
Topological entropy of generalised polygon
exchanges

Eugene Gutkin ∗ Nicolai Haydn †

February 19, 1995

Abstract

We study the topological entropy of a class of transformations
with mild singularities: the generalized polygon exchanges. This class
contains, in particular, polygonal billiards. Our main result is a geo-
metric estimate, from above, on the topological entropy of generalized
polygon exchanges. One of the applications of our estimate is that
the topological entropy of polygonal billiards is zero. This implies the
subexponential growth of various quantities associated with a polygon.
Other applications are to the piecewise isometries in two dimensions,
and to billiards in rational polyhedra.
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1 Introduction

Let T : X 7→ X be a continuous selfmapping of a compact metric space. The
topological entropy is an important invariant that characterizes by a number,
h(T ) ≥ 0, the exponential complexity of the orbits of T (see, e. g., [37]). If
T : M 7→M is a diffeomorphism of a compact manifold, there are estimates
on h(T ) in terms of the geometry of T and M (see, e. g., [21]). Suppose
that T = T t is the geodesic flow on a compact Riemannian manifold, N , of
negative curvature. Then there are explicit bounds on h(T ) from above and
from below in terms of the average curvature of N , its volume, diameter, etc.
(see [34, 18, 27, 29]). Theorems of another type provide estimates on h(T )
in terms of the growth rates of various geometric quantities on M , under the
iterations of T ([32, 39, 30, 10, 20, 28]). The following result of S. Newhouse
served as a partial motivation for the present work.

Let T : M 7→ M be as above. For a compact C1 curve, γ, in M , denote
by ||γ|| its length with respect to a Riemannian metric on M . Then

λ(T ) = sup
γ

lim sup
n→∞

log ||T nγ||/n (1)

does not depend on the choice of a metric, and we say that λ(T ) is the growth
rate for the length of curves in M .

Theorem 1.1 [30] Let M be a compact C2 surface, and let T : M 7→ M be
a C1+ε diffeomorphism. Then h(T ) ≤ λ(T ).

A metric entropy version of this estimate (for smooth invariant measures)
goes back to [24]. Let T : M 7→M be a continuous selfmapping of a compact
closed C1 manifold. A. Manning has obtained a lower bound on h(T ).

Theorem 1.2 [28] Let the setting be as above, and let τ1 : H1(M) 7→ H1(M)
be the induced transformation on the first homology. Then the topological
entropy of T is bounded from below by the logarithm of the spectral radius of
τ1.

Relatively little is known about the topological entropy of the transfor-
mations with singularities, although they arise naturally, e. g., in the billiard
dynamics. Let us briefly survey the related work. Pesin and Pitskel [31] have
worked on the variational principle for the topological entropy for a particular
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class of singular transformations. Their approach is topological (continuous
selfmaps of noncompact metric spaces), and goes back to Bowen [4]. There is
some literature on the topological entropy (suitably interpreted) of singular
transformations, arising in billiard dynamics. A. Katok [19] has shown that
the topological entropy of polygonal billiards is zero (see also [9]). N. Cher-
nov has obtained estimates on the topological entropy of Sinai (and related)
billiards [6]. Chernov’s results extend to the hyperbolic billiards the classical
connection between the entropy of a diffeomorphism and the growth rate of
the number of its periodic points [20]. Note that the metric (as opposed to
topological) entropy of transformations with singularities has received more
attention (see, e. g., [22, 25]).

In the present work we introduce a class of transformations with mild sin-
gularities: the generalized polytope exchanges (Definition 2.3). In this setting,
the space X (we assume X is a manifold with a boundary) is partitioned into
a finite number of generalised polytopes, Pi, 1 ≤ i ≤ n. The transformation
T : X 7→ X is a diffeomorphism on each Pi, and, in general, T is not well
defined on the singular set, ∂P = ∪1≤i≤n∂Pi. A simple example of a gener-
alized polytope exchange is a generalized interval exchange. In this case, X
is an interval (e. g., X = [01]), and Pi, 1 ≤ i ≤ n, are closed subintervals.

We study the topological entropy, h(T ) ≥ 0, of the generalized polytope
exchanges, which measures the exponential complexity of the regular orbits
of T . The emphasis of our work is on the geometric bounds for the entropy.
Our techniques are especially suitable for the two-dimensional case, i. e.,
for the generalized polygon exchanges (GPEs). Theorem 3.7 and Theorem
3.15 estimate from above the topological entropy of a GPE, T : X 7→ X, by
the growth rate of line elements on X under the iterations of T . They are
analogs, in the present context, of the estimate of Theorem 1.1.

The framework of GPEs is wide enough to include transformations aris-
ing in very different situations. For instance, the ’baker transformation’ [1],
on one hand, and the Poincare maps for polygonal billiards and outer bil-
liards [11, 16], on the other hand, are GPEs. There are many open questions
about the (generalized) polytope exchanges. The one-dimensional case has
been well researched. The interval exchange transformations have attracted
much attention, partly because of the connection with the billiards in rational
polygons (see, e. g., [36, 23]). A direct analog of interval exchange transfor-
mations in two dimensions are the rectangle exchange transformations. The
only work on the subject known to us [17], discusses the minimality of rectan-
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gle exchange transformations, and formulates a few questions. Our Theorem
4.2 answers, in particular, a question of [17].

A few words about our techniques. With a generalized polytope exchange,
T : X 7→ X, we associate an increasing sequence, Pn, n ≥ 1, of partitions of
X. A crucial point is to relate the growth rate, h, of the cardinality, |Pn|,
and the growth rate, λ, of the length of the singular set, ∂Pn (Theorem 3.6).
Roughly speaking, the length limits the number of atoms in a partition. In
order to implement this idea, we need to get a handle on the growth rate, β,
of the maximal number of edges at a vertex of Pn (the vertex complexity). A
combinatorial argument, devised for two dimensions, allows us to obtain an
efficient estimate on β (Proposition 3.9). This estimate enables us to show
that h ≤ λ (Theorem 3.7).

Getting an efficient bound on vertex complexity has been central in a
variety of problems in dynamics. Some of them are closely related to our
context [19], others are quite far away [33, 5, 35].

