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Abstract: We study the dynamics of rational maps with indifferent parabolic
points by comparing their dynamical properties to those of it’s ‘jump trans-
formation’ which is uniformly expanding on a non-compact set with infinite
Markov partition. We establish the spectral properties of a two-variables
operator-valued function associated to the jump transformation and exploit
their dynamical relevance to study the analytic properties of the pressure,
the escape rate from a neighborhood of the Julia set and the asymptotic
distribution of pre-images.

1 Introduction

Let T : C → C be a rational map of the Riemann sphere C̄ equipped with
the spherical metric d and denote by J its Julia set. We shall assume that
the point∞ does not lie in the Julia set. This allows us to use the euclidean
metric in C rather than the spherical metric on C̄. One says that T |J is
expansive if there exists an expansive constant α > 0 such that

sup
n≥0

d(T n(x), T n(y)) ≥ α

for all x, y ∈ J , x 6= y. This property does not depend on the metric.
Moreover, one says that T is expanding if there exists β > 1 (an expanding
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constant) such that, for some n ≥ 1,

|(T n)′(x)| ≥ β

for all x ∈ J . A rational map T is said to be parabolic if the restriction T |J is
expansive but not expanding. Furthermore, T is parabolic if and only if the
Julia set contains no critical point of T , but contains rationally indifferent
periodic points [5].

Rational parabolic Julia sets have been studied by a variety of people
starting with Fatou at the beginning of this century. In recent years, a
sequence of papers by Denker, Urbanski and others (e.g. [1, 5, 6, 12]) has
provided us with a detailed study of conformal and invariant measures on J
as well as their relationships with the pressure function and the Hausdorff
dimension.

In what follows we shall partially rely on these previous results by ex-
plicitly stating those which are repeatedly used throughout the paper. In
particular, those dealing with the asymptotic behaviour of a rational map
near parabolic points (see Propositions 1 and 2 below), the existence of a
Markov partition (Proposition 3) and the continuity and monotonicity of the
pressure function (first part of Theorem 15).

However in this paper we adopt a different point of view, mainly focusing
on the spectrum of a two-variables operator-valued function which is related
to a jump transformation T̂ obtained by inducing on a subset of J where
the map T is uniformly expanding (see Sections 2 and 3). The main results
that we extract from these spectral properties concern the behaviour of the
derivatives of the pressure function Pt in a neighbourhood of t = h where h
is the Hausdorff dimension of J (Section 4), a polynomial escape rate from
a neighbourhood of J (Section 5) and the asymptotic distribution of the
pre-images of points in J (Section 6).

2 Parabolic points and the jump transforma-

tion

The set Λ of all rationally indifferent periodic points of T is finite (see, e.g.,
[2]). One may then consider the map T q where q ≥ 1 is taken so that
T q(λ) = λ and (T q)′(λ) = 1 for every λ ∈ Λ. Thus, without loss of generality,
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we can assume that the parabolic points Λ are fixed points. We can moreover
assume that T ′(λ) = 1 for all λ ∈ Λ. Set Λ = {λ1, . . . , λr} for some r ≥ 1.

For every λ ∈ Λ there exists an open neighbourhood Uλ of λ of diameter
not exceeding an expansive constant for T and a unique holomophic inverse
branch T−1

λ : Uλ → C of T such that T−1
λ (λ) = λ and

T−1
λ (Uλ ∩ J) ⊂ Uλ ∩ J.

Moreover, according to Fatou’s flower theorem [2] T−1
λ has the expansion

T−1
λ (z) = z − aλ(z − λ)p(λ)+1 + higher order terms in (z − λ)

with aλ 6= 0. The integer p(λ) + 1 ≥ 2 is called the multiplicity of the fixed
point λ (see [13]) and we shall define the characteristic value of λ to be the
number

γ(λ) =
p(λ) + 1

p(λ)
∈ {2, 3

2
,
4

3
, . . .}

Of the following two results ([1], Section 8), both of which are conse-
quences of Fatou’s theorem, Proposition 2 involves the Köbe distortion the-
orem.

Proposition 1 Let T be a parabolic rational map with Julia set J and as-
sume that the parabolic points Λ are all fixed points of T . Then every λ ∈ Λ
has an open neighbourhood Vλ ⊂ Uλ such that for any z ∈ J ∩ Vλ one has

lim
n→∞

|zn − λ|
n−1/p(λ)

= (|aλ|p(λ))−1/p(λ),

lim
n→∞

|zn − zn+1|
n−γ(λ)

= |aλ|(|aλ|p)−γ(λ),

where zn = T−nλ (z) and γ(λ) is the characteristic value of λ.

Proposition 2 Let T , J , Λ and Vλ be as in Proposition 1. Then for any
z ∈ J ∩ Vλ there is a constant C1 > 1 such that

C−1
1 ≤

|(T n)′(zn)|
nγ(λ)

≤ C1.
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A measure m on J is said to be t-conformal, t ≥ 0, for T if

m(T (A)) =
∫
A
|T ′|t dm

for every Borel set A ⊂ J on which T is injective. Any rational map T
possesses a t-conformal measure for some t ≥ 0 [19], and this conformal mea-
sure is unique if T is expanding. The exponent t associated to m equals the
Hausdorff dimension h of J and m is equivalent to the h-dimensional Haus-
dorff measure on J [16]. For parabolic rational maps, the set of exponents
for which conformal measures exist is infinite, even though the h-conformal
measure is non-atomic and unique ([1], Theorem 8.7) and will from now on
be denoted by m.

The Hausdorff dimension h of the Julia set of a parabolic rational map
satisfies 1/γ0 < h < 2 ([1] Section 8), where γ0 = min{γ(λ) : λ ∈ Λ} (recall
that γ(λ) is the characteristic value of the parabolic fixed point λ).

