z ∈ Ω and for t ≥ 0, limn→∞ Fn
z (t) = Fz(t)

exists and Fz(t) → 0 as t→ ∞. Then 1
n log τAn(z)(x) converges to hµ in probability

as n goes to ∞.

Theorem 2. Suppose µ is a T -invariant ergodic probability measure on Ω, and for
all small enough ε > 0 we have

∞∑
n=1

∫
Ω

Fn
z (enε) dµ(z) <∞.

Then

lim
n→∞

1
n

log τAn(z)(x) = hµ

for µ× µ-almost every (x, z) ∈ Ω × Ω.

Remark. (i) Let us note that the summability condition of Theorem 2 is only
required to get the upper bound on the limit. By Lemma 6 we get the lower bound
on the limit almost surely for all ergodic measures.

(ii) Although the recurrence time τn(x) = τAn(x)(x) is a special case of the return
time, Theorem 2 does not imply the asymptotic formula in (2) since the above
convergence is true for µ × µ-almost every (x, z) which does not imply that it
applies to points on the diagonal x = z as the diagonal has measure 0 in the
product measure.

The remainder of the paper looks at a situation in which the hypothesis of
Theorem 2 is satisfied. We consider systems with some mixing property.

Definition 3. We say an invariant measure µ is φ-mixing if there exists a decreasing
function φ : N → R so that

|µ(A ∩ T−(n+i)(B)) − µ(A)µ(B)|
µ(A)

≤ φ(i) (3)

for all A ∈ An, all B ∈ σ(A∗), where A∗ = ∪∞
n=1An and for all n ∈ N.

The following two theorems will moreover assume that φ is summable, that is∑∞
i=1 φ(i) < ∞. Let us note that the limiting entrance times distribution Fz(t)

for φ-mixing measures (with summable φ) is exponential almost everywhere [1],
i.e. Fz(t) = e−t for µ-almost every z ∈ Ω. This includes in particular measures of
maximal entropy and equilibrium states for Hölder continuous potential on Axiom A
systems which are ψ-mixing at an exponential rate.
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Theorem 4. Suppose µ is a T -invariant φ-mixing measure of Ω with summable φ.
Then

lim
n→∞

1
n

log τAn(z)(x) = hµ

for µ× µ-almost every (x, z) ∈ Ω × Ω.

For the final result we will also require that the (countably infinite) partition A =
{Pi}∞i=1 has an exponentially decaying tail if

µ


⋃

i≥j

Pi


 = O(δj) (4)

for all j and for some δ < 1. If |A| is finite then (4) is trivially satisfied.
For s > 0, put

Zn(s) =
∑

An∈An

µ(An)1+s

and define the Rényi Entropy Function [12] on (0,∞) by

R(s) = lim
n→∞

1
sn

|logZn(s)|

if the limit exists. For larger values of s, the Rényi entropy is weighted towards high-
est probability events. Moreover, for the value s = 0, the Rényi entropy typically
coincides with the Shannon entropy. The Rényi entropy exists as a uniform limit
in weakly ψ-mixing systems [6] and a pointwise limit under weaker assumption [8].

Theorem 5. Suppose T : Ω → Ω is measurable, µ is T invariant and φ-mixing
with summable φ, and A has exponential tails. Suppose the Rényi entropy R(s)
exists for s > 0. Then for µ× µ every (x, z) ∈ Ω × Ω,

lim
n→∞

1
n

log
τAn(z)(x)∑

i=1

µ(An(T i(x)))s = hµ − sR(s).

This generalises a previous result of Ko [8] in which z was assumed to be equal
to x. Obviously, (3) ensures the ergodicity of µ. Furthermore, (3) implies the expo-
nential decay of cylinders and this ensures that the metric entropy hµ is positive.
The summability of φ is needed to estimate the variance of the hitting time function
(see Sec. 5.2). The condition (4) in particular implies that hµ is finite (see Lemma 4
of [8]). It also allows us to control the “tail” of the partition An in the proof of
Lemma 14. From now on we will abbreviate τAn(z)(x) by τz

n(x) for convenience.

3. Convergence of Entrance Time

We first prove the lower bound of Theorems 1 and 2.
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Lemma 6. Suppose µ is a T -invariant ergodic probability measure of Ω. Then

lim inf
n→∞

1
n

log τz
n(x) ≥ hµ

for µ× µ-almost every (x, z) ∈ Ω × Ω.