To illustrate our results, we apply them in §4 to a variety of transforma-
tions: piecewise isometries on surfaces, polygonal billiards, and directional
billiards in rational polyhedra. We prove that their topological entropy is
zero. This implies, in particular, the subexponential growth of various geo-
metric quantities associated with a polygon or a polyhedral surface. Other
proofs of the subexponential growth in this context involved a detailed anal-
ysis of the topology of billiard orbits [19, 9]. Our proof exploits the elemen-
tary observation that the length of singular sets for polygonal billiards grows
quadratically.

Some of the results of the present work were announced in [14, 13]. We
thank N. Chernov, A. Katok, and M. Rychlik for discussions and remarks.

2 Generalized Polytope Exchanges

2.1 The transformations

By a polytope, P , dimP = n, we mean a compact Euclidean polytope [8]
in Rn, with a nonempty interior, intP . The m-dimensional faces of P are
polytopes of dimension m < n. Polygons (polyhedra) are the polytopes of
dimension 2 (3).

Definition 2.1 (I) A partition P of a polytope P is a representation P =
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⋃
1≤i≤n Pi, where Pi are subpolytopes of P , and intPi ∩ intPj = ∅ for i 6= j.

(II) A generalized polytope X of dimension n is a closed subset of a (Cr, r ≥
1) manifold, Mn, and a mapping f : X 7→ Rn such that: 1) f extends to a
diffeomorphism on an open set O, X ⊂ O ⊂M ; 2) f(X) is a polytope.

The mappings f : X 7→ Rn will be implicit in what follows.

Definition 2.2 A space X (of dimension d) with a (generalized) polytope
partition P is a closed subset of a manifold Md, and a representation, X =⋃

1≤i≤nXi, satisfying the following conditions.
i) The sets Xi are generalized polytopes for 1 ≤ i ≤ n.
ii) For i 6= j, intXi ∩ int Xj = ∅.
iii) If I ⊂ {1, . . . , n} is such that

⋂
i∈I Xi 6= ∅, then

⋃
i∈I Xi is a generalized

polytope.

If (X,P) is as above, we say that Xi are the atoms of P , and that ∂P =⋃
1≤i≤n ∂Xi is the boundary of P . We use notation intP = X\∂P . A partition
Q is a refinement of a partition P if every atom of Q is a subpolytope of an
atom of P . We denote this by P < Q. If P : X =

⋃
i∈I Yi andQ : X =

⋃
j∈J Zj

are two partitions of X, their join P ∨ Q is the partition formed by the
intersections Yi ∩ Zj such that intYi ∩ intZj 6= ∅. Then P ,Q < P ∨Q.

The terminology above is similar to the standard one, used in measure
theory [37]. Since we are usually dealing with generalized polytope partitions,
we often delete “generalized, polytope”, and speak simply of partitions.

Definition 2.3 A generalized polytope exchange, T : X 7→ X, on a parti-
tion R, is a collection of diffeomorphisms, T |P : P → X (P ∈ R), such that
X =

⋃
P∈R T (P ) is a partition, R1 = TR. Then T−1 is also a generalized

polytope exchange.

The defining partition, R, plays an essential role in the definition above.
In what follows we make a simplifying assumption (without loss of generality)
that both T, T−1 are defined on R. Note it does not mean R1 = R. When
dimX = 2 (3) we will speak of a generalized polygon (polyhedron) exchange.
Examples. 1. A partition of X = [0, 1] is given by n intervals Pi = [ai−1, ai].
where 0 = a0 < a1 < . . . < an = 1. An interval exchange on the intervals
Pi, 1 ≤ i ≤ n, (see, e.g., [7]) is a special case of Definition 2.3. We obtain a
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generalized interval exchange by taking n nondegenerate affine transforma-
tions Ti, such that the intervals Qi = Ti(Pi), 1 ≤ i ≤ n, form a partition of
[0, 1].

2. Let X be a rectangle in R2, e.g., X = [0, 1] × [0, 1]. Let the atoms of
the partition P : X =

⋃
1≤i≤n Pi be rectangles (with vertical and horizontal

sides). Let ti be n vectors such that the rectangles Qi = Pi + ti, 1 ≤ i ≤ n,
form a partition of X. This defines a rectangle exchange.

2’. HereX ⊂ R2 is an arbitrary polygon, the atoms of a partition P : X =⋃
1≤i≤n Pi are subpolygons. We define an affine polygon exchange on X by

n nondegenerate affine transformations Ti such that Q = {Qi = Ti(Pi), 1 ≤
i ≤ n} is a partition of X.

3. An obvious analog of Example 2 in 3D features the unit cube X =
[0, 1]× [0, 1]× [0, 1] ⊂ R3 partitioned by n rectangular parallelepipeds Pi. The
mappings Ti are parallel translations x→ x+ti such that the parallelepipeds
Qi = Pi + ti form a partition of X.

3’. The 3D version of Example 2’: X is a polyhedron, P =
⋃

1≤i≤n Pi is a
polyhedral partition of X, and Ti are affine transformations of R3 such that
the polyhedra Qi = Ti(Pi), 1 ≤ i ≤ n, form a partition of X. This defines an
affine polyhedron exchange.

2.2 A regularisation

We will associate with any generalized polytope exchange a homeomorphism
of a compact. To save space, we supress the adjective “generalized”, and will
often use “transformation” for a polytope exchange.

Let T : X → X be a polytope exchange on a partition R. For any pair of
indices, m,n ≥ 0,m+n > 0, we define, by induction, the partition R(−m,n) =
T−m+1R∨· · ·∨R∨· · ·∨T n−1R. For n > 0 set Pn = R(−n,0),Qn = R(0,n), and
R(0,0) is the empty partition. Let A ⊂ Z2 be the set of pairs: −m ≤ 0 ≤ n.
For α = (−m,n), α′ = (−m′, n′), we set α < α′ if −m′ ≤ −m and n ≤ n′.
This defines a partial order on A, and A is directed, i.e. for any α, β ∈ A
there exists γ ∈ A, such that α, β < γ. If α = (−m,n) and β = (−m′, n′),
we set max(α, β) = (−max(m,m′),max(n, n′)). Let ρ = (1, 1) ∈ Z2. The
following is straightforward.