Proposition 3 [5] Let T be a parabolic rational map with Julia set J and
expansive constant α > 0, so small that for every pair of rationally indifferent
points λ 6= λ′ ∈ J ,

dist(T (B2α(λ)),Λ \T (λ)) > 2α (1)

|λ− λ′| > 4α. (2)

Then there exist δ ∈ (0, α) and a Markov partition A = {A1, . . . , As} such
that
(1) diamT (Ak) < δ and T |Ak is 1-1 for all k = 1, . . . , s.
(2) if T (Ak) ∩ (J \ Bα(Λ)) 6= ∅, then the inverse branches Sn of T n are
univalent on B2δ(T (Ak)) for n ≥ 1.
(3) if

⋂
0≤j<n T

−j(Akj) 6= ∅ and T (Akn−1)∩ (J \Bα(Λ)) 6= ∅, then there exists
a unique analytic inverse branch ϕ ∈ Sn with domain B2δ(T (Akn−1)) such
that

ϕ(T (Akn−1)) =
n−1⋂
j=0

T−j(Akj).

(4) m(∂A) = 0.

We obtain a symbolic description of the residual set X = J \⋃n≥0 T
−n(∂A),

where ∂A =
⋃r
i=1Ai \ int(Ai). Define an s× s transition matrix t by putting
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tij = 1 if int(Ai) ∩ int(T−1(Aj)) 6= ∅ and tij = 0 otherwise. Then we put

Ω = {ω ∈ {1, . . . , s}N : tωjωj+1
= 1, j ≥ 0},

and denote by τ : Ω→ Ω the shift transformation. The map ξ : Ω→ J given
by

ξ(ω) =
∞⋂
j=0

T j(Aωj)

is a bijection between Ω and the residual set X and semiconjugates τ with
T , that is ξT = τξ. If η = η0, . . . , ηn−1 is a word in Ω (of length n), then we
write U(η) for the ‘cylinder set’ {ω ∈ Ω : ωj = ηj, j = 0, . . . , n − 1}. Put
Ωn for the set of words in Ω of lengths n, n ∈ N.

Let An =
∨n−1
j=0 T

−j(A) be the n-th join of A and denote by Aη =
ξ(U(η)) ∈ An the atom that corresponds to the word η ∈ Ωn (of length
n) in Ω. Define Gn ⊂ An (‘good’ cylinders of length n) as

Gn = {Aη : Aηn−1 ∩ (J \Bα(Λ)) 6= ∅, η ∈ Ωn}.

Let us now introduce the return function R : J → N ∪ {∞} by

R(z) = inf{n ∈ N :
n−1⋂
j=0

T−j(Aωj(z)) ∈ Gn}

(where inf ∅ = ∞) and its levelsets Rn = {x ∈ X : R(x) = n}. If n > 2 we
clearly have T (Rn) = Rn−1 and T (R2) ⊆ R1. Since the map is parabolic,
one also has T (R1 \ T (R2)) = X.

Definition 4 ([18],[1]) The map T̂ : J → J given by T̂ (z) = TR(z)(z),
z ∈ X is called the jump transformation associated with T .

The partition
B = {A ∩Rn : A ∈ An, n = 1, . . .},

is a Markov partition for the jump transformation T̂ . Its atoms have all
diameter < δ. Moreover, T̂ |B is a homeomorphism for every B ∈ B. The
return time function R is constant on the atoms B of B we and shall write
R(B) = n if B ⊂ Rn.

We denote by TA and T̂A the restrictions of T and respectively T̂ to a
set A ⊂ J . As TR1 = T̂R1 we have that |T ′R1

| = |T̂ ′R1
| ≥ β for some β > 1.

Since Rn ⊂ B2α(Λ) for n = 2, . . ., we obtain using Propositions 1 and 2 the
following result:
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Proposition 5 (1) There exists a β > 1 such that |T̂ ′R1
| ≥ β.

(2) There exists a constant C2 ≥ 1 such that for all B ∈ B:

C−1
2 ≤

|T̂ ′B|
R(B)γ(B)

≤ C2,

where γ(B) is the characteristic value of the parabolic fixed point λ(B).

There exists a T̂ -invariant probability measure ρ ∼ m such that φ = dρ/dm
is bounded away from 0 and ∞ and is Lipschitz continuous ([1], Section 9).

Proposition 6 There exits positive constant C3 and numbers Mλ, λ ∈ Λ,
such that for all B ∈ B

C−1
3 ≤ m(B)R(B)hγ(B) ≤ C3,

ρ(B) = Mλ(B) m(B)
(
1 +O(R(B)−1/p(B))

)
.

Proof. If B ∈ B so that B ⊂ Rn+2, then

m(T n(B)) =
∫
B
|(T n)′|h dm = |(T n)′ z̄n|hm(B)

for some z̄n ∈ B. Put z = T nz̄n (note z ∈ R2), and it follows from Proposi-
tion 2 that

C−1
1 m(T n(B)) ≤ m(B)R(B)hγ(B) ≤ C1m(T n(B)).

The first set of inequalities follows now if we put C3 = C1(m(R2)+1/m(R2)).
Consider the local averages

φB =
ρ(B)

m(B)
=

1

m(B)

∫
B
φ dm,

B ∈ B, and let zB ∈ B be such that φB = φ(zB). Since the inverse branches
of T near parabolic points are (non-uniform) contractions, we obtain

|φB − φB′ | ≤ L |zB − z′B| ≤ L |zB − λ(B)|

for all B′ ∈ B for which λ(B′) = λ(B), where L is the Lipshitz constant of
the density function φ. Thus, for every parabolic point λ ∈ Λ we obtain a
limit

Mλ = lim
λ(B)=λ,R(B)→∞

φB,
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where by proposition 1 as: |Mλ(B)−φB| ≤ c1R(B)−1/p(B), for some constant
c1. This proves the second set of inequalities. 2

The previous results now easily provide a criterion for the finiteness of the
natural invariant measure as follows (see also [1]).

Proposition 7 The σ-finite measure ν = Rρ is T -invariant. Moreover,
if hγ0 > 2 then ν(J) < ∞ whereas if hγ0 ≤ 2 then ν(J) = ∞ (recall
γ0 = minλ∈Λ γ(λ)).