Proof. Let 0 < b < c < hµ, and put

En = {x : τz
n(x) ≤ ebn}.

Note that En =
⋃[ebn]

j=1 T
−j(An(z)). Then we have,

µ(En) ≤
[ebn]∑
j=1

µ(T−j(An(z))) = µ(An(z))ebn.

By (1), µ(An(z)) ≤ e−nc for almost every z. Therefore, µ(En) ≤ e−(c−b)n, summable
on n. By the Borel Cantelli lemma, for almost every z, µ(lim sup En) = 0. In other
words, this implies that for almost every z, the set of initial conditions x for which
the return times to An(z) are smaller than ebn infinitely often have µ measure 0.
This implies

lim inf
n→∞

1
n

log τz
n(x) ≥ hµ

for almost every x.

Remark. Note that in the proof above we showed that for any ε > 0 and almost
every z,

lim
n→∞µ

({
x :

1
n

log τz
n(x) ≤ hµ − ε

})
= 0,

which is equivalent to

lim
n→∞µ× µ

({
(x, z) :

1
n

log τz
n(x) ≤ hµ − ε

})
= 0.

To complete the proof of Theorems 1 and 2, we obtain the other side of the inequality
in Lemma 6 under certain assumptions. One might have attempted to show this
by only assuming that the measure µ is T -invariant and ergodic. However, Shields
[14] constructed an example of a dynamical system (on a four-element subshift) in
which

lim sup
n→∞

1
n

log τz
n(x) = ∞

for µ× µ-almost every (x, z) ∈ Ω × Ω.

Lemma 7. Suppose for all small enough ε > 0 and δ > 0,

lim
n→∞µ({z ∈ Ω : Fn

z (enε) > δ}) = 0.

Then 1
n log τz

n(x) converges to hµ in probability as n→ ∞.
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Proof. Let δ > 0, b > hµ and Dn = {(x, z) ∈ Ω × Ω : τz
n(x) > enb}. We want to

show that µ × µ(Dn) is bounded from above by δ for large enough n. Further let
ε ∈ (0, b− hµ) and δ′ = b− (hµ + ε). Put

Ωn = {z ∈ Ω : Fn
z (enε) ≤ δ/3},

Sn = {B ∈ An : µ(B) ≥ e−n(hµ+δ′)}
and

Sn =
⋃

B∈Sn

B.

By hypothesis and (1), we can choose n large enough so that µ(Ωc
n) < δ/3 and

µ(Sc
n) < δ/3. Put

Ω̄n = {B ∈ An : B ∩ Ωn 	= ∅}.
As Fn

z (t) is locally constant on n-cylinders B, FB(enε) ≤ δ/3 for B ∈ Ω̄n. Note also
that FB(t) decreases as t increases; therefore, FB(µ(B)enb) ≤ FB(enε). It follows
that for large enough n

µ× µ(Dn) =
∑

B∈An

µ(B)P(τB ≥ enb) =
∑

B∈An

µ(B)FB(µ(B)enb)

=
∑

B∈Ω̄c
n

µ(B)FB(µ(B)enb) +
∑

B∈Ω̄n

µ(B)FB(µ(B)enb)

< µ(Ωc
n) +

∑
B∈Sc

n

µ(B)FB(µ(B)enb) +
∑

B∈Ω̄n∩Sn

µ(B)FB(µ(B)enb)

<
δ

3
+ µ(Sc

n) +
∑

B∈Ω̄n∩Sn

µ(B)FB(enε)

<
2δ
3

+
δ

3

∑
B∈Ω̄n∩Sn

µ(B) ≤ δ.

As the above is true for any b > hµ, we showed for any ε > 0

lim
n→∞µ× µ

({
(x, z) :

1
n

log τz
n(x) ≥ hµ + ε

})
= 0.

Together with the remark under Lemma 6, the proof is complete.

Similar to the entrance time distribution, for z ∈ Ω, n ∈ N and t > 0 we define
the return time distribution as

F̃n
z (t) = PAn(z)

(
τAn(z) ≥ t

µ(An(z))

)

= µ

({
x ∈ An(z) : τz

n(x) ≥ t

µ(An(z))

})/
µ(An(z))
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assuming µ(An(z)) > 0 and if B = An(z) we put

F̃B(t) = F̃n
z (t).

