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Abstract. We begin with the Poincaré recurrence theorem and Kac’s theorem which
for ergodic measures provides the value of the average return time. An example that
shows that limiting entry and return times can be arbitrary if one only choses a suitable
sequence of subsets along which to take the limit underlines the importance to let the
return sets shrink to a point in a dynamically meaningful way. We then show that
return and hitting times are related by a simple formula. Then for the induced map on
a subset (of positive measure) we show that limiting entry times are the same for the
induced map and measure as they are for the original map and measure. For α mixing
measures we then provide Abadi’s proof that the limiting distribution along cylinder sets
is exponential almost surely. In the last section we present the method of Stein and Chen
to show that the limiting distribution for α-mixing measures is Poissonian almost surely.

Contents

1. Introduction 1
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1. Introduction

In dynamics the deterministic development under the application of a map yields nev-
ertheless to random behaviour on a long time scale, This is on an elementary level for
ergodic measures this is expressed through the ergodic theorem which postulates that
time averages converge in the limit to the space average or the given function. Systems
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that have more structured independence over long times can satisfy a number of lim-
iting theorems which otherwise are familiar from i.i.d. random variables such as decay
of correlation, the central limit theorem for sufficiently regular function or the limiting
distribution of entry and return times. In these notes we address this latter topic. The
first result in this direction is due to Poincaré [35] from 1899 which states that for every
finite invariant measure µ almost every point of any positive measure set U returns in
finite time without however providing any estimate on how long this time is expected to
be. That means that the return time function

τU(x) = min{j ≥ 1 : T jx ∈ U}
where T is the tranformation on the finite measure space Ω (see below). It was left to
Kac [30] to show in 1947 that the average time is the reciprocal of the measure of the
return set under the assumption that the measure be ergodic, more precisely

∫
U
τU dµ = 1.

Interest in return times distribution took off in the 90s starting with the paper by
Pitskel [34] who showed that for Axiom A systems the limiting return times to cylinders
are almost surely Poisson distributed. He used that Axiom A systems allow Markov
partitions (see e.g. [10]) and thus a symbolic representation by subshifts of finite type.
To be more precise, if A is the partiton and An denotes the nth refinement where An(x)
denotes the unique element in An that contains the point x, then he showed that

P(ξtAn(x) = r)→ e−ttr/r!, ∀t > 0,

as n→∞ for almost every point x, where

ξtAn(x) =

t/µ(An(x))∑
j=0

χAn(x) ◦ T j

counts the number of hits to An(x) along the orbit segment of length t/µ(An(x)). (Notice
that ξtAn(x)(y) = 0 exactly if τAn(x)(y) > t/µ(An(x)).) He used the method of moments
where the factorial moments can be directly linked to the higher order mixing properties
which for such systems are implied by the ψ-mixing property (for the definition of various
kinds of mixing see section 3.6). For two dimensional tori he moreover showed using an
approximation argument that for hyperbolic maps the limiting return times to metric
discs are Poisson almost surely. Interestingly enough, Pitskel also showed that at periodic
points the return times distribution converges to a combination of a point mass at zero
which encapsulates the periodicity followed by an exponential distribution. In fact he
showed that for a periodic point x with minimal period m one has

PAn(x)(τAn(x) > t/µ(An(x)))→ ϑe−tϑ, ∀t > 0,

where he determined that the value of the extremal index ϑ is given by 1−exp
∑m−1

j=0 f(T jx)

with f being the potential of the invariant measure (we assume the pressure of f is zero).
Nearly concurrently, Hirata [27, 28] showed a similar result using the Laplace transform.

This method considers the transfer operator restricted to the complement of the target
cylinder and requires delicate estimates on the convergence of the principal eigenvalue.

