The Topological Entropy of Generalized Polygon Exchanges

Eugene Gutkin * Nicolai Haydn ${ }^{\dagger}$

May 8, 2014

1 Summary

We introduce the notion of a generalized polyhedron exchange (g.p.e.), and define the topological entropy of a g.p.e. By our definition, the g.p.e. is a generalization to an arbitrary dimension of the interval exchange transformation [1]. Many natural dynamical systems are g.p.e.'s. For instance, the Poincare return map of a polygonal billiard, [4], is a g.p.e. in two dimensions (a generalized polygon exchange).

The (topological) entropy of a g.p.e., T, is the growth rate, under iterations, of the number of atoms in the defining paritition, \mathcal{P}_{n}, for T^{n}. Our main result, Theorem 3 below, says that if the length of the boundary of \mathcal{P}_{n} grows exponentially fast at a given rate ϑ (and if two other, technical, conditions are satisfied), the entropy of T is less or equal to ϑ. In particular it follows that if the length of the boundary grows subexponentially, then entropy of T is zero.

We give two applications of this theorem. One of them, Theorem 5, says that the topological entropy for (the Poincare map of) a polygonal billiard is zero. The two previous proofs of this fact, [4, 2], required a detailed analysis

[^0]of the dynamics of polygonal billiards. Our proof is based on the observation that the boundary length grows quadratically, hence Theorem 3 applies.

The other application, Theorem 6, is to the directional billiards in a rational polytop (see the definition below). It says that the topological entropy of (the Poincare map of) any directional billiard is zero.

2 Generalized Polyhedron Exchanges

By a polyhedron $P, \operatorname{dim} P=n$, we mean a compact Euclidean polyhedron in $\mathbf{R}^{n}, \operatorname{int} P \neq \emptyset$. The m-dimensional faces of P are polyhedra of dimension $m<$ n. Polygons (polytops) are the polyhedra of dimension 2 (3). A partition \mathcal{P} of a polyhedron P is a representation $P=\bigcup_{i=1}^{n} P_{i}$, where P_{i} are subpolyhedra of P, and $\operatorname{int} P_{i} \cap \operatorname{int} P_{j}=\emptyset$ if $i \neq j$.

We fix $r \geq 1$, and shall say that something is smooth, whenever it is of class C^{r}.

Definition 1 (I) A generalized polyhedron X of dimension n is a closed subset of a smooth manifold M^{n}, and a mapping $f: X \mapsto \mathbf{R}^{n}$ (into) such that: 1) f extends to a diffeomorphism of an open set $O, X \subset O \subset M$, into \mathbf{R}^{n} 2) $f(X)$ is a polyhedron.
(II) Ad-dimensional space X with a generalized polyhedral partition \mathcal{P} is a subset of a manifold M^{d} and a representation $X=\bigcup_{i=1}^{n} X_{i}$ satisfying the following conditions.
i) The X_{i} are generalized polyhedra of dimension d.
ii) $\operatorname{int}\left(X_{i}\right) \cap \operatorname{int}\left(X_{j}\right)=\emptyset$ if $i \neq j$.
iii) If $I \subset\{1, \ldots, n\}$ is such that $\bigcap_{i \in I} X_{i} \neq \emptyset$, the polyhedral structures on $X_{i}, i \in I$, agree, so that $\bigcup_{i \in I} X_{i}$ is a generalized polyhedron.

If (X, \mathcal{P}) is as above, we say that X_{i} are the atoms of \mathcal{P}, and that $\partial \mathcal{P}=$ $\bigcup_{i=1}^{n} \partial X_{i}$ is the boundary of \mathcal{P}.

Definition 2 Let \mathcal{P} and \mathcal{Q} be two partitions of X, and let $T:(X, \mathcal{P}) \rightarrow$ (X, \mathcal{Q}) be such that $T_{i}=\left.T\right|_{P}: P_{i} \rightarrow Q_{i}$ and $T_{i}^{-1}: Q_{i} \rightarrow P_{i}$ are homeomorphisms and smooth on the interiors. Then we say T is a generalized polyhedron exchange (g.p.e.).

We say a partition \mathcal{Q} is a refinement of a partition \mathcal{P} (write $\mathcal{P}<\mathcal{Q}$) if every atom of \mathcal{Q} is a subpolyhedron of an atom of \mathcal{P}. If \mathcal{P} and \mathcal{Q} are two partitions of X, their join $\mathcal{P} \vee \mathcal{Q}$ is the partition formed by the intersections $P \cap Q$ where $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$. It turns out that the proper way to study the dynamics of a g.p.e. $T:(X, \mathcal{P}) \rightarrow(X, \mathcal{Q})$ is to consider an inverse limit space \hat{X}, which is constructed from T, \mathcal{P} and \mathcal{Q}, and on which the map \hat{T} induced by T is a homeomorphism. In that framework one can then define as usual (see, e.g., [5]) the nth join $\mathcal{P}_{n}=\bigvee_{k=0}^{n-1} T^{-k} \mathcal{P}$ of the partition \mathcal{P}. For simplicity of exposition, we shall in $\S 3$ consider only the case $\mathcal{P}=\mathcal{Q}=\mathcal{R}$, and say that $T:(X, \mathcal{R}) \rightarrow(X, \mathcal{R})$ is a g.p.e. on the partition \mathcal{R}.