By [7] the entrance times distribution FB and the return times distribution F̃B are
related by the identity FB(t) =

∫∞
t F̃B(s) ds.

Proof of Theorem 1. Let β, ε and δ be positive. By Lemma 7, we want to show
that

lim
n→∞µ({z ∈ Ω : Fn

z (enε) > δ}) = 0.

Put VN = {z ∈ Ω : Fz(N) ≤ δ/2}. Since Fz(t) decreases to 0 by assumption, there
exists K = Nδ,β such that µ(V c

K) < β/2. Put Un = {z ∈ Ω : |Fn
z (K) − Fz(K)| ≤

δ/2}. Since Fn
z converges to Fz for almost every z, when n is large enough, we have

µ(U c
n) < β/2, and enε > K. For z ∈ VK ∩ Un, we get

Fn
z (enε) ≤ Fn

z (K) ≤ Fz(K) + δ/2 < δ.

This shows for large n,

µ(z ∈ Ω : Fn
z (enε) > δ) ≤ µ(V c

K) + µ(U c
n) < β/2 + β/2 = β,

and the proof is complete.

Now we turn to prove the almost sure convergence of the entrance time.

Proof of Theorem 2. Let b > hµ, ε ∈ (0, b− hµ) and δ = b− (hµ + ε). We claim
that

lim sup
n→∞

1
n

log τz
n(x) ≤ hµ

for µ× µ-almost every (x, z) ∈ Ω × Ω. Put

Sn = {B ∈ An : µ(B) ≥ e−n(hµ+δ)}
and

Sn =
⋃

B∈Sn

B.

Then as FB(t) is decreasing, if we put Dn = {(x, z) ∈ Ω × Ω : τz
n(x) > enb}, we

have

µ× µ(Dn ∩ (Ω × Sn)) =
∑

B∈Sn

µ(B)FB(µ(B)enb)

≤
∑

B∈Sn

µ(B)FB(e−n(hµ+δ)enb)

=
∑

B∈Sn

µ(B)FB(enε)

≤
∫

Ω

Fn
z (enε) dµ(z)

1550027-8
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which is summable by our hypothesis. Applying the Borel Cantelli lemma

P

(
lim sup

n→∞
(Dn ∩ (Ω × Sn))

)
= 0

and (1) gives

P

(
lim sup

n→∞
(Ω × Sc

n)
)

= 0,

because the set lim supn→∞ Sc
n only contains points on which (1) does not converge.

Therefore, we conclude the following

P

(
lim sup

n→∞
Dn

)
≤ P

(
lim sup

n→∞
(Dn ∩ (Ω × Sn))

)
+ P

(
lim sup

n→∞
(Ω × Sc

n)
)

= 0.

As b > hµ is arbitrary, our claim is proved. Together with Lemma 6, we proved
Theorem 2.

Corollary 8. Suppose for almost every z ∈ Ω, there exists Fz(t), a decreasing
function on t > 0, and a summable sequence an > 0 such that for all small enough
ε > 0,

(i)
∑∞

n=1 µ({z : |Fn
z (enε) − Fz(enε)| > an}) <∞ and

(ii)
∑∞

n=1

∫
Ω Fz(enε) dµ(z) <∞.

Then

lim
n→∞

1
n

log τz
n(x) = hµ

for µ× µ-almost every (x, z) ∈ Ω × Ω.

Proof. In light of Theorem 2, it is sufficient to show that our hypothesis implies
∞∑

n=1

∫
Ω

Fn
z (enε) dµ(z) <∞

for small enough ε. But∫
Ω

Fn
z (enε) dµ(z) ≤

∫
Ω

|Fn
z (enε) − Fz(enε)|dµ(z) +

∫
Ω

Fz(enε) dµ(z)

≤ 2µ({z : |Fn
z (enε) − Fz(enε)| > an}) + an +

∫
Ω

Fz(enε) dµ(z).

The three terms on the right-hand side above are all summable by our hypothesis,
and we are done.

4. Proof of Theorem 4

We shall need the following result of Abadi [1, Theorem 1]). The following is a
simplified version.
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Lemma 9. Let µ be a φ-mixing T -invariant probability measure such that φ is
summable. Then there exist constants M > 0,K9 <∞ such that

P

(
τA >

t

µ(A)

)
≤ e−Mt +K9(nµ(A) + φ(n))

for all A ∈ An and all n ∈ N.