The limiting distribution of hitting times was shown by Galves and Schmitt [16] to be
exponentially distributed almost surely for ψ-mixing systems where ψ is only required to
be summable. Their argument pivots on the estimate that up to a small error P(τU > t+s)
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equals P(τU > t)P(τU > s). By choosing t = rs it then follows that for a good choice of
r and s the quantity P(τU > rs) is by a recursion argument approximated by P(τU > s)r.
This then leads to an exponential law since for small values of s one has P(τU < s) ≈ sµ(U)

which then yields P(τU > t/µ(U)) ∼ (1− sµ(U))
t

sµ(U) ≈ e−t.
The direct approach which this paper pioneered also yields rates of convergence but

cannot be practically used for higher order returns. The method however has been shown
to be quite powerful and allowed for generalisations to φ-mixing and then also α-mixing
measures [1, 2, 3, 4, 6]. We will present this result in section 3.6 for φ-mixing measures
where the conclusion is particularly strong as it establishes the exponential limit law at
every non-periodic point and for periodic points one obtains, as Pitskel did for equilibrium
states, that the limiting return times distribution has a point mass at t = 0 and then falls
off exponentially beginning at a lower level which is referred to as the extremal value.

A number of results on the limiting distribution of entry times are mirrored by extremal
values laws. EVLs looks at the probability that a sequence of random variables Xn exceeds
a given threshold which depends on the observation length. Typically the random variable
Xn is taken to be − log d(T j·, x) for a fixed point x and this can be translated into an
entry times problem. For details see [15].

If A ⊂ Ω and t > 0 a parameter, then as before ξtA =
∑[t/µ(A)]

j=1 χA ◦ T j is the counting
function that counts the number of times the orbit of a point x visits the set A on the
orbit segment of length t

µ(A)
. If the return times τA ◦ T̂ j, j = 0, 2, . . . , are independent,

where T̂ = T τA is the induced map on A, and are exponentially distributed then ξtA will
be Poisson distributed. Since in the deterministic systems we consider, independence of
entries takes plade in the limit as separation goes to infinity, we are lead to conclude that
entry times should be in the limit Poisson distributed in much wider settings as considered
by Pitskel in his trendsetting paper.

The first result on higher returns however was due to Doeblin in 1940 for the Gauss map
at the origin. Then there was a long gap and nothing much seems to have happened until
1991 when Pitskel followed by several people began to work in this area with different
methods. To recall Doeblin’s result on the Gauss map let Ω = (0, 1] be the unit interval.
The Gauss map is then given by Tx = 1

x
mod 1 and is related to the continued fraction

expansion of real numbers. If [a0, a1, a2, . . . ] is the continued fraction expansion of a point
x ∈ Ω then

x =
1

a0 +
1

a1 +
1

a2 + · · ·

where the integers aj ∈ N are uniquely determined by x and are given by aj = 1
x
− Tx.

The Gauss measure µ on (0, 1] is the unique absolutely continuous T -invariant probability
measure. Its density is 1

log 2
1

1+x
and Doeblin [?] showed that for every θ > 0:

P (|{j : 1 ≤ j ≤ n, aj(x) ≥ θn}| = p)→ e−1/(θ log 2) 1

(θ log 2)pp!
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as n → ∞. Since x = 1
aj+Tx

= 1
aj+O(1)

(as 0 < Tx ≤ 1) we see that a point x ∈ (0, 1]

for which |{j : 1 ≤ j ≤ n, aj(x) ≥ θn}| = p visits the interval
(
0, 1

nθ

)
typically exactly p

times on the orbit segment of length n. Since µ
((

0, 1
nθ

))
= 1

log 2
log(1 + 1

θn
) ≈ 1

log 2
1
θn

we

can put Am = (0, 1
m

) and see that Doeblin’s statement translates into

P
(
ξtAm = p

)
→ e−t

tp

p!
, ∀t > 0,

as m → ∞. In other words, the limiting distribution of return times at the origin is
Poissonian.

