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1 Summary

We introduce the notion of a generalized polyhedron exchange (g.p.e.), and
define the topological entropy of a g.p.e.. By our definition, the g.p.e. is a
generalization to an arbitrary dimension of the interval exchange transfor-
mation [1]. Many natural dynamical systems are g.p.e.’s. For instance, the
Poincare return map of a polygonal billiard, [4], is a g.p.e. in two dimensions
(a generalized polygon exchange).

The (topological) entropy of a g.p.e., T , is the growth rate, under iter-
ations, of the number of atoms in the defining paritition, Pn, for T n. Our
main result, Theorem 3 below, says that if the length of the boundary of
Pn grows exponentially fast at a given rate ϑ (and if two other, technical,
conditions are satisfied), the entropy of T is less or equal to ϑ. In particular
it follows that if the length of the boundary grows subexponentially, then
entropy of T is zero.

We give two applications of this theorem. One of them, Theorem 5, says
that the topological entropy for (the Poincare map of) a polygonal billiard is
zero. The two previous proofs of this fact, [4, 2], required a detailed analysis
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of the dynamics of polygonal billiards. Our proof is based on the observation
that the boundary length grows quadratically, hence Theorem 3 applies.

The other application, Theorem 6, is to the directional billiards in a ra-
tional polytop (see the definition below). It says that the topological entropy
of (the Poincare map of) any directional billiard is zero.

2 Generalized Polyhedron Exchanges

By a polyhedron P , dimP = n, we mean a compact Euclidean polyhedron in
Rn, intP 6= ∅. The m-dimensional faces of P are polyhedra of dimension m <
n. Polygons (polytops) are the polyhedra of dimension 2 (3). A partition P
of a polyhedron P is a representation P =

⋃n
i=1 Pi, where Pi are subpolyhedra

of P , and intPi ∩ intPj = ∅ if i 6= j.
We fix r ≥ 1, and shall say that something is smooth, whenever it is of

class Cr.

Definition 1 (I) A generalized polyhedron X of dimension n is a closed
subset of a smooth manifold Mn, and a mapping f : X 7→ Rn (into) such
that: 1) f extends to a diffeomorphism of an open set O, X ⊂ O ⊂M , into
Rn 2) f(X) is a polyhedron.
(II) A d-dimensional space X with a generalized polyhedral partition P is
a subset of a manifold Md and a representation X =

⋃n
i=1Xi satisfying the

following conditions.
i) The Xi are generalized polyhedra of dimension d.
ii) int(Xi) ∩ int(Xj) = ∅ if i 6= j.
iii) If I ⊂ {1, . . . , n} is such that

⋂
i∈I Xi 6= ∅, the polyhedral structures on

Xi, i ∈ I, agree, so that
⋃

i∈I Xi is a generalized polyhedron.

If (X,P) is as above, we say that Xi are the atoms of P , and that ∂P =⋃n
i=1 ∂Xi is the boundary of P .

Definition 2 Let P and Q be two partitions of X, and let T : (X,P) →
(X,Q) be such that Ti = T |P : Pi → Qi and T−1

i : Qi → Pi are home-
omorphisms and smooth on the interiors. Then we say T is a generalized
polyhedron exchange (g.p.e.).
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We say a partition Q is a refinement of a partition P (write P < Q) if
every atom of Q is a subpolyhedron of an atom of P . If P and Q are two
partitions of X, their join P ∨Q is the partition formed by the intersections
P ∩Q where P ∈ P and Q ∈ Q. It turns out that the proper way to study
the dynamics of a g.p.e. T : (X,P)→ (X,Q) is to consider an inverse limit
space X̂, which is constructed from T, P and Q, and on which the map T̂
induced by T is a homeomorphism. In that framework one can then define
as usual (see, e.g., [5]) the nth join Pn =

∨n−1
k=0 T

−kP of the partition P . For
simplicity of exposition, we shall in §3 consider only the case P = Q = R,
and say that T : (X,R)→ (X,R) is a g.p.e. on the partition R.

We say a point x ∈ X is n-regular if x belongs to the interior of an atom
of Rn, n ≥ 0, and regular if it is n-regular for all n. Since we don’t assume
that Ti and Tj agree on Pi ∩ Pj, in general, the powers T k of a g.p.e. T are
well defined only on the set of regular points, which is dense in X.

When dimX = 2 (3) we typically speak of a generalized polygon (polytop)
exchange.

Examples. 1. A partition of X = [0, 1] is given by n intervals Pi = [ai−1, ai].
where 0 = a0 < a1 < . . . < an = 1. An interval exchange on the intervals
Pi, 1 ≤ i ≤ n, (see, e.g., [1]) is then a special case of a g.p.e., and the
mappings Ti are parallel translations.