Proof of Theorem 4. We have to prove that the limit

lim
n→∞

1
n

log τz
n(x) = hµ

exists for µ×µ-almost every (x, z) ∈ Ω×Ω under the assumption that µ is φ-mixing
and

∑
i φ(i) <∞. By Theorem 2, we need to show that

∞∑
n=1

∫
Ω

Fn
z (enε) dµ(z) <∞

for any small enough ε. It is well known that for a φ-mixing system, there exists
r > 0 such that µ(A) ≤ e−rn for all n and n-cylinder A ∈ An. Moreover by Lemma 9
we have

P

(
τAn(z) >

t

µ(An(z))

)
≤ e−Mt +K9(nµ(An(z)) + φ(n))

for every z ∈ Ω, n ∈ N and t > 0. Then for any ε > 0,
∞∑

n=1

∫
Ω

Fn
z (enε) dµ(z) =

∫
Ω

∞∑
n=1

P

(
τAn(z) >

enε

µ(An(z))

)
dµ(z)

≤
∫

Ω

∞∑
n=1

{e−M exp(nε) +K9nµ(An(z)) +K9φ(n)} dµ(z)

≤
∫

Ω

∞∑
n=1

{e−M exp(nε) +K9ne
−rn +K9φ(n)} dµ(z) <∞

as required.

5. Proof of Theorem 5

From now on we will assume that the measure µ satisfies the φ-mixing property
with summable φ and the partition A has an exponentially decaying tail (see (3)
and (4)). We separately prove the upper and lower bound on the limit. The upper is
quite easy but the lower bound requires a more careful analysis of hitting numbers.
For z ∈ Ω, define

Dz :=
{
x : lim

n→∞
1
n

log τz
n(x) = hµ

}
and put

D := {z : µ(Dz) = 1}.
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Theorem 4 implies that µ(D) = 1. For z ∈ D, ε > 0 and all x ∈ Dz, we have

en(hµ−ε) < τz
n(x) < en(hµ+ε) (5)

for large enough n. In the rest of the paper we assume z ∈ D, and for convenience
we put W s

n(x, z) =
∑τz

n(x)
i=1 µ(An(T i(x)))s. Note that W 0

n(x, x) = τn(x), and in this
case Theorem 5 coincides with (2). Also the case x = z and s > 0 of Theorem 5
was proven in [8].

5.1. Proof of the upper bound of the limit in Theorem 5

By the proof of Proposition 2.3 in [4] (see also [8] Proposition 6) for every ε > 0
there exists Dε ⊂ Ω with measure 1 such that for x ∈ Dε,

lim sup
n→∞

1
n

log
exp(n(hµ+ ε

3 ))∑
i=1

µ(An(T i(x)))s ≤ hµ − sR(s) + ε.

Also by (5), we know that for z ∈ D and therefore for all x ∈ Dz ∩Dε,

lim sup
n→∞

1
n

logW s
n(x, z) ≤ lim sup

n→∞
1
n

log
exp(n(hµ+ ε

3 ))∑
i=1

µ(An(T i(x)))s

≤ hµ − sR(s) + ε.

Finally, as µ
(⋂∞

m=1D1/m∩Dz
)

= 1, this establishes the upper bound in Theorem 5.

5.2. Hitting numbers

To prove the lower bound on the limit in Theorem 5 we need estimates on the
hitting number

NU,M (x) =
M∑
i=0

χU ◦ T i(x)

of U ∈ σ(An) (unions of n-cylinders), where χU is the characteristic function of the
set U . NU,M (x) counts the number of times i ∈ [0,M ] that T i(x) ∈ U . Similarly
νz

x(U) = NU,τz
n(x)(x) is the number of times that x hits the set U when it travels

along its orbit segment until it returns to An(z). Following [4] it was shown in [8]
that the variance of the hitting time can be estimated by Var(NU,M ) ≤ c1Mnµ(U)
for a constant c1.

The following two lemmas provide us with lower and upper bounds for the
hitting time. For z = x these results have been proven in [8] and here we give the
modification required for the present more general setting.