Lemma 2.4 In the notation above, we have: i) If α ≤ β then Rα < Rβ; ii)
If α, β ∈ A and γ = max(α, β), then Rα∨Rβ = Rγ; iii) The transformation
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T k : X → X is a polytope exchange on Rα, if α, α + kρ ∈ A.

For any X with a partition P = {Pi, i ∈ I}, the space XP =
⊔
i∈I Pi,

with the topology of a disjoint union, has a natural (disjoint) partition, P̂ =
{Pi, i ∈ I}. Let πP : XP 7→ X be the projection. A polytope exchange T :
X → X, on a partition P , with Q = T (P), induces a homeomorphism, TP :
XP → XQ. If P < P ′, then Q < Q′, and we denote by πP

′
P : XP ′ 7→ XP , π

Q′
Q :

XQ′ 7→ XQ the natural projections. The mappings πP
′
P , π

Q′
Q , π

P , πQ, TP , TP ′

satisfy the obvious relations, e. g., TPπ
P ′
P = πQ

′

Q TP ′ .
Let T : X → X be a polytope exchange on R, and let partitions {Rα, α ∈

A} be as above. For α ∈ A we denote by Xα the space XRα , and by πα :
Xα → X, πβα : Xβ 7→ Xα (α < β) the associated projections. If α, α+kρ ∈ A,
we denote by T kα : Xα → Xα+kρ the homeomorphism corresponding to T k.

The system of compacta {Xα : α ∈ A} and continuous maps {πβα : Xβ 7→
Xα, α < β} is an inverse limit spectrum, and let X̂ be the inverse limit
space [38]. By construction, X̂ is endowed with the family of projections
{πα : X̂ 7→ Xα, α ∈ A}, satisfying πα = πβαπβ for α < β. If Y is any space
with a system {tα : Y 7→ Xα, α ∈ A} of maps satisfying the requirements
above, then there is a unique surjection, f : Y 7→ X̂, such that tα = παf for
all α.

Proposition 2.5 Let T : X → X be a polyhedron exchange on R (and let
the notation be as above). Then there is a unique homeomorphism T̂ : X̂ 7→
X̂ such that if α, α± ρ ∈ A, then T±1

α πα = πα±ρT̂
±1.

Proof. A subset B ⊂ A is cofinal if for any α ∈ A there is β ∈ B such that
α < β. Any subset, B ⊂ A, inherits a partial order. If we denote by X̂B

the corresponding inverse limit space, then there is a canonical map (onto)
φB : X̂ 7→ X̂B which is compatible with the structures involved. If B is
cofinal, then φB is a homeomorphism.

For k ≥ 0, we denote by Ak ⊂ A the subset Ak = {(−m,n) : m,n ≥ k}.
Then A = A0 ⊃ A1 ⊃ · · · ⊃ Ak ⊃ · · · , and every Ak is cofinal in A. Denote
by X̂k the inverse limit space corresponding to Ak, let πk : X̂k → X be the
projections, and φk : X̂ → X̂k be the homeomorphisms. If α ∈ Ak, and
|j| < k, then α + jρ ∈ Ak−|j|. By preceding discussion and Lemma 2.4, this

uniquely defines continuous mappings, T jk : X̂k → X̂k−|j|, compatible with

πr, φs, hence the homeomorphisms, T̂ j : X̂ → X̂. Finally, T̂ j = (T̂ )j. 2
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The homeomorphism T̂ : X̂ → X̂ depends on R, and we use notation
T̂R : X̂R → X̂R for this regularization. If R < S, there is a unique pro-
jection, X̂S → X̂R, compatible with T̂R, T̂S . Let R = {Ri, i ∈ I}. A
sequence of indices, (s, n) = (i−n+1, . . . , in−1), is a code if the set R(s,n) =
{x : T kx ∈ Rik , |k| < n} has a nonempty interior. Let S(n) be the set
of n-codes, and let S = SR be the set of doubly infinite sequences s =
(ik ∈ I : −∞ < k < ∞), such that for any n > 0 the truncated sequence
(s, n) = (i−n+1, . . . , i0, . . . , in−1) ∈ S(n). Let Σ be the full shift on |I| symbols,
and let t : Σ→ Σ be the left shift transformation. Then S ⊂ Σ is a subshift.
For s ∈ S set Rs =

⋂
n≥1R(s,n) ⊂ X. Then T induces a homeomorphism of

Rs onto Rt(s).

Proposition 2.6 Let T : X 7→ X be a polytope exchange on a partition
R, and let the notation be as above. Then: 1) there is a unique continuous
semiconjugacy (onto) σ : X̂ 7→ S; 2) the mapping π × σ : X̂ 7→ X × S is a
homeomorphism, and its image is {(x, s) : x ∈ Rs} ⊂ X × S.

Proof. By construction, Rs =
⋂
n≥0R(s,n) 6= ∅. Set Xn =

⊔
Sn R(s,n), and let

σn+1
n : Sn+1 7→ Sn, π

n+1
n : Xn+1 7→ Xn be the natural mappings. The set

B = {(−n, n), n ≥ 0} ⊂ A is cofinal, hence, the inverse limit space lim←Xn,
as n→∞, is canonically homeomorphic to X̂, which defines T̂ on lim←Xn.
The action of T̂±1 on lim←Xn is obtained from the commutative diagram:

X̂ → · · · → Xn+1

πn+1
n→ Xn

πnn−1→ Xn−1
→ · · · → X1

→X

X̂ → · · · → Xn+1

πn+1
n→ Xn

πnn−1→ Xn−1
→ · · · → X1

→X

T̂
6

�
�
�
�
���

T±1
n+1 T±1

n

�
�
�
�
���

�
�
�
�
���

T
6

Diagram 1

The natural projections ρn : Xn 7→ Sn, n ≥ 0 define a mapping of the in-
verse limit spectra: {Xn, π

n+1
n : Xn+1 7→ Xn, n ≥ 1} → {Sn, ρn+1

n : Sn+1 7→
Sn, n ≥ 1}. This yields a mapping of the inverse limit spaces, σ : X̂ 7→ S,
and the commutative diagram:
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X̂ → · · · → Xn+1

πn+1
n→ Xn

πnn−1→ Xn−1
→ · · · → X1

→X

S → · · · → Sn+1

ρn+1
n→ Sn

ρnn−1→ Sn−1
→ · · · → S1 = I

σ

?