For higher order returns, Pitskel’s result was generalised by various different methods:
(i) For interval maps an ad hoc method was provided in [29] to show that the limiting
return times are Poisson. The same paper incidentally also shows that first return and
entry times can only agree if they are both exponential. A more general result that ties
entry times distributions to return times distributions is given in Theorem 5.
(ii) Using generating functions and moment estimates it was shown in [22] that for ψ-
mixing measures, which include equilibrium states for Axiom A systems, the limiting
distribution is almost surely Poisson. A similar approach determined [23] that at periodic
points the limiting distribution is Pólya-Aeppli distributed, that is compound Poisson
with a geometric distribution of the cluster size.
(iii) For torus automorphisms it was shown in [14] by the Chen-Stein method and using
harmonic analysis that the return times distribution converges to Poisson for non-periodic
points.
(iv) Using the Chen-Stein method the limiting distribution was shown to be Poisson a.s.
in [5] for ψ and β-mixing measures by employing an estimate due to Arratia, Goldstein
and Gordon [8] and also in [19] using a more direct approach which also yields the limiting
Poisson distribution for all non-periodic points.
(v) By an elementary approach, Abadi and Vergne [7] determined that for φ-mixing
measures returns to cylinder set approximations are in the limit Poisson distributed and
also provide a rate of convergence.
(vi) In [19] we showed for φ-mixing measure that for suitable sets the limiting distribution
at non-periodic points converges to Poisson. This uses the Chen-Stein method and will
be described in section 4 for α-mixing and φ-mixing measures.

One of the underlying facts is that the limiting distributions a priori must depend on
the way the target sets shrink to a single point. This was addressed in [33, 32] where it was
shown that for ergodic measures one can arbitrarily prescribe any (reasonable) distribution
and then find a sequence of sets Un so that

⋂
n Un is a single point x and so that the limiting

distribution for either entry times or return times is equal to that arbitrarily given one.
We will state this result and provide its proof in section 3.3. It is consequently clear that
the approximating return sets Un must be dynamically or geometrically representative.
Naturally, cylinder sets encode the dynamics of the map and consequently yield relevant
limiting distributions. Two other choices are for metric spaces to consider Bowen balls
and geometric balls.

For non-uniformly hyperbolic maps Chazaottes and Collet [13] proved the limiting
distribution for approximating balls to be Poisson. This applies to all maps on manifolds
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that allow for a Young tower construction (see [36, 37]) with one-dimensional unstable
leaves and exponentially decaying correlations. This was extended in [20] to arbitrary
dimensional unstable leaves and polynomial decay of correlations. A more general version
is contained in [24]. In both cases the approach is to estimate the total variation distance
between the counting function ξtUn to a similar sum of i.i.d. zero-one random variables.

A third possible choice of approximating return set Un is to take Bowen balls which are
given by Bε,n(x) = {y : d(T jx, T jy) < ε, j = 0, . . . , n− 1} where ε > 0 will ultimately go
to zero. For such sets the limiting return times distribution was shown to be Poisson for
φ-mixing measures and also for some α-mixing measures in [25, 26].

Finally let us mention that non-conventional return times limit results were obtained by
Kifer and Papaport [31] for ψ-mixing measures. Also, recently there have been quenched
limiting results for some random systems.

2. Poincaré recurrence theorem

Let (Ω, T, µ) be a dynamical system that consists of a space Ω, a map T : Ω→ Ω and
a T -invariant probability measure µ on Ω (µ is T -invariant if µ(U) = µ(T−1U) for all
measurable U ⊂ Ω).

Theorem 1. (Poincaré recurrence theorem) Let T : Ω → Ω and µ be a T -invariant
probability measures. For U ⊂ Ω put τU(x) = min{k ≥ 1 : T kx ∈ U} for the return time
of x ∈ Ω (we have τU(x) =∞ if the forward orbit of x never intersects U). If µ(U) > 0,
then τU(x) <∞ for almost every x ∈ U .

Proof. Let U ⊂ Ω have positive measure and put Un =
⋃∞
j=n T

−jU for the set of
points x ∈ Ω that enter U at least once after time n. Obviously U0 ⊃ U1 ⊃ U2 ⊃ · · · .
We also have Un = T−1Un+1 which implies by invariance of the measure that µ(Un) =
µ(T−1Un+1) = µ(Un+1) and consequently µ(U0) = µ(Un) ∀ n. Now W =

⋂∞
n=1 Un =

{x ∈ Ω enters U infinitely often} and V = W ∩ U = {x ∈ U enters U infinitely often}.
Since µ(U0) = µ(Un) we obtain that µ(W ) = µ(U0) and since U ⊂ U0 we conclude that
µ(V ) = µ(U).

The recurrence statement is not true if the measure is infinite. As an example one can
take the Lebesgue measure on R and the map T : R→ R given by Tx = x+ 1. No set of
positive measure is recurrent.