Lemma 10. Let µ be a φ-mixing T -invariant measure where φ(i) is summable and
Un ∈ σ(An), n = 1, 2, . . . , be a sequence of sets in σ(An). Let ε > 0 and assume
γn is a sequence of positive numbers so that for all n large enough (C, a, b > 0
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constants): Assume one of the following two conditions are satisfied :

(I) µ(Un) ≥ Ce−γn(hµ+ε) and (n− γn)hµ − ε(n+ γn) ≥ anb,

(II) µ(Un) ≥ Ce−γn(hµ−ε) and (n− γn)(hµ − ε) ≥ anb.

Then for almost every (x, z),

NUn,τz
n(x)(x) ≥ µ(Un)

2
en(hµ−ε)

for all n large enough.

Proof. (I) Put M = [en(hµ−ε)]. Using the estimate on the variance of NUn,M and
Chebycheff’s inequality it was shown in [8] that there exists a set D′, with measure
1, such that, for all x ∈ D′, and for all n large enough, it holds, NUn,M (x)

M ≥
µ(Un)/2. Since by (5) for z ∈ D,x ∈ Dz ∩ D′, and for n large enough, we have
τz
n(x) > en(hµ−ε), and therefore

NUn,τz
n(x)(x) ≥ NUn,M (x) ≥Mµ(Un)/2 = µ(Un)en(hµ−ε)/2.

Since µ(Dz ∩D′) = 1, the estimate follows.
Part (II) is proven similarly.

Lemma 11. Let µ be as in Lemma 10 and Un ∈ σ(An), n = 1, 2, . . . , be a sequence
of sets. Suppose there exists a constant C > 0 so that µ(Un) ≥ C for all large
enough n. Then for ε > 0 and for almost every x,

NUn,τz
n(x)(x) ≤ 3µ(Un)

2
en(hµ+ε)

for all n large enough.

Proof. For M = [en(hµ+ε)] it was shown in [8] that |NUn,M (x)
M − µ(Un)| ≤ µ(Un)/2

for all n large enough. By (5) for z ∈ D,x ∈ Dz ∩ D′, and for large enough n,

we have τz
n(x) < en(hµ+ε), and hence NUn,τz

n(x)(x) ≤ NUn,M (x) ≤ 3Mµ(Un)/2 =
3µ(Un)en(hµ+ε)/2 as desired.

Using (1) and Egoroff’s Theorem, there exists a set E with measure greater than
1/2 on which | logµ(An(x))|/n converges to hµ uniformly as n→ ∞. Define

En := {x : An(x) ∩ E 	= ∅},
the union of those n-cylinders which intersect E . As En ∈ σ(An), let us apply
Lemmas 10 and 11 to obtain estimations on the hitting number of En.

Corollary 12. For any positive ε < hµ and almost every (x, z),

(I) νz
x(En) ≥ µ(En)

2 en(hµ−ε);
(II) νz

x(Ec
n) ≤ 3µ(Ec

n)
2 en(hµ+ε)

for all n large enough (where νz
x(U) = NU,τz

n(x)(x)).
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Proof. (I) We use Lemma 10(II) with Un = En and γn = n/2 for any a > 0 and
0 < b < 1. In order to verify the first part of the condition of Lemma 10(II) note
that µ(En) ≥ µ(E) ≥ 1/2 for all n. Thus µ(En) ≥ e−γn(hµ−ε) for all large enough
n and Lemma 10(II) gives the desired result. (II) First suppose that µ(Em) < 1
for some integer m. Since En+1 ⊆ En (as An+1(x) ⊆ An(x)), we conclude that
µ(Ec

n) ≥ µ(Ec
m) for all n > m. Hence by Lemma 11 (with C = µ(Ec

m)) we are
done. If µ(En) = 1 for all n, then put

B =
⋂
n≥1

⋂
i≥0

T−i(En).

Then µ(B) = 1 and for x ∈ B, T i(x) /∈ Ec
n for any n. Hence for almost every

x, νz
x(Ec

n) = 0 = 3µ(Ec
n)

2 en(hµ+ε) for all n.