Proof. The T -invariance of ν follows from the identity:

ν(B) =
∞∑
k=0

ρ(T−kB ∩
⋃
n>k

Rn),

where B are Borel subsets of J . In particular we have ν(R1) =
∑
k≥1 ρ(Rk) =

1. The other statement of the proposition follows applying proposition 6 to
the identity:

ν(J) = ρ(R) =
∞∑
k=1

kρ(Rk) =
∞∑
k=1

km(φχRk),

where χRk is the characteristic function of the levelset Rk. 2

We label the atoms of the (infinite) partition B = {Bj : j = 1, 2, . . .} so
that the function R is non-decreasing, that is R(i) ≤ R(j) if i < j (here
R(j) = R(Bj)). Since the number of parabolic points is finite we get that
c − 1 + k/|Λ| ≤ R(k) ≤ c + k/|Λ| where c = |{j : R(j) = 1}| is the number
of elements of the partition which lie in the first levelset R1.

Define transition matrices M and M̂ by putting Mij = 1 whenever

int(Bi) ∩ int(T−1(Bj)) 6= ∅ and Mij = 0 otherwise, and M̂ij = 1 if int(Bi) ∩
int(T̂−1(Bj)) 6= ∅ and M̂ij = 0 otherwise. Notice that Mij = M̂ij = tij if
Bi, Bj ⊂ R1. Moreover, if Bi ⊂ Rk for some k > 2, then there exists a
unique Bj ⊂ Rk−1 such that Mij = 1. Define the shiftspaces

Σ = {x ∈ NN : Mxjxj+1
= 1∀j ≥ 0},

Σ̂ = {x ∈ NN : M̂xjxj+1
= 1∀j ≥ 0},
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and denote by σ and σ̂ the shift transformation on the respective shift spaces.
The map π : Σ→ J (resp. π̂ : Σ̂→ J) given by

π(x) =
∞⋂
j=0

T−jBxj

(respectively by π̂(x) =
⋂∞
j=0 T̂

−jBxj) is a bijection between Σ (resp. Σ̂) and

the residual set X0 = J \Λ. In addition, it conjugates T (resp. T̂ ) with the
shift τ on Σ (resp. on Σ̂).

3 Transfer operators.

For θ ∈ (0, 1) we define in the usual way a metric on Σ by setting dθ(y, y
′) =

θn where n is largest such that yj = y′j for 0 ≤ j ≤ n. Moreover, if Φ is a
(continuous) complex valued function on Σ then

varnΦ = sup{ |Φ(y)− Φ(y′)| : yj = y′j, 0 ≤ j ≤ n}

is the n-the variation of Φ (n = 1, 2, . . .) and

|Φ|θ = sup
n≥0

varnΦ

θn

is the associated Lipshitz constant. We denote by Fθ the Banach space of
complex valued functions on Σ which are finite with respect to the norm
‖Φ‖θ = |Φ|θ + |Φ|∞. In the same fashion we define the space F̂θ of Lipshitz
continuous functions on the shiftspace Σ̂.

Let us define the following functions on Σ and Σ̂ respectively:

V (x) = log(Tx0)
′(π(σ(x))),

V̂ (y) = log(T̂y0)
′(π̂(σ̂(y))),

where Tk = T−1
Bk

and T̂k = T̂−1
Bk

for k ∈ N and x ∈ Σ, y ∈ Σ̂.

Lemma 8 For any θ ≥ 1/β, V̂ ∈ F̂θ.
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Proof. If y, y′ ∈ Σ̂ are chosen so that dθ(y, y
′) = θn for some n ≥ 1 then the

two points z = π̂(y) and z′ = π̂(y′) belong to the same atom Bk, k = y0 = y0
′,

of the Markov partition B.
Since yj = y′j, j = 1, . . . , n, Proposition 5(1) implies that |z−z′| ≤ c1β

−ndiamBk,
for some constant c1 > 0 which is independent of k. Hence, for z̄ ∈ Bk, we
have

|V̂ (y)− V̂ (y′)| = | log T̂ ′(z)− log T̂ ′(z′)|

≤ c2|z − z′|max
z̄∈Bk

∣∣∣∣∣ T̂ ′′(z̄)

T̂ ′(z̄)

∣∣∣∣∣
≤ c3 max

z̄∈Bk

∣∣∣∣∣ T̂ ′′(z̄)

T̂ ′(z̄)

∣∣∣∣∣ · diamBk · β−n,

for some constants c2, c3. It remains to show that the term |T̂ ′′(z̄)/T̂ ′(z̄)| ·
diamBk is bounded uniformly in k. This follows from the boundedness of
|T̂ ′′(z̄)/(T̂ ′)2(z̄)|. An application of the chain rule yields

T̂ ′′(z)

(T̂ ′)2(z)
=

(T k)′′(z)

((T k)′)2(z)
=

k−1∑
j=0

T ′′(T j(z))

(T ′)2(T j(z))

1∏k−1
`=j+1 T

′(T `(z))
,

z ∈ Bk. Using Proposition 2 one estimates
∏k−1
`=j+1 |T ′(T `(z))| ≥ c4(k−`)γ(Bk)

(for some c4 > 0). Hence the finite sum is uniformly bounded. 2

For (t, z) ∈ C2 we define a transfer operator L̂t,z : F̂θ → F̂θ by

L̂t,z =
∞∑
k=1

zR(k)Kt,k =
∞∑
`=1

z`
∑

R(k)=`

Kt,k,

where Kt,kφ(x) = etV̂ (kx)φ(kx), if Mkx0 = 1 and Kt,k = 0 otherwise, where

φ ∈ F̂θ. For z = 1 and t real and positive we recover the usual transfer
operator on F̂θ.

Lemma 9 The power series of L̂t,z has radius of convergence bounded from
below by 1 for every t s.t. Re t > 0 and, moreover, converges absolutely on
the circle |z| = 1 for Re t > 1/γ0, (where γ0 = minλ∈Λ γ(λ)).

Proof. Since the cardinality of the levelsets of the function R is uniformly
bounded, the radius of convergence of the power series L̂t,z is, according to
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Hadamard’s formula, given by
(
limk→∞ ‖Kt,k‖1/R(k)

θ

)−1
. If φ ∈ F̂θ is a ‘test’

function, then, by proposition 5,

|Kt,kφ|∞ ≤ |φ|∞ exp(Re t sup
x
V̂ (kx))

≤ |φ|∞ sup
Bk

|T̂ ′|−Re t

≤ |φ|∞CR(k)−γ0Re t .