σn+1

?

σn

?

σn−1

?

σ1

?

Diagram 2

The claimed properties of T̂ and σ are immediate from the diagrams above.
2

2.3 The entropy of a polytope exchange

If P is a finite partition (polyhedral or set-theoretic), |P| is the cardinality
of P . Recall that if F : Y 7→ Y is a homeomorphism of a compact metric
space, and α is an open cover of Y , then h(F ) (h(F, α)) is the topological
entropy of F (relative to α) [37].

Definition 2.7 Let T : X → X be a polytope exchange on a partition R,
and let the notation be as above. We call h(T̂ , R̂) the (topological) entropy
of T relative to R, and h(T̂ ) is the (topological) entropy of T . We will use
notation h(T,R) and h(T ) for the entropies.

A point, x ∈ X, is regular if T kx is defined for all k. Let Xreg be the
set of regular points. An invariant measure, µ, on X, satisfies µ(Xreg) =
1, T∗µ = µ, and let hµ(T ) be the metric entropy. For future reference we list
the basic properties of the entropy in the present context. They follow from
the standard material [37].

Proposition 2.8 Let T : X → X be a polytope exchange on R, and let the
notation be as above. Then:
1) We have

h(T,R) = lim
n→∞

log |Pn|/n = h(T−1,R) = h(t). (2)

2) Set Rn = Pn if n > 0, and Rn = Q−n if n < 0. Then

h(T n,Rn) = |n|h(T,R). (3)
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3) For any partition P set diam(P) = sup diam(P ), P ∈ P (with respect to
a metric on X). If a sequence R < R(1) < · · · < R(n) < · · · of partitions
is such that diam(Rn)→ 0, then h(T,R(n))→ h(T ) monotonically. If R is
generating, i.e., diam(∨∞n=1Pn) = 0, then h(T,R) = h(T ).
4) For any invariant measure µ on X, we have

hµ(T ) ≤ h(T ). (4)

Remark. We don’t claim supµ hµ(T ) = h(T ) (the variational principle),
because of the condition suppµ ⊂ Xreg (see [31]).

3 Estimates for Entropy

3.1 Growth rates for generalised polytope exchanges

The results of this subsection are valid in any dimension. The main result is
Theorem 3.6.

Lemma 3.1 Let pn be a positive sequence, and let lim supn→∞ pn/n = h > 0.
For any number g, 0 ≤ g < h, and any integer m ≥ 1, there are infinitely
many n such that

pn+m − pn ≥ mg. (5)

Proof. Assume the opposite, i.e., pn+m − pn < mg for all n > n0. Then for
these n and arbitrary k = 1, 2, . . ., we have pn+km − pn < kmg. Therefore

pn+km

n+ km
<

pn
n+ km

+
km

n+ km
g. (6)

With n fixed and k → ∞, the indices nk = n + km go to infinity along a
subsequence nk ≡ ν mod m, 0 ≤ ν ≤ m− 1. By eq. 6, lim supk→∞ pnk/nk ≤
g < h. Since there are m such subsequences (ν = 0, . . . ,m − 1), we have
lim supr→∞ pr/r ≤ g < h, which contradicts the assumption. 2

Definition 3.2 For a positive sequence, an, let h = lim supn→∞ n
−1 log an.

If h > 0, we say that the sequence an grows exponentially, at the rate h. If
h = 0, then an grows subexponentially.
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Lemma 3.3 Let an, bn, `n, dn (n ≥ 1) be positive sequences such that: i)
am+n ≤ aman; ii) for all m,n

am+n ≤ bman + dm`n. (7)

Let α, β, λ, δ(≥ 0) be the respective growth rates. Then

α ≤ min{max(β, λ), max(β, δ)} = max{β, min(δ, λ)}. (8)

Proof. Suppose α > β. Set φn = log(bn + 1). Then β = lim sup(φn/n).
Hence there is k ≥ 1 such that φk/k = g < α. We fix k for the rest of
the proof. By Lemma 3.1, there are infinitely many n, such that log an+k −
log an ≥ φk, i.e., an+k/an ≥ bk + 1. By eq. 7, an(an+k/an − bk) ≤ dk`n for
infinitely many n. Since, by i), an ≥ enα for all n, we have α ≤ λ. This
proves the inequality α ≤ max(β, λ). Fix n and divide eq. 7 by an, obtaining

an+m

an
≤ bm +

`n
an
dm.

As m → ∞, the growth rate of the sequence on the left is α, while that of
the sequence on the right is max(β, δ). Thus α ≤ max(β, δ). 2

We assume from now on that X is a metric space, and denote the distance
by d(·, ·). Let `(P ) be a function on polytopes, P ⊂ X, such that `(P ) ≥
Cdiam(P ) for connected P , where C > 0 is a constant. We say that `(P ) is
a length-type function. In §3.3 and §4, d(·, ·) is induced by a Finsler metric,
| |, and `(P ) = |∂P |, is the edge length of P . For any partition, P =

⋃
i∈I Pi,

we set `(P) = Σi∈I`(Pi); D(P) = min d(P,Q), the minimum over pairs of
nonadjacent atoms of P ; b(P) = maxx∈X |Px|, where Px ⊂ P consists of
atoms containing x. The quantity b(P) = maxx∈P b(x) measures the vertex
complexity of the graph P .

Proposition 3.4 Let T : X 7→ X be a polytope exchange on a partition
R, and let `(P ) be a length-type function. For n > 0 set `n = `(Pn), b̄n =
b(Qn). Let λ and β̄ be the exponential growth rates of the sequences `n and
b̄n respectively.