3. Return times and the induced map

3.1. Kac’s theorem and the induced map. For U ⊂ Ω we define the return time
τU(x) = min{j ≥ 1 : T jx ∈ U}. By the Poincaré recurrence theorem τU(x) < ∞
for almost every x ∈ U for any finite T -invariant measure µ on Ω. Poincaré’s theorem
doesn’t tell us anything about how big τU is. The next result gives us the expected value
of τU on U which in particular implies that τU is integrable on U (assuming µ(U) > 0).

Theorem 2. (Kac 1947) If µ is an ergodic T -invariant probability measure on Ω then
for any U ⊂ Ω of positive measure one has∫

U

τU(x) dµ(x) = 1.
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Proof. Let us put τ kU for the kth return time, that is we put τ 1
U = τU and then define

recursively

τ kU(x) = τU(T̂ k−1x) + τ k−1
U (x)

where we put T̂ (x) = T τU (x)(x) for the induced transformation on U (which exists almost
surely by Poincaré). Inductively we also get

τ kU = τU + τU ◦ T̂ + τU ◦ T̂ 2 + · · ·+ τU ◦ T̂ k−1,

i.e. the kth return time is the kth ergodic sum of τU on (U, T̂ ) By the pointwise ergodic
theorem we get ∫

U

τU dµ =

∫
Ω

χUτU dµ = lim
n→∞

1

n

n−1∑
j=0

(χUτU)(T jx)

for µ-almost every x ∈ Ω as µ is ergodic. If we take the limit along a subsequence
n` = τ `U(x) and use the fact that

(χUτU)(T jx) =

{
0 if T jx 6∈ U
τU(T jx) if T jx ∈ U

then we get (with n = τ `U)∫
U

τU dµ = lim
`→∞

1

τ `U(x)

τ`U−1∑
j=0

(χUτU)(T jx) = lim
`→∞

1

τ `U(x)

`−1∑
j=0

τU(T̂ jx) = lim
`→∞

1

τ `U(x)
τ `U(x) = 1.

It remains to show that χUτU ∈ L 1. We use the same argument again but this time cut
off the values of τU . For R large we put

ϕR(x) =

{
1 if τU(x) ≤ R
0 if τU(x) > R

.

Now, since ϕRχUτU ∈ L 1, we get by the pointwise ergodic theorem∫
U

ϕRτU dµ =

∫
Ω

ϕRχUτU dµ = lim
n→∞

1

n

n−1∑
j=1

(ϕRχUτU)(T jx) = lim
n→∞

1

τ `U(x)

τ`U−1∑
j=0

(ϕRτU)(T̂ `x) ≤ 1

for all values of R. Let R→∞ which implies that χUτU ∈ L 1.

Second proof of Kac’s theorem if T is invertible. This one uses a representation of
Ω which is called a Rokhlin tower. Given U ⊂ Ω (µ(U) > 0), then we put Uk = {x ∈ U :

τU(x) = k}, k = 1, 2, . . . , for the level sets of τU . Then U =
⋃̇∞
k=1Uk is a disjoint union

and the sets T jUk for j = 0, 1, . . . , k − 1, k = 1, 2, . . . , are pairwise disjoint. Since µ is
ergodic, Ω =

⋃
k

⋃k−1
j=1 T

jUk and as T is invertible µ(T jUk) = µ(Uk). Hence

1 = µ(Ω) =
∞∑
k=1

k−1∑
j=0

µ(T−1Uk) =
∑
k

kµ(Uk) =

∫
U

τU dµ
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This uses the representation of Ω by the following tower construction which is due to
Rokhlin. Let F be a map on a space ∆0 and assume ∆0 is decomposed into a disjoint
union ∆0 =

⋃
k ∆k,0. Then, given a (roof) function r : N→ N, we put

∆ =
∞⋃
k=1

r(k)−1⋃
j=0

∆k,j

(disjoint union), where ∆k,j = {(x, j) : x ∈ Uk}. Then there is a map S on ∆ which is
defined by

S : ∆k,j → ∆k,j+1 if j ≤ r(k)− 1

S : ∆k,r(k)−1 → ∆0 =
⋃
k

∆k,0

where S(x, j) = (x, j + 1) for (x, j) ∈ ∆k,j and if j < f(k) − 1. If (x, j) ∈ ∆k,r(k)−1 then
the map is S(x, j) = (F (x), 0). We call the pair (S,∆) a Rokhlin tower. In the case of
Kac’s theorem ∆0 = U and the roof function is f(k) = k.