To estimate the Hölder constant of Kt,kφ, let x, x′ ∈ Σ̂ be so that xi = x′i for

0 ≤ i < m. Therefore (provided M̂kx0 = 1)

Kt,kφ(x)−Kt,kφ(x′) = etV̂ (kx)φ(kx)− etV̂ (kx′)φ(kx′)

= etV̂ (kx)
(
(φ(kx)− φ(kx′)) + φ(kx′)(1− etV̂ (kx′)−tV̂ (kx))

)
,

and

|Kt,kφ(x)−Kt,kφ(x′)| ≤ eRe t V̂ (kx)
(
|φ|θ + |φ|∞c1|V̂ |θ

)
θm+1

≤ c2‖φ‖θθm+1eRe t V̂ (kx),

for some constants c1, c2, which implies that

‖Kt,k‖θ ≤ c2 sup
x
eRe t V̂ (kx) ≤ c2 sup

Bk

|T̂ ′|−Re t ≤ c2C2R(k)−γ0 Re t .

In the last inequality we made use of proposition 5. This proves the lower
bound on the radius of convergence. For |z| = 1 the series converges abso-
lutely if γ0 Re t > 1. 2

Remark. The above result implies that the operator-valued function (t, z)→
L̂t,z is holomorphic in { t : Re t > 1/γ0} × { z : |z| < 1} and is continuous
in { t : Re t > 1/γ0}×{ z : |z| ≤ 1}. In particular, for (t, z) in this domain,
we have

[(d/dt)L̂t,z]ψ(x) =
∞∑
k=1

zR(k)etV̂ (kx)V̂ (kx)ψ(kx) = L̂t,z(ψ V̂ )(x).

Now, for a real valued function u on Σ we define the pressure

P (u) = lim sup
n→∞

1

n
logZn(u),
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where Zn(u) =
∑
σnx=x e

un(x) is the n-th partition function and un = u +
uσ + uσ2 + · · · + uσn−1 denotes the n-th ergodic sum of u. Similarly, if u
is a function on Σ̂ then P̂ (u) = lim supn→∞

1
n

log Ẑn(u) denotes its pressure,

where Ẑn(u) =
∑
σ̂nx=x e

un(x). For 0 < z ≤ 1 and t real and positive set

P̂t,z = P̂ (tV̂ +R log z).

Lemma 10 For any 0 < z ≤ 1 the pressure function P̂t,z is finite for t >
1/γ0.

Proof. Take first z = 1. Denote by Tn the words in the subshift Σ̂ of lengths
n (T1 = B). Let z be real and positive, and recall that |{k : R(k) = `}| = |Λ|
for ` ≥ 2. Then

Ẑn+1 ≤
∑

η∈Tn+1

sup
x∈U(η)

etV̂
n+1(x)

≤ c1Ẑn
∑
ηn∈T1

sup
x∈U(ηn)

etV̂ (x)

≤ c1Ẑn

(
cβ +

∞∑
`=2

C2|Λ|`−γt
)
,

where c1 = exp(2|tV̂ |θ/(1−θ)) and c = |{k : R(k) = 1}|. We used proposition

5 to estimate eV̂ (x) = |T̂ ′(x)|−1 ≤ β for R(x) = 1, and eV̂ (x) = |T̂ ′(x)|−1 ≤
C2`

−γ for R(x) = ` ≥ 2. Thus we conclude that

c1

(
cβ−t + |Λ|Ct

2

∞∑
`=2

`−γt
)

is finite if γt > 1. Therefore

Ẑn+1 ≤ Ẑnc1

(
cβ−t +

|Λ|Ct
2

γt− 1

)
,

which implies that the pressure P̂t,1 is bounded by

log

(
c1cβ

−t +
c1|Λ|Ct

2

γt− 1

)
.

The assertion now follows by noting that since log Ẑn is monotonically in-
creasing as a function of z for 0 < z ≤ 1, so is P̂t,z. 2
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Theorem 11 Let Re t > 1/γ0 and |z| ≤ 1. Then
(a) The spectral radius of L̂t,z : F̂θ → F̂θ is bounded above by exp P̂Re t ,|z|.

(b) The essential spectral radius of L̂t,z is bounded above by θ exp P̂Re t ,|z|.

(c) If (t, z) ∈ R2
+ then L̂t,z has at most one simple eigenvalue of modulus

exp P̂t,z and exactly one at exp P̂t,z.

Proof. As above denote by Tn the words in the subshift Σ̂ of lengths n.
Since for z = 0 one has L̂t,0 = 0 let us now assume that z 6= 0. To prove

(a) let φ be a ‘test’ function in F̂θ and choose some ε > 0. Put s = log |z|,
t = u+ iv and R(x) = R(x0) for points x in the shiftspace Σ̂. Then

|L̂nt,zφ|∞ ≤
∑
η∈Tn

e(uV̂+sR)n(xη)|φ|∞ ≤ C
∑
η∈Tn

e(uV̂+sR)n(η∞)|φ|∞ ≤ e(P̂u,|z|+ε)n,

for all large enough n, where C = exp t|V̂ |θ
1−θ and xη ∈ U(η) is chosen so that

V̂ n(xη) = maxx∈Bη V̂
n(x). The point η∞ denotes the periodic point which is

obtained by infinitely concatenating the finite word η with itself.
To estimate the variation of L̂nt,zφ let x, x′ be two points in Σ̂ so that

xj = x′j for j = 1, . . . , k. Hence for all large enough n,

|L̂nt,zφ(x)− L̂nt,zφ(x′)| = |
∑
η∈Tn

e(tV̂+sR)n(ηx)((φ(ηx)− φ(ηx′))

+φ(ηx′)(1− etV̂ n(ηx′)−tV̂ n(ηx)))|
≤

∑
η∈Tn

e(uV̂+sR)n(ηx)θn+k(|φ|θ + |φ|∞c1e
c1)

≤ θke(P̂u,|z|+ε)n‖φ‖θ,

where c1 = |uV̂ |θ. We have thus shown that ‖L̂nt,zφ‖θ ≤ e(P̂u,|z|+ε)n‖φ‖θ for
all large enough n. Part (a) of the lemma follows now, since this estimate
applies to every positive ε.