2. Let X be a rectangle in R2, e.g. X = [0, 1] × [0, 1]. Let the atoms
of the partition P : X =

⋃n
i=1Xi be rectangles with the sides parallel to

the coordinate axes. Let ti = (ai, bi) be n vectors such that the rectangles
Qi = Pi + ti, 1 ≤ i ≤ n, form a partition Q of X. This defines a rectangle
exchange T : (X,P) → (X,Q) where the restrictions Ti, Tix = x + ti, are
translations in the plane.

2’. The space X ⊂ R2 is an arbitrary polygon, the atoms of a partition
P : X = ∪Pi, 1 ≤ i ≤ n, are subpolygons. We define an affine polygon
exchange on P by n affine transformations Ti : Pi → X such that Q = {Qi =
Ti(Pi), i = 1, . . . , n}, is a partition of X.

3. The obvious analog of Example 2 in 3 dimensions features the unit cube
X = [0, 1] × [0, 1] × [0, 1] ⊂ R3 partitioned by n rectangular parallelepipeds
Pi. The mappings Ti are parallel translations x 7→ x+ ti, ti ∈ R3, such that
the parallelepipeds Qi = Pi + ti form a partition of X.

3’. In the 3 dimensional version of Example 2’, X is a polytop, P is a
partition of X by subpolytops Pi, 1 ≤ i ≤ n, and Ti : Pi → X are affine
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transformations of R3 such that the polytops Qi = Ti(Pi), 1 ≤ i ≤ n, form a
partition, Q, of X. This defines a polytop exchange T : (X,P)→ (X,Q).

3 Subexponential growth

Let T : X → X be a g.p.e. on a partition R = {Ri : i ∈ I}. The number of
atoms in a finite partition will be denoted by |R|. The number h(T,R|) =
lim supn→∞

1
n

log |Rn| is called the entropy of the g.p.e. T relative to the
partition R, and the topological entropy of the g.p.e. T is then given by
h(T ) = supU h(T,U) where the supremum is over partitions U such that
R < U (compare with the topological entropy of a homeomorphism, see,
e.g., [5]). If R is a generating partition (that is, the atoms of the infinite join∨∞

j=−∞ T
jR consist of single points), then h(T ) = h(T,R).

We say a positive sequence an, n ≥ 1, has growth rate ϑ ≥ 0 if

lim sup
n→∞

log an

n
= ϑ.

We shall assume that there is a Finsler metric (i.e., a metric induced
by norms on the tangent spaces) d(·, ·) on the space X. If γ is a piecewise
C1 curve on X, we denote its length by |γ|. If P is a polyhedral partition,
we denote by E(P) the union of edges of the atoms of P , and set `(P) =
|E(P)|. For x ∈ X let Px ⊂ P be the set of atoms containing x, and set
b(P) = maxx |Px|. Our main result is the following theorem:

Theorem 3 Let T : X → X be a g.p.e. on a partition R. Suppose that the
partitions Rn, n > 0, satisfy the following conditions:
i) The atoms of Rn are connected.
ii) The sequence cn = `(Rn) has growth rate ϑ ≥ 0.
iii) The sequence bn = b(Rn) has growth rate ≤ ϑ.

Then the growth rate of the sequence |Rn| is bounded by ϑ.

Sketch of Proof. We will give a proof for the special case of a rectangle
exchange, that is, the target partition of any partition that consists of eu-
clidean rectangles is made up of euclidean rectangles (e.g. if T is a Baker’s
transformation). Thus let P be a partition of a rectangle X into subrectan-
gles Pi, on each of which the map T is a translation.
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By assumption (ii) we have that `(Pn) ≤ const.ϑ′n for any ϑ′ > eϑ and
some const. which we can assume to be equal to 1. Asummptions (i), (iii)
are always satisfied for rectangle exchanges. In fact we have that b(Pn) ≤ 4
for all n.