We say a point $x \in X$ is n-regular if x belongs to the interior of an atom of $\mathcal{R}_{n}, n \geq 0$, and regular if it is n-regular for all n. Since we don't assume that T_{i} and T_{j} agree on $P_{i} \cap P_{j}$, in general, the powers T^{k} of a g.p.e. T are well defined only on the set of regular points, which is dense in X.

When $\operatorname{dim} X=2(3)$ we typically speak of a generalized polygon (polytop) exchange.

Examples. 1. A partition of $X=[0,1]$ is given by n intervals $P_{i}=\left[a_{i-1}, a_{i}\right]$. where $0=a_{0}<a_{1}<\ldots<a_{n}=1$. An interval exchange on the intervals $P_{i}, 1 \leq i \leq n$, (see, e.g., [1]) is then a special case of a g.p.e., and the mappings T_{i} are parallel translations.
2. Let X be a rectangle in \mathbf{R}^{2}, e.g. $X=[0,1] \times[0,1]$. Let the atoms of the partition $\mathcal{P}: X=\bigcup_{i=1}^{n} X_{i}$ be rectangles with the sides parallel to the coordinate axes. Let $t_{i}=\left(a_{i}, b_{i}\right)$ be n vectors such that the rectangles $Q_{i}=P_{i}+t_{i}, 1 \leq i \leq n$, form a partition \mathcal{Q} of X. This defines a rectangle exchange $T:(X, \mathcal{P}) \rightarrow(X, \mathcal{Q})$ where the restrictions $T_{i}, T_{i} x=x+t_{i}$, are translations in the plane.

2'. The space $X \subset \mathbf{R}^{2}$ is an arbitrary polygon, the atoms of a partition $\mathcal{P}: X=\cup P_{i}, 1 \leq i \leq n$, are subpolygons. We define an affine polygon exchange on \mathcal{P} by n affine transformations $T_{i}: P_{i} \rightarrow X$ such that $\mathcal{Q}=\left\{Q_{i}=\right.$ $\left.T_{i}\left(P_{i}\right), i=1, \ldots, n\right\}$, is a partition of X.
3. The obvious analog of Example 2 in 3 dimensions features the unit cube $X=[0,1] \times[0,1] \times[0,1] \subset \mathbf{R}^{3}$ partitioned by n rectangular parallelepipeds P_{i}. The mappings T_{i} are parallel translations $x \mapsto x+t_{i}, t_{i} \in \mathbf{R}^{3}$, such that the parallelepipeds $Q_{i}=P_{i}+t_{i}$ form a partition of X.

3'. In the 3 dimensional version of Example 2', X is a polytop, \mathcal{P} is a partition of X by subpolytops $P_{i}, 1 \leq i \leq n$, and $T_{i}: P_{i} \rightarrow X$ are affine
transformations of \mathbf{R}^{3} such that the polytops $Q_{i}=T_{i}\left(P_{i}\right), 1 \leq i \leq n$, form a partition, \mathcal{Q}, of X. This defines a polytop exchange $T:(X, \mathcal{P}) \rightarrow(X, \mathcal{Q})$.

3 Subexponential growth

Let $T: X \rightarrow X$ be a g.p.e. on a partition $\mathcal{R}=\left\{R_{i}: i \in I\right\}$. The number of atoms in a finite partition will be denoted by $|\mathcal{R}|$. The number $h(T, \mathcal{R} \mid)=$ $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{R}_{n}\right|$ is called the entropy of the g.p.e. T relative to the partition \mathcal{R}, and the topological entropy of the g.p.e. T is then given by $h(T)=\sup _{\mathcal{U}} h(T, \mathcal{U})$ where the supremum is over partitions \mathcal{U} such that $\mathcal{R}<\mathcal{U}$ (compare with the topological entropy of a homeomorphism, see, e.g., [5]). If \mathcal{R} is a generating partition (that is, the atoms of the infinite join $\bigvee_{j=-\infty}^{\infty} T^{j} \mathcal{R}$ consist of single points), then $h(T)=h(T, \mathcal{R})$.