For a subset U ⊂ Ω, µ(U) > 0, let us denote by T̂ = T τU : U → U the induced map.

T̂ exists by Poincaré’s (or Kac’s) theorem almost everywhere. We also have the induced

measure µ̂ which is defined on U by µ̂(A) = µ(A)
µ(U)

for all measurable A ⊂ U . Moreover µ̂ is

T̂ -invariant and also ergodic w.r.t. T̂ if µ is ergodic w.r.t. T . Ergodicity of µ can only be
inferred from the ergodicity of µ̂ if the additional assumption Ω =

⋃∞
j=0 T

−jU is satisfied.

3.2. Example. Kac’s theorem states that the return time function τU is integrable over
U and also gives the value of the integral. Here we give an example of a system for which
τU is not integrable over the entire space Ω and yet the measure is ergodic under the shift
map.

Let Ω = NZ where on the state space N we give the transition probabilities: Let
pi ∈ (0, 1), i = 1, 2, . . . , be a sequence, then we allow for the transition i → i + 1 with
probability pi and for the transition i → 1 with probability qi = 1 − pi. In other words,
we can define a stochastic matrix M by Mj,1 = qj

Mj,j+1 = pj
Mj,k = 0 otherwise, i.e. if k 6= 1 or k 6= j + 1

,

where the transition probability of the transition j → k is given by the entry Mj,k. Then
M1 = 1 as

∑∞
k=1Mj,k = Mj,1 + Mj,j+1 = qj + pj = 1∀j and M has the left eigenvector

~x = (x1, x2, . . . ) (for the dominant eigenvalue 1) which satisfies

q1x1 + q2x2 + q3x3 + · · · = x1

xjpj = xj+1 for j = 1, 2, . . . .

One sees that the components of the left eigenvector are xj = x1Pj, j = 2, 3, . . . , where

Pj =
∏j−1

i=1 pi (P1 = 1) and x1 is chosen to make ~x a probability vector (x−1
1 =

∑
j Pj).

The first equation above is satisfied as
∑

j qjxj =
∑

j(1− pj)x1Pj = x1

∑
j(Pj − Pj+1) =

x1P1 = x1 if Pj → 0 as j → ∞. In this way we obtain a shift invariant probability
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measure µ on Ω which is ergodic as one can go from any state i to any other state j with
positive probability.

Put Aj = {~ω ∈ Ω : ω0 = j}, j = 1, 2, . . . , let U = A1 be the return set and τU its
return/entry time function. If we put Aj,k = Aj ∩ {τU = k} then ~ω ∈ Aj,k is of the form
ω0ω1 · · ·ωk = j(j + 1)(j + 2) · · · (j + k− 2)(j + k− 1)1 (symbol sequence of length k+ 1).
One has

µ(Aj,k) = µ(Aj)pjpj+1 · · · pj+k−2qj+k−1 = x1Pj
Pj+k−1

Pj
qj+k−1 = x1Pj+k−1qj+k−1

as µ(Aj) = xj = x1Pj. The integral of τU over the entire space is∫
Ω

τU dµ =
∑
j,k

kµ(Aj,k) =
∑
j,k

kx1Pj+k−1qj+k−1.

If we choose pi =
(

i
i+1

)α
for some α ∈ (1, 2) then Pj =

∏j−1
i=1

(
i
i+1

)α
= 1

jα
and since the

Pj are summable, x1 =
(∑

j Pj

)−1

is well defined and positive. Then∫
Ω

τU dµ = x1

∑
k

k
∑
j

1

(j + k − 1)α
qj+k−1

≥ c1x1

∑
k

k
∑
j

1

(j + k − 1)α+1

≥ c2

∑
k

k

kα
=∞,

as α < 2, where we used that qj+k−1 = 1−
(

1− 1
j+k−1

)α
≥ c1

1
j+k−1

for some c1 > 0. We

thus see that the integral of τU over the entire space Ω diverges.
This can be converted to an example on a two-state shiftspace Σ ⊂ {0, 1}Z by the single

element mapping π : Ω → Σ which maps π(1) = 1 and collapses all other symbols to 0,
i.e. π(j) = 0, j = 2, 3, . . . . The measure µ is sent to the probability measure ν = π∗µ
which is invariant under the shift map.