To prove (b) we shall in the usual way (see [10]) approximate the opera-
tor L̂t,z by compact operators and use Nussbaum’s essential spectral radius
formula.

Let N0 be some integer, and decompose Tn into the two disjoint sets T ′n
and T ′′n , where T ′n consists of those words g0g1 . . . gn−1 for which R(gj) ≤
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N0, j = 0, . . . , n− 1, and T ′′n = Tn \ T ′n. Let Pn : F̂θ → F̂θ be the projection
operator defined by

Pnφ(x) =
∑
η∈T ′n

φ(xη)χη,

where χη is the characteristic function of the cylinder set U(η) = {y ∈ Σ̂ :
yj = ηj, j = 0, . . . , n− 1}, and xη ∈ U(η) is some (arbitrarily) chosen point.

The operators L̂tPn are compact since their ranges are finite dimensional
vectorspaces. We obtain that

L̂nt,z(id− Pn)φ(x) =
∑
η∈T ′n

e(tV̂+R log z)n(ηx)(φ(ηx)− φ(xη))

+
∑
η∈T ′′n

e(tV̂+R log z)n(ηx)φ(ηx),

where the summation is over those η which satisfy M̂ηn−1x0 = 1. For every
ε > 0 we obtain

|L̂nt,z(id− Pn)φ|∞ ≤
∑
η∈T ′n

e(uV̂+sR)n(ηx)θn|φ|θ + |φ|∞
∑
η∈T ′′n

e(uV̂+sR)n(ηx)

≤ θn|φ|θ e(P̂u,|z|+ε)n + εn|φ|∞,

for all large enough n, where

εn =
∑
η∈T ′′n

e(uV̂+sR)n(ηx) ≤ θneP̂u,|z|n,

if we only choose N0 = N0(n) big enough. Hence, for all large enough n

|L̂nt,z(id− Pn)φ|∞ ≤ θne(P̂u,|z|+ε)n|φ|θ.

In order to estimate the variation we proceed as in part (a):

vark L̂nt,z(id− Pn)φ ≤ sup
x∈Σ̂

∑
η∈Tn

e(uV̂+sR)n(ηx)(θn+k|φ|θ

+θk|(id− Pn)φ|∞c1e
c1)

≤ θk+ne(P̂u,|z|+ε)n,

13



for all large enough n. This implies by Nussbaum’s essential spectrum for-
mula that the essential spectrum of L̂t,z is contained in the disk {w ∈ C :

|w| ≤ θeP̂u,|z|}. Finally, the proof of (c) follows standard arguments. 2

Let us define a one-block map ι : Σ̂ → Σ as follows. If y is a point in Σ̂,
then the j-th symbol yj will be mapped to the string aa · · · aa′, where the
element a is R(yj)−1 times repeated and a, a′ are so that π̂(σ̂j(y)) ∈ Aa and
π̂(σ̂j+1(y)) ∈ Aa′ . Hence the image of the element yj is a block in Σ of length
R(yj). The image point ι(y) is now the concatenation of the image blocks for
the symbols y0, y1, y2, . . .. Clearly, ι is a one-to-one map. Moreover, although
ι is not continuous, its inverse ι−1 : Σ → Σ̂ is a continuous map. We have
the relation

ι∗V̂ (y) =
y0−1∑
k=0

V (σk(x)).

For i = 1, 2 let us define the linear operators Lt,i : C(Σ) → C(Σ) by
Lt,1φ(x) =

∑
a:R(ax)=1 e

tV (ax)φ(ax) and Lt,2φ(x) =
∑
a:R(ax)>1 e

tV (ax)φ(ax). If
we put

Mt,z = ι∗L̂t,z,

then we have

Mt,z =
∞∑
j=1

zjLt,1Lj−1
t,2 = zLt,1(Id− zLt,2)−1.

so that, denoting Lt = Lt,1 + Lt,2 the transfer operator for the map T , we
obtain the following operator relation

Lemma 12 Let |z| ≤ 1 and and Re t > 1/γ0. Then for any ψ ∈ C(Σ) such
that (Id− zLt,2)ψ belongs to the space Eθ := ι∗Fθ, we have

(Id−Mt,z)(Id− zLt,2)ψ = (Id− zLt)ψ.

This immediately yields the following result.

Proposition 13 Let |z| ≤ 1 and Re t > 1/γ0. ThenMt,z has an eigenvalue
1 if and only if z−1 is an eigenvalue of the same multiplicity for the operator
Lt. Moreover, if Mt,zψ = ψ then Ltφ = z−1φ, where ψ = (Id− zLt,2)φ.

14



4 Pressure functions and Hausdorff dimen-

sion.

A consequence of theorem 11 is that for any real t > 1/γ0 and real z ∈ (0, 1]
there is an equilibrium state ρt,z = φt,zmt,z on Σ̂ for the function tV̂ +
R log z, which is uniquely determined by the normalizing conditions: φt,z > 0,
mt,z(φt,z) = 1 and

L̂t,zφt,z = λ̂t,zφt,z, L̂∗t,zmt,z = λ̂t,zmt,z

where λ̂t,z = exp P̂t,z is the principal eigenvalue of L̂t,z. In particular P̂h,1 = 0

so that λ̂h,1 = 1 and ρh,1 is the lift of the unique T̂ -invariant probability
measure ρ = φm of [1], Section 9, that is ρ = π̂∗ρh,1.

Lemma 14 The function λ̂t,z = exp P̂t,z extends to a holomorphic function
in a complex open neighborhood of {t : t > 1/γ0 } × [0, 1]. Moreover, let
hγ0 ≤ 2 be fixed. Then limz→1− dλ̂h,z/dz = +∞; whereas, if hγ0 > 2 then
the above limit is finite and equals ρ(R) ≡ ∑∞`=1 ` · ρh,1(R`), the mean return
time in the set R1.