We say a positive sequence $a_{n}, n \geq 1$, has growth rate $\vartheta \geq 0$ if

$$
\limsup _{n \rightarrow \infty} \frac{\log a_{n}}{n}=\vartheta
$$

We shall assume that there is a Finsler metric (i.e., a metric induced by norms on the tangent spaces) $d(\cdot, \cdot)$ on the space X. If γ is a piecewise C^{1} curve on X, we denote its length by $|\gamma|$. If \mathcal{P} is a polyhedral partition, we denote by $E(\mathcal{P})$ the union of edges of the atoms of \mathcal{P}, and set $\ell(\mathcal{P})=$ $|E(\mathcal{P})|$. For $x \in X$ let $\mathcal{P}_{x} \subset \mathcal{P}$ be the set of atoms containing x, and set $b(\mathcal{P})=\max _{x}\left|\mathcal{P}_{x}\right|$. Our main result is the following theorem:

Theorem 3 Let $T: X \rightarrow X$ be a g.p.e. on a partition \mathcal{R}. Suppose that the partitions $\mathcal{R}_{n}, n>0$, satisfy the following conditions:
i) The atoms of \mathcal{R}_{n} are connected.
ii) The sequence $c_{n}=\ell\left(\mathcal{R}_{n}\right)$ has growth rate $\vartheta \geq 0$.
iii) The sequence $b_{n}=b\left(\mathcal{R}_{n}\right)$ has growth rate $\leq \vartheta$.

Then the growth rate of the sequence $\left|\mathcal{R}_{n}\right|$ is bounded by ϑ.
Sketch of Proof. We will give a proof for the special case of a rectangle exchange, that is, the target partition of any partition that consists of euclidean rectangles is made up of euclidean rectangles (e.g. if T is a Baker's transformation). Thus let \mathcal{P} be a partition of a rectangle X into subrectangles P_{i}, on each of which the map T is a translation.

By assumption (ii) we have that $\ell\left(\mathcal{P}_{n}\right) \leq$ const. $\vartheta^{\prime n}$ for any $\vartheta^{\prime}>e^{\vartheta}$ and some const. which we can assume to be equal to 1 . Asummptions (i), (iii) are always satisfied for rectangle exchanges. In fact we have that $b\left(\mathcal{P}_{n}\right) \leq 4$ for all n.

Suppose the sequence $a_{n}=\left|\mathcal{P}_{n}\right|$ has growth rate $\alpha>\vartheta^{\prime}>\vartheta$. By considering a suitable iterate of T, we can achieve that $\vartheta^{\prime}>4$ and $\alpha>\vartheta^{\prime}+2$. For simplicity let us assume that $\alpha=\lim _{n} \frac{1}{n} \log a_{n}$.

Let δ be the smallest height or width of any of the rectangles in \mathcal{P}, and denote by B_{n} the number of 'bad' rectangles in \mathcal{P}_{n}, which are those atoms whose diameters exceed δ. In particular a 'bad' rectangle has boundary length greater than 2δ. Thus

$$
B_{n} \leq \frac{\ell\left(\mathcal{P}_{n}\right)}{2 \delta} \leq \frac{\vartheta^{\prime n}}{2 \delta}
$$

since $\ell\left(\mathcal{P}_{n}\right) \leq \vartheta^{\prime n}$ for large enough n. Let us now estimate $a_{n+1}=\left|\mathcal{P}_{n+1}\right|=$ $\left|T^{-1} \mathcal{P}_{n} \vee \mathcal{P}\right|$. Since in taking the join $T^{-1} \mathcal{P}_{n} \vee \mathcal{P}$ no 'good' rectangle (i.e. with diameter $\leq \delta$) in \mathcal{P}_{n} is cut into more than four pieces, we obtain

$$
a_{n+1} \leq a_{1} B_{n}+4 a_{n} \leq \frac{a_{1} \vartheta^{\prime n}}{2 \delta}+4 a_{n} \leq \vartheta^{\prime n} \cdot \text { const. }+4 \alpha^{n}<\left(\vartheta^{\prime}+1\right) \alpha^{n}
$$

if n is large enough. But this contradicts our assumption that $a_{n+1} \approx \alpha^{n+1} \geq$ $\left(\vartheta^{\prime}+2\right) \cdot \alpha^{n}$.

Corollary 4 If a g.p.e. $T:(X, \mathcal{R}) \rightarrow(X, \mathcal{R})$ satisfies the conditions of Theorem 3 then $h(T, \mathcal{R})=0$. If \mathcal{R} is moreover a generating partition, then T has topological entropy $\leq \vartheta$.