5.3. Proof of the lower bound of the limit in Theorem 5

Let c, α ∈ (0, 1), and ε > 0 be a small number which depends on hµ and c (which
is close to 1), and will be determined later. Define γ̃n = n − [nα] and ∆ = [nα].
Denote by Ãn(x) ∈ Aγ̃n and Ān(x) ∈ A[cn] the γ̃n-cylinder and the [cn]-cylinder
which contain x respectively. As n > γ̃n > cn (for n large enough), we have An(x) ⊂
Ãn(x) ⊂ Ān(x). In the following we denote an n-cylinder by An or A, a [cn]-cylinder
by Ān or Ā, and a γ̃n-cylinder by Ãn or Ã. For ε > 0, there exists Kε such that for
any n > Kε, we have

e−n(hµ+ε) ≤ µ(An(x)) ≤ e−n(hµ−ε) (6)

for x ∈ E . Note that for n > Kε and if the n-cylinder A ⊂ En, we have A = An(x)
for some x ∈ E and hence µ(A) satisfies (6). From now on, we assume n is large
enough so that n > γ̃n > cn > Kε and hence (6) holds with n replaced by γ̃n and
cn. The inequality (6) shows the uniformity property of the measures of cylinders
in the sense that when x ∈ E , we have

µ(Ān(x)) ≤ e−cn(hµ−ε) ≤ µ(An(x))e(1−c)nhµ+2nε. (7)

If we put

Ēn = {x : Ān(x) ∩ E 	= ∅},

(the union of [cn]-cylinders which intersect E) then E ⊆ En ⊆ Ēn.
Let ε = 1−c

1+chµ (recall that hµ is positive, by the comment after (4)), and from
now on we choose ε < ε. When we let ε → 0, we have both ε → 0 and c → 1. For
convenience we also put

Ẽ+
n = {Ã ∈ Aγ̃n : µ(Ã) ≥ e−γ̃n(hµ−ε)};

Ẽ−
n = {Ã ∈ Aγ̃n : µ(Ã) ≤ e−γ̃n(hµ−ε)}.
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According to [8] the lower bound on the limit in Theorem 5 follows immediately
from the following two lemmas.

Lemma 13. There exists some constant K13, which depends only on s, so that for
almost every x,

W s
n(x, z) ≥ eK13nεenhµ

∑
Ã∈Ẽ−

n

µ(Ã)1+s

for all n large enough.

Proof. We proceed in three steps:

(I) We have

W s
n(x, z) ≥

τz
n(x)∑
i=1

µ(An(T i(x)))sχEn(T i(x))

≥ es((c−1)nhµ−2nε)S1 ≥ e−4snεS1

as ε < ε and c < 1, where S1 =
∑τz

n(x)
i=1 µ(Ān(T i(x)))sχEn(T i(x)).

(II) Put S2 =
∑τz

n(x)
i=1 µ(Ān(T i(x)))sχĒn

(T i(x)). Then S1 ≤ S2 as En ⊆ Ēn. If
T i(x) ∈ En, then by (6) we have µ(Ān(T i(x))) ≥ e−cn(hµ+ε) and consequently.

S1 ≥
τz

n(x)∑
i=1

e−scn(hµ+ε)χEn(T i(x))

= νz
x(En)e−scn(hµ+ε)

≥ µ(En)
2

en(hµ−ε)e−scn(hµ+ε). (8)

Meanwhile, by Corollary 12(II) we also have

S2 − S1 =
τz

n(x)∑
i=1

µ(Ān(T i(x)))sχĒn\En
(T i(x))

≤
τz

n(x)∑
i=1

e−scn(hµ−ε)χEn
c(T i(x))

= νz
x(Ec

n)e−scn(hµ−ε)

≤ 3µ(Ec
n)

2
en(hµ+ε)e−scn(hµ−ε). (9)

Since µ(En
c) < 1/2 < µ(En), we get

S2 − S1 ≤ 3
[
1
2
µ(En)en(hµ−ε)e−scn(hµ+ε)

]
e2nεe2scnε.
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By (8) the quantity in the bracket of the above inequality is less than S1.
Consequently S2 − S1 ≤ 3e2nε(1+sc)S1 and

S2 ≤ e4nε(1+sc)S1 ≤ e4(1+s)εnS1

as c < 1 and ε < ε.
(III) We also have

S2 =
∑

Ā⊂Ēn

νz
x(Ā)µ(Ā)s

using the counting function νz
x(Ā) for which we have bounds by Lemma 10(I):

since for Ā ⊂ Ēn, one has µ(Ā) ≥ e−cn(hµ+ε), and hence the first condition of
Lemma 10(I) is fulfilled (with γn = cn). The second condition, (n− cn)hµ −
ε(n+cn) = ((1−c)hµ−ε(1+c))n > 0 follows from ε < ε = (1−c)

(1+c)hµ. Therefore,
by Lemma 10(I),

S2 ≥
∑

Ā⊂Ēn

µ(Ā)
2

en(hµ−ε)µ(Ā)s =
1
2
en(hµ−ε)

∑
Ā⊂Ēn

µ(Ā)1+s

and we conclude as in [8] that S2 ≥ en(hµ−ε)S3, where S3 =
∑

Ã⊂Ẽn
µ(Ã)1+s.