Proof. It will suffice to prove the analytic properties of λ̂t,z as a function
of z for each fixed t > 1/γ0, because then the rest of the statement readily
follows from theorem 11 and standard results in regular perturbation theory
(see [8], Sections 7.1, 4.3). Now, from lemma 9 it follows in particular that
for any fixed t > 1/γ0, the map z → L̂t,z is an analytic family in the sense
of Kato for z in the open unit disk so that the first assertion follows from
theorem 11 and Kato-Rellich Theorem (see, e.g., Thm. XII.8 in [15]).
To proceed, we now construct a sequence of compact spaces Σ̂N whose el-
ements are sequences σ̂ = (σ̂0σ̂1 . . .) with σ̂j ∈ {1, . . . , N}. Clearly, Σ̂N ⊂
Σ̂N+1 ⊂ . . . ⊂ Σ̂. For any 0 < z ≤ 1 define a family of operators L̂t,z,N :

F̂θ(Σ̂N)→ F̂θ(Σ̂N) by

L̂t,z,N =
N∑
k=1

zR(k)Kt,k.

Let P̂t,z,N be the pressure of tV̂ |Σ̂N+R|Σ̂N log z, so that λ̂t,z,N = exp P̂t,z,N
is the simple eigenvalue with largest modulus and φt,z,N and mt,z,N are the

corresponding eigenvectors for L̂t,z,N and L̂∗t,z,N , respectively. Now set z = es.

15



It is a standard result in the theory of equilibrium states that (see [17],
Chapter 5) under the conditions assumed here the function P̂h,es,N is real
analytic in some neighborhood of s = 0 and its derivatives at s = 0 are
related to suitable moments of ρN , the Gibbs state on Σ̂N for the function
V̂ |Σ̂N . In particular we have dλ̂h,es,N/ds|s=0 = λ̂h,1,N ρN(R). To conclude,

we now use the fact that (see [4], Theorem 2.1) the triple λ̂t,z,N , φt,z,N ,mt,z,N

converge uniformly to λ̂t,z, φt,z,mt,z for 0 ≤ z ≤ 1 and t > 1/γ0 (so that, in

particular, λ̂h,1,N → 1 and ρN(R)→ ρ(R)), as N →∞.
2

Remark. It is easy to see that the pressure P̂t,z is ≤ 0 if t is larger than or
equal to the Hausdorff dimension h of J , and 0 < z ≤ 1. Indeed, if we choose
for every η ∈ Tn a point xη ∈ U(η) so that V̂ n(xη) = minx∈Bη V̂

n(x), then

∑
η∈Tn

etV̂
n(η∞) ≤ c1

∑
η∈Tn

etV̂
n(xη),

for some constant c1. Now, as T̂ n mapsBη into J and etV̂
n(xη) = minx∈Bη

(
(T̂ n)′

)−t
,

we obtain that ∑
η∈Tn

etV̂
n(η∞) ≤ c1

∑
η∈Tn

(diamBη)
t <∞,

which implies that P̂t,z ≤ 0 if t ≥ h. On the other hand, since

∞∑
`=1

ρh,1(R`) = 1

and, by Proposition 6, the measures of the levelsets obey the asymptotic
behaviour (with some c2)

ρh,1(R`) ∼ c2 `
−hγ0 ,

as `→∞, one concludes [1] that h > 1/γ0.

The function Pt = P (tV ) satisfies the variational principle [20]

Pt = sup
β
{hβ − tχβ(T )},
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where the supremum is over all T -invariant probability measures β on Σ, hβ
is the metric entropy of β and χβ(T ) =

∫
log |T ′|dβ is the Lyapunov exponent

of T with respect to β.
One readily sees that for t ∈ [0, h) the operator Lt has the positive leading
simple eigenvalue λ(t) = ePt > 0. Indeed, we have r(Mt,1) > r(Mh,1) = 1
for t < h. Then by monotonicity ofMt,z for z ∈ R+ one finds a 0 < z(t) < 1
such that r(Mt,z(t)) = 1. By proposition 13 λ(t) = 1/z(t) and therefore
λ(t) = ePt [17].

Theorem 15 The function Pt is continuous and non-increasing for t ∈
[0,∞) and satisfies Pt > 0 for t ∈ [0, h) and Pt = 0 for t ∈ [h,∞) (i.e.
h is the smallest zero of Pt). Moreover, Pt is real analytic in t ∈ [0, h) and
t ∈ (h,∞) (t = h is the only singularity of Pt on R+). In addition, if hγ0 ≤ 2
we have

lim
t→h−

dPt
dt

= 0,

and if hγ0 > 2, then

lim
t→h−

dPt
dt

=
1

ρ(R)
· dP̂t,1
dt
|t=h.

Proof. The first statement follows from [6]. Moreover, from theorem 11 and
proposition 13 we have that, for t ∈ (1/γ0, h),

exp P̂t,e−Pt = 1. (3)

Since exp P̂t,z is jointly analytic in a complex open neighborhood of 0 ≤ z ≤ 1
and t > 1/γ0 (lemma 14), the second assertion of the lemma follows from
the implicit function theorem. To get the announced identities we first set
z = z(t) and differentiate exp P̂t,z(t) w.r.t. t. Then take z(t) = e−Pt → 1 as
t→ h− and use lemma 14 and the identity (3). 2

Remark. Notice that
dP̂t,1
dt
|t=h = −χρ(T̂ )

where χρ(T̂ ) = ρ(log |T̂ ′|) <∞ is the Lyapunov exponent of T̂ with respect
to ρ. Therefore, according to whether ρ(R) is finite or infinite, limt→h−

dPt
dt
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is strictly negative or zero. In particular, if ρ(R) < ∞, then the variational
principle implies that

lim
t→h−

dPt
dt

= −χµ(T ),

where µ = 1
ρ(R)

ν. In this case, theorem 15 is an Abramov-like formula for

the Lyapunov exponent (see [5] for related results).