4 Applications

Polygonal billiard. Theorem 3 can be applied to the Poincare return map on the billiard flow in a polygon. If Δ is a polygon in \mathbf{R}^{2}, then the Poincare return map T maps the space $X=\partial \Delta \times[0, \pi]$ onto itself, where $\partial \Delta=[0, L]$ and L is the total length of $\partial \Delta$. If (s, ϑ) is a point in X, then it corresponds to a trajectory with footpoint $s \in \partial \Delta$ and whose angle of incidence is measured by ϑ. The map T is piecewise continuous on the elements of a finite partition $\mathcal{P}=\left\{P_{i}: i\right\}$, where the boundary of the individual polygons P_{i} consists of
precisely those points in X whose trajectory, when it hits $\partial \Delta$ next time, will be in a vertex of the polygon Δ. One can easily check that the Poincare return map T is indeed a g.p.e. that satisfies the first and the last condition of Theorem 3. To show that the length of the boundary set of \mathcal{P}_{n} grows subexponentially, or actually, quadratically, one defines a Finsler metric m on the cross-section X by

$$
d m=|d s| \sin \vartheta+|d \vartheta| .
$$

Using the explicit form of the differential, $d T$, one can show that $m\left(\partial \mathcal{P}_{n}\right) \leq$ $c n^{2}$, where c is a constant. Thus the second condition of Theorem 3 is satisfied by T, and we conclude as follows.

Theorem 5 The Poincare return map of a polygonal billiard has zero topological entropy.

Billiards in rational polytops. Let S be the surface of a closed connected polytop $V \subset \mathbf{R}^{3}$. The billiard flow in V has a natural cross-section X which consists of unit vectors v with footpoints in S, directed inward. The first return map $T: X \rightarrow X$ is the billiard ball map in 3 dimensions. The group $\operatorname{Aut}\left(\mathbf{R}^{3}\right)$ of Euclidean motions of \mathbf{R}^{3} is a semi-direct product of the orthogonal group, $O(3)$, and the group of translations of \mathbf{R}^{3}. For any hyperplane $L \subset \mathbf{R}^{3}$ let $g_{L} \in \operatorname{Aut}\left(\mathbf{R}^{3}\right)$ be the symmetry about L, and let $r_{L} \in O(3)$ be the corresponding orthogonal reflection. If the reflection group $G=G(V)$, generated by reflections r_{L} about the hyperplanes L spanned by the faces of the polytop V, is finite, then we say that V is a rational polytop.

We shall assume that V is a rational polytop. The natural action of G on the unit sphere $S^{2} \subset \mathbf{R}^{3}$ has a fundamental domain, $\Omega \subset \mathbf{R}^{3}$ which is a spherical polygon. We identify the points $\omega \in \Omega$ with the orbits of G in S^{2}, i.e. $\Omega \cong S^{2} / G$.

The phase space Z of the billiard flow in V consists of pairs $(v, \theta) \in V \times S^{2}$ and is foliated by invariant subsets $Z_{\omega}=\{(v, \theta): \theta \in \omega\} \in Z$, where $\omega \in \Omega$. We shall call the restriction of the billiard flow to Z_{ω} the billiard flow in direction ω and denote it by $B_{\omega}^{t}: Z_{\omega} \mapsto Z_{\omega}$.

For $\omega \in \operatorname{int}(\Omega)$, the invariant sets Z_{ω} are naturally homeomorphic to a canonical space W, that depends only on the polytop V and not on the 'parameter' ω. The space W is a closed 3-dimensional topological manifold, which geometrically is obtained by glueing $|G|$ copies of V along their
boundary faces. This construction of W from a rational polytop V has a close analog in two dimensions, where a rational polygon P in the plane gives, in a natural way, rise to a closed surface $S=S(P)$ which is triangulated by a finite number of copies of P, and which carries a one-parameter family of the directional billiard flows.

Denote by $F=F(W)$ the union of faces of W. We have the following result.

Theorem 6 Let V be a rational polytop.
(I) For any $\omega \in \Omega$, the set F is a cross-section of the directional billiard flow B_{ω}^{t}. Moreover, the first return map, T_{ω}, is an affine polygon exchange.
(II) For any direction ω, the topological entropy of T_{ω} is zero.

Directional billiard flows in a rational polytop are the analog in the three dimensions of such flows for a rational polygon (see, e.g., [3]). Thus, Theorem 6 is the three dimensional version of the well known fact that the directional billiards in a rational polygon have entropy zero (see, e.g., [1]).

References

[1] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic Theory, SpringerVerlag 1982
[2] G. Galperin, T. Kruger, S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, preprint, U. Bielefeld, 1993
[3] E. Gutkin, Billiard flows on almost integrable polyhedral surfaces, Ergod. Theor. and Dyn. Syst. 4 (1984), 569-584
[4] A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Commun. Math. Phys. 111 (1987), 151-160
[5] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag GTM \#79, 1982

[^0]: *Mathematics Department, University of Southern California, Los Angeles, 90089-1113. Email:egutkin@math.usc.edu. Partially supported by NSF.
 ${ }^{\dagger}$ Mathematics Department, University of Southern California, Los Angeles, 90089-1113. Email:<nhaydn@math.usc.edu $>$. Partially supported by NSF.