If the atoms of Pn, n > 0, are connected, then the growth rate of |Pn| is,
at most, max(β̄, λ).
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Proof. By the material of §2, for −m ≤ k ≤ n, T k−1 yields a one-to-one
correspondence between the atoms ofR(−n,m) andR(−n+k,m+k). In particular,
|Qm| = am, hence, for any m,n ≥ 0:

an+m = |R(−n,m)| = |Pn ∨Qm| ≤ anam. (9)

For any m,n ≥ 0 we divide the atoms of Pn into two groups: the “good”
and the “bad” ones. A good atom, A ∈ Pn, intersects only the adjacent
atoms of Qm. By eq. 9 and preceding remarks, A produces at most b̄m
atoms of Pn+m. Hence, the contribution to an+m by the good atoms of Pn is,
at most, anb̄m. The diameter of a bad atom, B, is, at least, D(Qm) = D̄m.
Since B is connected, `(B) ≥ Cdiam(B) ≥ CD̄m. Hence, the number of bad
atoms in Pn is bounded above by `n/CD̄m. A bad atom may intersect all
atoms in Qm. Hence the contribution of bad atoms to |Pn+m| is, at most,
am`n/CD̄m. Thus

an+m ≤ b̄man +
am
CD̄m

`n. (10)

The claim follows, by Lemma 3.3 (with dm = am/(CD̄m)). 2

The assertions below are immediate from Proposition 3.4 and §2.

Corollary 3.5 Let T : X 7→ X be a polyhedron exchange on a partition
R, and let t : S → S be the corresponding subshift (the notation of §2). If
the atoms of Pn are connected, and the sequences `(Pn), b(Qn) grow subex-
ponentially, then h(T,R) = h(t) = 0. If, in addition, R is generating, then
h(T ) = 0.

Theorem 3.6 Let T : X 7→ X be a polytope exchange on a partition R. Let
λ and β̄ be the growth rates of the sequences `n = `(Pn) and b̄n = b(Qn)
respectively.

If the atoms of the partitions Pn are connected, then h(T,R) ≤ max(β̄, λ).
If, in addition, partition R is generating, then h(T ) ≤ max(β̄, λ).

In general, the topological entropy of a polyhedron exchange is smaller than
the upper bound of Theorem 3.6. For instance, in Yomdin’s example [39] the
topological entropy is strictly smaller than the growth rate of curves’ lengths.
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3.2 Entropy of generalised polygon exchanges

In this subsection we assume that dim(X) = 2, and study the generalised
polygon exchanges (GPEs). We will strengthen the bound on the entropy,
established in Theorem 3.6. The following is the main result.

Theorem 3.7 Let T : X 7→ X be a GPE on a partition R, and let the
notation be as in Proposition 3.4. Assume that the atoms of the partitions
Pn are homeomorphic to the disc. Let `(·) be any length-type function, and
let λ be the growth rate of the sequence `(Pn). Then h(T,R) ≤ λ.

The centrepiece in the proof of Theorem 3.7 is Proposition 3.9, which gives
efficient bounds on the growth rate of the vertex complexity of the sequence
of graphs Pn, generated by a GPE. In the usual fashion we will from the
initial partition R define for every n ≥ 1 the forward join Pn = R(−n,0) and
regard its boundary set ∂Pn as s (two dimensional) graph with faces (atoms
of the partition), edges and vertices. We shall assume that every vertex is
the terminus of at least three edges (no ‘false vertices’ please). The following
notation will apply to the remainder of this subsection: We shall denote by
an, en and vn the number of faces, edges and vertices of the partition Pn.
Their respective growthrates as n goes to infinity will accordingly be called
by α, ε and ν. Moreover,let β be the growth rate of the sequence bn = b(Pn)
(vertex complexity of Pn). In a similar way we shall interpret the backward
join Qn = R(0,n), n ≥ 1, as a graph, and denote by ān, ēn and v̄n its number
of faces, edges and vertices and by ᾱ, ε̄ and ν̄ their respective growthrates.
We put β̄ for the growth rate of sequence b̄n = b(Qn).

We will need the following elementary lemma.

Lemma 3.8 Let bk, k ≥ 1, be a positive sequence, such that for m,n suffi-
ciently large

bm+n ≤ eεm + eµn, (11)

with ε, µ > 0. Then the exponential growth rate, β, of the sequence ck satis-
fies: β ≤ εµ/(ε+ µ).

Proof. The function f(x, y) = eεx+eµy assumes its unique minimum on any
line, x+ y = r, at

(xr, yr) = (
µr

ε+ µ
+

log µ− log ε

ε+ µ
,
εr

ε+ µ
+

log ε− log µ

ε+ µ
),

13



and
min
x+y=r

f(x, y) = f(xr, yr) = [(µ/ε)
ε

ε+µ + (ε/µ)
µ
ε+µ ]e

εµ
ε+µ

r.

Let r be a positive integer, let mr be an integer such that |mr − xr| ≤ 1/2,
and set nr = r −mr. Then |yr − nr| ≤ 1/2, and mr + nr = r. Substituting
m = mr, n = nr into eq. 11, we obtain

br ≤ max(eε/2, eµ/2)[(µ/ε)
ε

ε+µ + (ε/µ)
µ
ε+µ ]e

εµ
ε+µ

r

which implies the claim. 2

Proposition 3.9 Let T : X → X be a GPE on a partition R and consider
the graphs of the partitions Pn = R(−n,0), where, as above, β and ε denote
the growthrates of the quantities bn and en. Set µ = logM , where M =
min{a1, b2}. Then

β ≤ εµ

ε+ µ
.

Proof. If P is any graph on X, and x ∈ X, we denote by b(x) ≥ 0 the
number of edges emanating from x. Thus b(x) = 0 (2), if x is an interior
point of a face (edge) of P , and b(x) ≥ 3 if x is a vertex of P (we assume,
without loss of generality, that P has no ‘false vertices’). Note that b(x) 6= 1.
Set b(P) = maxx∈P b(x). We denote by bn(x) the number b(x) with respect to
Pn. Using the recursion Pn+1 = R∨ T−1Pn, P1 = R, we divide the vertices,
x, of Pn+1 into two categories:
(i) ‘new vertices’: x is not a vertex of T−1Pn. Thus x = T−1x′, where
bn(x′) ≤ 2, and bn+1(x) = b1(x) + bn(x′) ≤ b1 + 2;
(ii) ‘old vertices’: x is a vertex of T−1Pn. Then x = T−1x′, where x′ is a
vertex of Pn. These vertices x′ in Pn are the ‘parents’ of x. Since T−1 is a
homeomorphism on the atoms of R = P1, the maximal number of parents,
an old vertex can have is, at most, a1. On the other hand, P2 determines
how T−1 puts the atoms together. Thus the number of parents is at most
min{a1, b2} = M .