5 Escape rate.

Let δ > 0 be small and consider the inverse images of the neighbourhood
Bδ(J) under iterates of T . Clearly |T−nBδ(J)| → 0 when n → ∞, where
the absolute value denotes the (2-dimensional) Lebesgue measure. We are
interested in the rate of convergence which is known to be exponential in the
case of hyperbolic rational maps, that is

lim
n→∞

1

n
log

|Bδ(J)|
|T−nBδ(J)|

> 0,

if T is hyperbolic, and moreover the limit is then found to be [3] equal to
−P2. For parabolic maps, however we have subexponential convergence (i.e.
the above limit is zero).
Denote byDn the set of critical values of T n. It is known [2] that the parabolic
points are accumulation points of Dn as n → ∞. However, given ε > 0, if
we set Jε := J \Bε(Λ), we can find a δ > 0 so that Bδ(Jε) ∩Dn is empty for
all n.

Theorem 16 For every ε > 0 there exists a constant C = C(ε) so that for
all small enough δ:

|T−nBδ(Jε)| ≤ |Bδ(J)| C

nγ0(2−h)
.

The constant C(ε) goes to infinity as ε > 0 tends to zero.

Proof. Let δ0 > 0 be chosen so that Bδ0(Jε) ∩ Dn = ∅. Let δ < δ0/2 and
denote by Cj, j = 1, 2, . . . , D, the (finitely many) components of Bδ(Jε).
Let Sn denote the collection of inverse branches of T n on Bδ0(Jε). Then,
by the Köbe distortion theorem [7] there exists a constant K ′ > 1 so that
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K ′−1 ≤ |ϕ′(z)/ϕ′(z′)| ≤ K ′ for z, z′ ∈ Cj,∀j and for all ϕ ∈ Sn. Moreover, for
j = 1, . . . , D, we can find pairs zj, z

′
j ∈ Cj, so that zj+1 = T ujz′j, j = 1, . . .

(mod D), for some integers u1, . . . , uD. Together with the distortion property
this implies that K−1 ≤ |ϕ′(z)/ϕ′(z′)| ≤ K for all z, z′ ∈ Bδ(Jε) and ϕ ∈ Sn,
where K ≥ K ′. (Notice that unlike K ′, the constant K depends on ε.)
Let us now estimate the area of T−nBδ(Jε). Clearly

|T−nBδ(Jε)| ≤
∑
ϕ∈Sn
|ϕ(Bδ(Jε))| ≤ K2

∑
ϕ∈Sn
|ϕ′(x)|2,

where x is an arbitrary point in Bδ(Jε). In particular, we can assume that
x ∈ Jε. This implies that |T−nBδ(Jε)| ≤ K2Ln21(x), where

Ln21(x) =
∑

y∈T−nx

1

|(T n)′(y)|2
=

∑
y∈T−nx

1

|(T n)′(y)|2−h
1

|(T n)′(y)|h
·

It thus remains to estimate the terms |(T n)′(y)|−(2−h), for y ∈ T−nx. If
x ∈ Rq, then y ∈ Rk1 , where k1 = k1(y) ≤ n + q for every y ∈ T−nx.
The value q is uniformly in x ∈ Jε bounded by some number q0(ε). More
generally, there exist numbers k1, k2, . . . , k` ≥ 2 and n1, . . . , n` ≥ 0, so that,
if we put y1 = y and yj+1 = T kj+njyj for j = 1, . . . , ` (y`+1 = x), then

yj ∈ Rkj ,

T kj+iyj ∈ R1, i = 0, 1, . . . , nj − 1

for all indices j = 0, 1, . . . , ` (k0 = n0 = 0). In addition we have k1 + · · · +
k` + n1 + · · ·+ n` = n+ q and n` = 0 if q ≥ 2. Thus

(T n)′(y) = (T k`−q)′(y`)
`−1∏
j=1

(T kj)′(yj)
∏̀
j=1

(T nj)′(T kjyj),

where |(T nj)′(y)| ≥ βnj , j = 1, . . . , `, and, by Proposition 2, we have (T kj)′(y)| ≥
C−1

1 kγ0j for j < `, and

|(T k`−q)′(y`)| =
∣∣∣∣∣(T k`)′(y`)(T q)′(y)

∣∣∣∣∣ ≥ C−2
1

(
k`
q

)γ0
.

Therefore

|(T n)′(y)| ≥ c1 β
n1+···+n`kγ01 · · · k

γ0
` q
−γ0 ≥ c2

(
n+ q

q

)γ0
,
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for some positive constants c1, c2. Since q ≤ q0, this implies that

|Ln21(x)| ≤ c
−(2−h)
2

(
n+ q

q

)−γ0(2−h) ∑
y∈T−nx

1

|(T n)′(y)|h
≤ Cn−γ0(2−h),

as the sum converges to the principal eigenfunction e of Lh which is uniformly
bounded on J outside any open neighbourhood of the parabolic set Λ. The
fact that the constant C = C(ε) becomes arbitrarily large as ε → 0 is
evident from the singular behaviour of the principal eigenfunction of Lh on
the parabolic set and the fact that q0(ε)→∞ as ε goes to zero. 2

6 The asymptotic distribution of pre-images.

In this Section we shall combine the construction of Sections 1 and 2 with
ideas from [11] to obtain the asymptotic behaviour of some counting functions
related to the distribution of the set of pre-images T−kx = {y ∈ J : T ny = x}.
More precisely, let U : J → R be non-negative and Lipschitz continuous.
Having fixed ε > 0, define N(r, x, U), for r ∈ R+ and x ∈ Jε ≡ J \Bε(Λ), by

N(r, x, U) :=
∞∑
k=0

∑
y∈T−kx

U(y)χ(r)(y),

where χ(r)(y) = 1 if log |(T k)′(y)| ≤ r and χ(r)(y) = 0 otherwise. Notice that
since x ∈ Jε we have log |(T k)′(y)| > 0 if T ky = x. Therefore N(r, x) is finite
for all r ≥ 0. Moreover N(r, x, U) is nonnegative, nondecreasing in r and
satisfies the renewal equation:

N(r, x, U) = U(x) +
∑

y∈T−1x

N(r − log |T ′(y)|, y, U). (4)

The next result will show that N is of exponential class in the variable r.