Finally we use the fact from [8] that S3 ≥ e−2snεS4, where S4 =∑
Ã∈Ẽ−

n
µ(Ã)1+s.

We thus obtain for some constant c1 independent of ε:

W s
n(x, z) ≥ e−c1nεenhµS4.

Lemma 14. There exists some constant K14, which depends only on s, so that for
almost every x,

W s
n(x, z) ≥ e−K14nεenhµ

∑
Ã∈Ẽ+

n

µ(Ã)1+s

for all n large enough.

Proof. Let β > 1 and define (∆ = [nα])

Gn = {x : µ(An(x)) ≥ exp(−∆β)µ(Ãn(x))}.
Then Gn is a union of n-cylinders, since by definition if x ∈ Gn, we have An(x) ⊆ Gn.
Moreover, put

Fj,∆ =
∆⋂

i=1

T−i

(
j−1⋃
m=1

Pm

)

for j ∈ N. Note that if x ∈ Fj,∆, then for 1 ≤ i ≤ ∆, T i(x) /∈ Pk for all k ≥ j. The
set Fj,∆ is a finite union of ∆-cylinders and consists of point x that do not hit the
“tail”

⋃∞
m=j Pm for the first ∆ iterates. Obviously, Fj,∆ ⊆ Fj+1,∆ and Fj,∆′ ⊆ Fj,∆

for ∆′ > ∆. We will consider the sets Fkn,∆ for kn = [nt], t > 1.
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We make use of Gn to compare the summands µ(An(T i(x))) and µ(Ãn(T i(x)))
as follows:

W s
n(x, z) ≥

τz
n(x)∑
i=1

µ(An(T i(x)))sχGn(T i(x))

≥ e−s∆β

τz
n(x)∑
i=1

µ(Ãn(T i(x)))sχGn(T i(x))

= e−s∆β ∑
Ã∈Aγ̃n

µ(Ã)sνz
x(Ã ∩ Gn)

≥ e−s∆β ∑
Ã∈Ẽ+

n

µ(Ã)sνz
x(Ã ∩ Gn). (10)

The first inequality is true since 0 ≤ χGn ≤ 1. The second inequality follows from
the definition of Gn. The last inequality is valid since we restrict the sum to a
subcollection of Ã. In order to apply Lemma 10(II) to obtain a lower bound of
νz

x(Ã ∩ Gn), we write

µ(Ã ∩ Gn) ≥ µ
(
Ã ∩ T−γ̃n(Fkn,∆) ∩ Gn

)

=


µ
(
Ã ∩ T−γ̃n(Fkn,∆)

)
µ(Ã)

−
µ
(
Ã ∩ T−γ̃n(Fkn,∆) ∩ Gc

n

)
µ(Ã)


µ(Ã). (11)

In [8] it was shown that the quantity inside the bracket goes to 1 as n tends to
∞. (The first term converges to 1 and the second term converges to 0.) Thus
µ(Ã∩Gn)

µ(Ã)
→ 1 as n→ ∞ and in particular for large enough n, µ(Ã∩Gn) ≥ µ(Ã)/2 ≥

e−γ̃n(hµ−ε)/2 if Ã ∈ Ẽ+
n . Let us now apply Lemma 10(II) where we put γn = γ̃n.

Hence

νz
x(Ã ∩ Gn) ≥ µ(Ã ∩ Gn)

2
en(hµ−ε) ≥ µ(Ã)

4
en(hµ−ε).

From (10) one thus obtains

W s
n(x, z) ≥ exp(−s∆β)

4
exp(−nε) exp(nhµ)

∑
Ã∈Ẽ+

n

µ(Ã)1+s.

Now let β ∈ (1, 1/α) so that αβ < 1, then n dominates ∆β = [nα]β and hence there
exists K14 so that for large enough n, e−nεe−s∆β

/4 ≥ e−K14nε.
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