Let m,n ≥ 1. Let x be a vertex of Pn+m. If x is an old vertex, we trace
its ancestors in the ‘family tree’ all the way back to the generation m.
(I) For 0 < k < n, we restrict our attention to the ancestors of x that were
new vertices at the generation m + k. The number of those ancestors is,
at most, Mn−k. Since an ancestor, say x′, is a new vertex, it has by (i) at
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most b1 + 2 edges. Between the generations m+k and m+n, x′ can acquire,
through mergings with the vertices of R (or by intersection with edges of R),
at most (n− k)b1 more edges (not considering mergings with other vertices).
Thus the total number of edges of x these ancestors supply is at most

I =
n−1∑
k=1

(b1 + 2 + (n− k)b1)e
(n−k)µ <

(n+ 1)b1 + 2

M − 1
Mn.

(II) The ancestors of x that already existed at the generation m had at most
em edges altogether. Each ancestor acquires, between the generations m and
m + n, at most nb1 edges. Since there wer, at most, Mn of these ancestors,
their total contribution to the edges of x is, at most,

II = em + nb1M
n.

We finally obtaine the estimate

bm+n ≤ I + II ≤ em +
(2n+ 1)b1 + 2

M − 1
enµ. (12)

By eq. 12, for any ε1 > ε ≥ 0 and µ1 > µ there exists t = t(ε1, µ1) such that
for m,n > t, we have bm+n < eε1m+eµ1n. By Lemma 3.8, β ≤ ε1µ1/(ε1 +µ1).
2

Lemma 3.10 Let X be an arbitrary compact surface, and P be a (polygonal)
partition of X, whose faces are homeomorphic to the disc. Let a, e, v be the
numbers of faces, edges and vertices of P respectively, and assume that P
has at least three edges at every vertex. Then v ≤ 2a − 2χ, e ≤ 3a − 3χ,
where χ = χ(X) is the Euler characteristic.

Proof. Associating to every vertex, x, the oriented edges, ‘emanating from’
x, we obtain v ≤ 2e/3. This and a+ v = e+ χ imply the claim. 2

Corollary 3.11 ν ≤ α, ε = α.

Proof. By Lemma 3.10, ε, ν ≤ α. Since an < en + χ, we have α ≤ ε. 2

Proof of Theorem 3.7. Let us put h = h(T,R) = α and h̄ = ᾱ. By
assumption, the atoms of Pn are topological discs. Since T n−1 provides a
homeomorphism between the atoms of Pn and Qn, n ≥ 1, the atoms of Qn

15



are topological discs, as well. Therefore β̄ = β and h̄ = h. If h = 0 then
by Proposition 3.9 β = 0 which implies the theorem. If h > 0 then we have
by Proposition 3.9 and Corollary 3.11 that β̄ < h̄ = h which, together with
Theorem 3.6 implies the theorem. 2

The preceding results allow to obtain efficient bounds on the asymptotic
complexity of graphs generated by a GPE.

Corollary 3.12 Let µ = µ(R) be as in Proposition 3.9 and put h(T,R) = α.
If h = 0, then ε = ν = β = 0.
If h > 0, then ε = h, β ≤ h/(1 + h/µ), and h2/(1 + h/µ) ≤ ν ≤ h.

Proof. It suffices to prove the lower bound on ν, when h > 0. For any
β′ > β, and large enough n, every vertex in the graph Pn has at most enβ

′

edges. By Corollary 3.11, for any 0 < h′ < h, en ≥ enh
′

for large enough
n. Therefore the number of vertices in Pn satisfies vn ≥ 2en/bn ≥ 2en(h′−β′).
We therefore obtain ν ≥ h − β. Substituting the upper bound on β from
Proposition 3.9 completes the proof. 2

Corollary 3.13 Let `(P ) be a length-type function on polygons in X, and λ
(λ̄) be the growth rate of `(Pn) (`(Qn)). Let µ = µ(R) be as in Proposition
3.9 and put h(T,R) = α, h̄ = h(T−1,R) = ᾱ

Assume that the faces of Pn (or Qn), n ≥ 1, are topological discs. Then
ε = ε̄ = h, h2/(h+ µ) ≤ ν, ν̄ ≤ h, and

max(β, β̄) < h = h̄ ≤ min(λ, λ̄). (13)

Proof. By Corollary 3.11, ε = ε̄ = h. This, and Proposition 3.9 imply
β, β̄ < h. By Theorem 3.7, and h = h̄, we have h ≤ λ, λ̄. 2

3.3 Lyapunov exponents and entropy

Let X is a compact Finsler surface, and let T : X → X be a GPE on a
partition R. Then the iterates, T k, are smooth on every atom, P , in R(−m,n),
−n < k < m. Thus, for x ∈ Xreg the differential, DT kx is defined for all k,
and we set Lk(x) = log ||DT k(x)||, where || · || denotes the matrix norm. For
x ∈ Xreg we define the Lyapunov exponent, L(x), by

L(x) = lim sup
n→∞

Ln(x)/n = lim sup
n→∞

log ||DT n(x)||
1
n .

16



Let T : X → X be a GPE on a partiton R, satisfying the assumptions of
Theorem 3.7. If R does not generate, then, in general, h(T,R) < h(T ), and
Theorem 3.7 does not imply an estimate on the entropy of T . The estimate
given by the theorem below combines the growth rate of the singular set,
|∂Pn|, and the Lyapunov exponent of T . There is a close analogy with
Theorem 1.1, but because of the singularities of T , we need to make some
assumptions on the regularity of the Lyapunov exponent.