Suppose the sequence an = |Pn| has growth rate α > ϑ′ > ϑ. By consid-
ering a suitable iterate of T , we can achieve that ϑ′ > 4 and α > ϑ′ + 2. For
simplicity let us assume that α = limn

1
n

log an.
Let δ be the smallest height or width of any of the rectangles in P , and

denote by Bn the number of ‘bad’ rectangles in Pn, which are those atoms
whose diameters exceed δ. In particular a ‘bad’ rectangle has boundary
length greater than 2δ. Thus

Bn ≤
`(Pn)

2δ
≤ ϑ′n

2δ
,

since `(Pn) ≤ ϑ′n for large enough n. Let us now estimate an+1 = |Pn+1| =
|T−1Pn ∨ P|. Since in taking the join T−1Pn ∨ P no ‘good’ rectangle (i.e.
with diameter ≤ δ) in Pn is cut into more than four pieces, we obtain

an+1 ≤ a1Bn + 4an ≤
a1ϑ

′n

2δ
+ 4an ≤ ϑ′n · const. + 4αn < (ϑ′ + 1)αn

if n is large enough. But this contradicts our assumption that an+1 ≈ αn+1 ≥
(ϑ′ + 2) · αn. 2

Corollary 4 If a g.p.e. T : (X,R) → (X,R) satisfies the conditions of
Theorem 3 then h(T,R) = 0. If R is moreover a generating partition, then
T has topological entropy ≤ ϑ.

4 Applications

Polygonal billiard. Theorem 3 can be applied to the Poincare return map
on the billiard flow in a polygon. If ∆ is a polygon in R2, then the Poincare
return map T maps the space X = ∂∆× [0, π] onto itself, where ∂∆ = [0, L]
and L is the total length of ∂∆. If (s, ϑ) is a point in X, then it corresponds to
a trajectory with footpoint s ∈ ∂∆ and whose angle of incidence is measured
by ϑ. The map T is piecewise continuous on the elements of a finite partition
P = {Pi : i}, where the boundary of the individual polygons Pi consists of
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precisely those points in X whose trajectory, when it hits ∂∆ next time, will
be in a vertex of the polygon ∆. One can easily check that the Poincare
return map T is indeed a g.p.e. that satisfies the first and the last condition
of Theorem 3. To show that the length of the boundary set of Pn grows
subexponentially, or actually, quadratically, one defines a Finsler metric m
on the cross-section X by

dm = |ds| sinϑ+ |dϑ|.

Using the explicit form of the differential, dT , one can show that m(∂Pn) ≤
cn2, where c is a constant. Thus the second condition of Theorem 3 is satisfied
by T , and we conclude as follows.

Theorem 5 The Poincare return map of a polygonal billiard has zero topo-
logical entropy.

Billiards in rational polytops. Let S be the surface of a closed connected
polytop V ⊂ R3. The billiard flow in V has a natural cross-section X which
consists of unit vectors v with footpoints in S, directed inward. The first
return map T : X → X is the billiard ball map in 3 dimensions. The group
Aut(R3) of Euclidean motions of R3 is a semi-direct product of the orthog-
onal group, O(3), and the group of translations of R3. For any hyperplane
L ⊂ R3 let gL ∈ Aut(R3) be the symmetry about L, and let rL ∈ O(3) be
the corresponding orthogonal reflection. If the reflection group G = G(V ),
generated by reflections rL about the hyperplanes L spanned by the faces of
the polytop V , is finite, then we say that V is a rational polytop.

We shall assume that V is a rational polytop. The natural action of G
on the unit sphere S2 ⊂ R3 has a fundamental domain, Ω ⊂ R3 which is a
spherical polygon. We identify the points ω ∈ Ω with the orbits of G in S2,
i.e. Ω ∼= S2/G.

The phase space Z of the billiard flow in V consists of pairs (v, θ) ∈ V ×S2

and is foliated by invariant subsets Zω = {(v, θ) : θ ∈ ω} ∈ Z, where ω ∈ Ω.
We shall call the restriction of the billiard flow to Zω the billiard flow in
direction ω and denote it by Bt

ω : Zω 7→ Zω.
For ω ∈ int(Ω), the invariant sets Zω are naturally homeomorphic to

a canonical space W , that depends only on the polytop V and not on the
‘parameter’ ω. The space W is a closed 3-dimensional topological mani-
fold, which geometrically is obtained by glueing |G| copies of V along their
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boundary faces. This construction of W from a rational polytop V has a close
analog in two dimensions, where a rational polygon P in the plane gives, in
a natural way, rise to a closed surface S = S(P ) which is triangulated by a
finite number of copies of P , and which carries a one-parameter family of the
directional billiard flows.

Denote by F = F (W ) the union of faces of W . We have the following
result.

Theorem 6 Let V be a rational polytop.
(I) For any ω ∈ Ω, the set F is a cross-section of the directional billiard flow
Bt

ω. Moreover, the first return map, Tω, is an affine polygon exchange.
(II) For any direction ω, the topological entropy of Tω is zero.

Directional billiard flows in a rational polytop are the analog in the three
dimensions of such flows for a rational polygon (see, e.g., [3]). Thus, Theorem
6 is the three dimensional version of the well known fact that the directional
billiards in a rational polygon have entropy zero (see, e.g., [1]).
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