Lemma 17 For every ε > 0 there exists a constant C = C(ε) so that

N(r, x, U) ≤ Cer(h+1/γ0).
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Proof. Let ε > 0, then there exists an number K, so that Rk ⊂ Bε(Λ) for
all k ≥ K. Since x ∈ Jε we have x ∈ Rj for some j < K, and for y ∈ T−kx
we can find a constant c1 > 0 so that

|(T k)′(y)| = |(T
k+j)′(y)|
|(T j)′(x)|

≥ c1

(
k + j

j

)γ0
,

because y lies in some levelset Rk′ where k′ is at most k + j. The upper
bound |(T k)′(y)| ≤ er now implies that in the first sum of equation (4) the
summation is over

k ≤ j

(
er/γ0

c2

− 1

)
≤ K

c2

er/γ0 ,

with c2 = c
1/γ0
1 . We thus obtain

N(r, x, U) =

[K
c2
er/γ0 ]∑
k=0

∑
y∈T−kx

U(y)χ(r)(y)

≤ |U |∞
[K
c2
er/γ0 ]∑
k=0

∑
y∈T−kx

ehr

|(T k)′(y)|h

≤ c3|U |∞
K

c2

er(h+1/γ0)

where c3 = supx∈Jε |e(x)| is finite since the principal eigenfunction e of Lh is
regular outside the set Λ of parabolic points. Now put C = c3|U |∞K

c2
. 2

We shall now investigate the asymptotic behaviour of N(r, x, U) as r →∞.
To this end, we consider the Fourier-Laplace transform:

N̂(t, x, U) =
∫ ∞

0
e−trN(r, x, U) dr (5)

Equation (4) transforms as (notice that N(r, x, U) = 0 for r < 0)

N̂(t, x, U) = U(x) + LtN̂(t, x, U), (6)

where Lt is the transfer operator for the map T . Therefore, using proposition
12, we get1

1In what follows we shall not avoid the painless confusion between objects living on
symbol space and their lifts on J .
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N̂(t, x, U) = (Id− Lt)−1 U(x) = (Id− Lt,2)−1 (Id−Mt)
−1U(x) (7)

where we have used the shorthandMt ≡Mt,1. We now study the operator-
valued function t→ (Id−Mt)

−1. We first recall that t→Mt is holomorphic
in the half-plane { t : Re t > 1/γ0 }. Therefore, if (Id −Mt)

−1 exists (as a
bounded operator acting on Eθ) for all t in some open subset D ⊆ { t : Re t >
1/γ0 } then t→ (Id−Mt)

−1 is holomorphic in D. By virtue of theorem (11)
the spectral radius of Mt : Eθ → Eθ is bounded above by exp P̂Re t,1 which is
< 1 for 1/γ0 < Re t < h. This proves the following

Lemma 18 The function t→ (Id−Mt)
−1 is holomorphic in the strip 1/γ0 <

Re t < h.

Let λ̂t ≡ λ̂t,1 and ψt, mt be such that Mt ψt = λ̂t ψt and M∗
t mt = λ̂tmt,

so that mh ≡ m is (the lift of) the unique h-conformal measure on J and
mt(ψt) = m(ψt) = 1. Reasoning as in the proof of lemma 14 we see that the
functions t → λ̂t, t → ψt and t → mt extend to holomorphic functions in a
neighbourhood N0 of the half-line t > 1/γ0. For U ∈ Eθ and t ∈ N0 we then
decompose

Mt U = λ̂t ψt,mt(U) +Nt U (8)

where Nt maps Eθ onto the subspace {U ∈ Eθ : mt(U) = 0}. Moreover,
the subspace generated by ψt is one-dimensional and the spectral radius of
Nt is strictly smaller than λ̂Re t. Therefore, since the spectral radius is a
lower semicontinuous function of t, there is a neighbourhood H of t = h
and ε > 0 such that the spectral radius of Nt is smaller than 1 − 2ε for all
t ∈ H ∩N0. Spectral radius formula then implies that ‖N n

t ‖θ ≤ (1− ε)n for
n large enough and thus t → (Id − Nt)−1 is a holomorphic operator-valued
function of t ∈ H ∩N0. Now, since ψt(x) and mt(U) are continuous at t = h,
we have the following

Lemma 19 The function t → (Id −Mt)
−1 has a simple pole at t = h. In

particular, for each U ∈ Eθ and t in some punctured neighbourhood of t = h,
we have

(Id−Mt)
−1U(x) =

ψt(x)mt(U)

1− λ̂t
+ (Id−Nt)−1U(x)
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Putting together the above and formula (7) we have that N̂(t, x, U) has a
simple pole at t = h with residue

(Id− Lh,2)−1ψh(x)m(U)

(−(d/dt)λ̂t)t=h
=
e(x)m(U)

χρ(T̂ )
=
e(x)m(U)

χν(T )
=: f(x, U),

where, according to proposition 13, e(x) := (Id − Lh,2)−1ψh(x) is the eigen-
function of Lh to the eigenvalue 1, and χν(T ) is the Lyapunov exponent of
the sigma-finite measure ν w.r.t. the map T (the identity χρ(T̂ ) = χν(T )
follows from theorem 15 if ν is finite and can be otherwise easily obtained
by direct computation, using proposition 7). Let us put s = t/h and rewrite
equation (5) as a Laplace-Stieltjes transform,

N̂(s, x, U) =
∫ ∞

0
e−sr dF (r), F (r) =

∫ r

0
N(

u

h
, x, U)

du

h
(9)

Then the above implies that N̂(s, x, U) converges for Re s > 1 and N̂(s, x, U)−
f(x, U)/h(s− 1) is analytic at s = 1. Ikehara’s Tauberian theorem (see, e.g.,
[14]) along with positivity and monotonicity of N(r, x, U) in r then yield the
following result

Theorem 20 Let U : J → R be non-negative and Lipschitz continuous.
Then we have, as r →∞,

N(r, x, U) ∼ f(x, U) eh r

uniformly for x ∈ Jε.
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