Theorem 3.14 Let T : X → X be a GPE on R, and let λ ≥ 0 be the growth
rate of the sequence `n = `(Pn). Assume that:
i) there exist arbitrarily small refinements, R < Rm, such that the atoms of
Rm
n = Pn(Rm),m, n ≥ 1, are homeomorphic to the disc;

ii) Let L ≥ supxL(x), where the supremum is over regular points, and suppose
that for any L′ > L there is an integer N = N(L′) such that Ln(x)/n ≤ L′

for |n| ≥ N and all x ∈ Xreg. Let µ be a T -invariant measure on X. Then
hµ(T ) ≤ h(T ) ≤ max(λ, L).

Proof.By assumption ii), for any L′ > L there is a constant C = C(L′), such
that ||DT−kx || ≤ CekL

′
for all k and all regular points x. Let γ be a regular

curve in X, and set γn = γ ∪ T−1γ ∪ · · · ∪ T−(n−1)γ. Then |γn| ≤ C1e
nL′ |γ|.

For any partition Rm, as in i), we have ∂Rm
n = γmn ∪ ∂Pn, for some regular

curve γm. Therefore |∂Rm
n | grows (with n) at most at the rate max(λ, L′).

Thus, by Theorem 3.7, h(T,Rm) ≤ max(λ, L′). Since L′ > L is arbitrary,
h(T,Rm) ≤ max(λ, L), for any m. Proposition 2.8 implies the claim. 2

4 Applications and Examples

We apply the preceding material to a variety of geometrically defined trans-
formations with singularities.

4.1 Piecewise isometries and related transformations

Although the notion of a piecewise isometry is quite general, we restrict our
exposition to a special case.

Definition 4.1 Let X be a compact Finsler surface (possibly, with a bound-
ary). A GPE, T : X → X, on a partition R, is a piecewise isometry if
T |P : P → X is an isometry, for any atom, P ∈ R.
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The boundary of a Finsler polygon, P ⊂ X, consists of Finsler geodesic
segments.

Theorem 4.2 Let X be a Finsler surface, and let a GPE T : X → X be
a piecewise isometry on a partition R, whose atoms are Finsler polygons.
Then h(T ) = 0.

Proof. Refining R, if necessary, we can assume that the atoms of R are
geodesically convex. Recall that P ⊂ X is geodesically convex if for any
x, y ∈ P there is a unique shortest geodesic, γ(x, y), |γ(x, y)| = d(x, y),
joining them, and γ(x, y) ⊂ P . The geodesic convexity is preserved by
isometries, and by taking finite intersections. Therefore, for n ≥ 1, the
atoms of Pn are geodesically convex, hence homeomorphic to the disc. The
length, `(Pn), grows at most linearly. By Theorem 3.8, h(T,R) = 0.

The partition R may not generate. By taking arbitrary refinements of R,
with geodesically convex atoms, or by invoking Theorem 3.16, we conclude
that h(T ) = 0. 2

A piecewise isometry of a Riemann surface, T : X → X, whose singular
set is a union of geodesic segments, is a special case of the setting of Theorem
4.2. If X is a flat surface, and the vertices of R are the singular points of X,
then T is a Euclidean polygon exchange. When X is the unit square, and
the atoms of R are rectangles (necessarily with vertical and horizontal sides),
then T is a rectangle exchange. By Theorem 4.2, these transformations have
entropy zero.

Let X, Y be Finsler surfaces. A diffeomorphism, φ : X → X, is (Finsler)
affine, if it sends geodesics into geodesics.

Definition 4.3 Let X be a compact Finsler surface, and let T : X → X be
a GPE, on a partition R = ∪i∈IPi. If the atoms of R are Finsler polygons,
and T |Pi : Pi → X, i ∈ I, are Finsler affine, we say that T is a piecewise
(Finsler) affine GPE.

Theorem 4.4 Let X be a compact Finsler surface, such that for any x, y ∈
X there is a unique geodesic, γ(x, y), joining them. Let T : X → X be a
piecewise Finsler affine GPE, on R = ∪i∈IPi. Set λi = maxx∈Pi ||dT (x)||,
and let λ = maxi∈I λi. Then h(T ) ≤ λ.
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Proof. Since T preserves the geodesics, and by uniqueness of the geodesic
γ(x, y), T preserves geodesic convexity. Refining R, if necessary, to make
its atoms geodesically convex, we note that T satisfies the assumptions of
Theorem 3.16. 2

If T is the unit squre, and the atoms of R are rectangles, we speak of an
affine rectangle exchange. These are easier to ’construct’ than the isometric
rectangle exchanges. For instance, the classical ’baker transformation’, T ,
is an affine rectangle exchange on two rectangles. Theorem 4.4 gives the
estimate: h(T ) ≤ 2.

4.2 Polygonal billiards

The general billiard dynamics, in arbitrary dimensions, is an extension of the
concept of the geodesic flow. We refer the reder to [7] for general information,
and restrict ourselves to the case when the configuration space is a polygon in
R2, or, more generally, a polyhedral surface [11]. A polyhedral surface, S, is
tiled by a finite number of polygons, Pi, and the billiard on S is put together
from the billiards in Pi. Thus, the billiard in a polygon is a crucial special
case. To shorten the exposition, we will state our results for the billiards on
general polyhedral surfaces, and prove them for polygons, leaving the general
case to the reader, as an exercise. We will use the name ’polygonal billiards’
for our dynamical system.

The main object of study is the polygonal billiard flow, T t, on the unit
tangent bundle of S. The edges of S define a natural cross-section, X, and
the first return map, T : X → X, retains most of the information. We
call T the polygonal billiard map, and X its phase space. In the standard
(arclength, angle) coordinates on X we have T (s, θ) = (s1, θ1), where 0 ≤
s ≤ 1 (normalized ’perimeter’ of S), and 0 ≤ θ ≤ pi. The flow-invariant
Liouville measure yields the standard invariant measure, ω = sin θdsdθ, on
X.

The edges and vertices of S produce two kinds of singularities of T . The
former is the boundary, ∂X = {(s, 0)}∪{(s, π)} of X. To describe the latter,
it is useful to think of elements of X as light rays in S. The light ray, corre-
sponding to x = (s, θ) emanates from s in direction θ. A billiard trajectory
is a sequence of light rays in S, transforming by the laws of geometric optics.
Light rays ending (starting) at vertices of S are singular for T (T−1). Let
e, A be an edge and a vertex of S. We denote by L(e, A) (L(A, e)) the set
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of light rays emanating from e (A), and reaching A (e). The union of real
analytic curves L(e, A), L(A, e) ⊂ X (some may be empty) is the singular
set of the polygonal billiard.

Theorem 4.5 Let S be a compact polyhedral surface, and let T : X → X
be the billiard map. Then: 1. there is a (generalized) polygonal partition, R,
whose boundary is the union of curves L(e, A), L(A, e), and T is a GPE on
R; 2. the entropy of T is zero.

Proof. The time-reversal involution, σ : X → X, reverses the direction of
light rays, and satisfies σTσ = T−1. By definition, σ(L(e, A)) = L(A, e).
Recall that S is a polygon, and assume, for simplicity of exposition, that S
is convex. For any pair, e 6= f , of edges of S, let P (e, f) ⊂ X consist of
light rays that emanate from e and hit f . If e, f are disjoint, then P (e, f) is
a quadrilateral. Its boundary curves are L(e, C), L(e,D), L(A, f), L(B, f) ⊂
int(X), where A,B (C,D) are the endpoints of e (f). If e and f have
a common vertex, A, then P (e, f) degenerates into a trilateral, with one
’horizontal side’ (θ = 0 or θ = π), and one ’vertical side’ (s = s(A)). Note
that σP (e, f) = P (f, e).

Let ei, 1 ≤ i ≤ p, be the edges of S. Then the regions Pij = P (ei, ej), i 6=
j, form a (generalized) polygonal partition, R, of X, and T is a GPE on
R. Note that σ(R) = R, hence σ conjugates the GPEs T : X → X and
T−1 : X → X.

By ’inserting false vertices’ on the sides of S, we can treat S as a q-gon,
with q arbitrarily large. Let P(q) be the above partition of X, defined by this
representation. Then |P(q)| = q(q − 1), and, as q → ∞, the atoms of P(q)
can be made arbitrarily small, in any metric, compatible with the natural
topology on X. We will use the Finsler metric, || || = sin θ|ds| + |dθ|. Let
l(s, s1) be the Euclidean distance between s, s1 ∈ S. The general formula for
the differential, ∂T , of the billiard map [15] yields, for polygons:

∂T =

(
− sin θ

sin θ1

h(s,s1)
sin θ1

0 −1

)
. (18)

Let v ∈ V(s,θ) be a tangent vector to X at (s, θ). Then ∂T (v) ∈ V(s1,θ1), and,
by eq. 18

||∂T (v)|| ≤ ||v||+ h(s, s1)|dθ(v)| ≤ ||v||+ diam(S)|dθ(v)|.
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Iterating T , and using that, by eq. 18, |dθ(∂T (v))| = |dθ(v)|, we obtain (n
arbitrary)

||∂T n(v)|| ≤ ||v||+ |n|diam(S)|dθ(v)|. (19)

If C ≥ max(1, diam(S)), then, by equation above, ||∂T n(v)|| ≤ (|n|+1)C||v||.
Thus, for any C1 curve, γ ⊂ X, we have

|T n(γ)| ≤ (|n|+ 1)C|γ|. (20)

By the ’false vertices’ trick, and the general properties of the entropy (§2
what theorem ?), it suffices to show that h(T,R) = 0 for the partition R
above. Introduce coordinates (s, t = − cot θ) in int(X). In these coordinates
the curves L(e, A) are linear segments, and the billiard map is piecewise
projective [19]. Refining R, if necessary, by additional straght segments, we
can assume that the atoms of R are convex polygons, in the (s, t)-plane.
Thus, for any n ≥ 1, the atoms of Pn are convex, hence homeomorphic to
the disc.

By Theorem 3.8, h(T,R) ≤ λ, where λ is the exponential growth rate of
|∂Pn|. But ∂Pn = γ ∪ T−1γ ∪ · · · ∪ T−nγ, for a certain curve γ, and, by eq.
20, |∂Pn| ≤ c1n

2. Thus λ = 0. 2

Elaborate later

Corollary 4.6 Subexponential growth for geometric quantities defined by a
polyhedral surface.

Corollary 4.7 hµ(T ) = 0 for any invariant measure. Same for the flow
entropy.

4.3 Billiards in rational polytops

As we mentioned earlier, the billiard dynamics makes sense in any dimen-
sions. In this subsection we study the billiards in polytops, P ⊂ R3. Let
Li ⊂ R3 be the hyperplanes containing the faces, Fi, 1 ≤ i ≤ p, of P , and let
si ∈ O(3) be the linear part of the Euclidean reflection about Li. The group,
G = GP ⊂ O(3), generated by si, 1 ≤ i ≤ p, is an important characteristic
of P .

Definition 4.8 A polytop P is rational if the group GP is finite.
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Although the rationality condition in R3 (as opposed to R2) is very re-
strictive, there are interesting examples. Rational polygons have been well
researched [23].

Let P be a rational polytop, and let Ω ⊂ S2 ⊂ R3 be a fundamental
domain for the natural action of G. For any ω ∈ Ω we define a submanifold,
Qω ⊂ V in the phase space of the billiard flow. We have V = {(q, v) : q ∈
P, v ∈ S2}. Set Qω = {(q, v) : v ∈ Gω}. By construction, Qω is invariant
under the billiard flow, T t, on V , and Qω is tiled by |Gω| copies of P .

Definition 4.9 Let the notation be as above. The restriction, T t|Qω = T tω is
the billiard flow in direction ω.

Although, in general, Qω depends on ω, for ω ∈ int(Ω) we have Qω '
Q = Q(P ), where Q is a polytop, tiled by |G| copies of P . Note that Q is
not necessarily a manifold. The family, T tω, of directional flows on Q has a
natural cross-section, S, the union of faces of Q. We view S as a union of
faces of P , with multiplicities. More precisely, S = ∪(F, θ), where F runs
through the faces of P , and for a F ⊂ P , the vector θ runs through the |G|/2
vectors in Gω that are directed inward. The first return map, Tω : S → S,
is the directional billiard map.

Theorem 4.10 Let P ⊂ R3 be a rational polytop, and let S be the cor-
responding polyhedral surface. The directional billiard maps, Tω, are affine
GPEs, and h(Tω) = 0.
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