In fact we have
∫

Ω
τU dµ is finite if and only if

∫
U
τ 2
U dµ is finite. So the above example is

an example where the return time to U is not square integrable over U . For this consider
the following lemma.

Lemma 3. Let µ be T -invariant and U ⊂ Ω, µ(U) > 0. Then

µ({x ∈ U : τU(x) ≥ n}) = µ({x ∈ Ω : τU(x) = n}).

Proof. Put V k
j =

⋂k
i=j T

−iU c for the points x for which T ix 6∈ U for i = j, . . . , k.

Clearly V k′

j′ ⊂ V k
j if j′ ≤ j and k′ ≥ k. In particular {x ∈ Ω : τU(x) > n} = V n

1 and

{x ∈ U : τU(x) ≥ n} = U ∩ V n−1
1 . Also

{x ∈ Ω : τU(x) = n} = V n−1
1 \ V n

1

as V n
1 ⊂ V n−1

1 and

T−1V n−2
0 = V n−1

1 = (U ∩ T−1V n−2
0 ) ∪ (U c ∩ T−1V n−2

0 ) = (U ∩ V n−1
1 ) ∪ V n−1

0
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(disjoint union) as T−1V n−1
0 = V n

1 . Hence

µ({x ∈ U : τU(x) ≥ n}) = U ∩ V n−1
1

= µ(T−1V n−2
0 )− µ(V n−1

0 )

= µ(V n−1
1 \ V n

1 )

= µ({x ∈ Ω : τU(x) = n}).

Now Put An = {x ∈ Ω : τU(x) = n}. Then Un = U ∩ An and by the previous lemma
µ(An) =

∑∞
j=n µ(Uj). Hence∫

Ω

τU dµ =
∑
n

nµ(An) =
∞∑
n=1

∞∑
j=n

nµ(Uj) =
∞∑
j=1

j∑
n=1

nµ(Uj) =
∑
j

j(j + 1)

2
µ(Uj)

and thus
∫

Ω
τU dµ = 1

2

∫
U
τU(τU+1) dµ = 1

2

(∫
U
τ 2
U dµ+ 1

)
(the last identity if µ is ergodic).

{entry.return.distributions}
3.3. Entry and return times distributions. Let B ⊂ Ω (µ(B) > 0) and put for
(parameter values) t > 0

FB(t) = P
(
τB >

t

µ(B)

)
= µ

({
x ∈ Ω : τB(x) >

t

µ(B)

})
for the entry time distribution to B. The entry times distribution FB(t) is locally constant
on intervals of length µ(B) and has jump discontinuities at values t which are integer
multiples of µ(B). For any s ∈ N0 one has

{τB > s+ 1} = T−1{τB > s} \ T−1B

and consequently

P(τB = s+ 1) = P(τB > s)− P(τB > s+ 1) ≤ µ(B)

which shows that the jumps at the discontinuities are at most µ(B).
If Bn ⊂ Ω (µ(Bn) > 0) is a sequence of subsets so that µ(Bn) → 0+ as n → ∞, then

we would like to know what happens to FBn(t) as n → ∞. If the FBn converge weakly
to a limiting distribution F (T ) (that is pointwise at all points of continuity), then we see
thatF (t) is Lipschitz continuous with Lipschitz constant 1 and in particular continuous.

In a similarly way we can define the return times distribution by putting

F̂B(t) = PB
(
τB >

t

µ(B)

)
= µ̂

({
x ∈ Ω : τB(x) >

t

µ(B)

})
,

where µ̂ is the induced measure on B. This function too is constant except for jump
discontinuities at multiples of µ(B). By Kac’s theorem we have in this case∫ ∞

0

F̂B(t) dt =
∞∑
j=1

µ(B)µ̂({x : τB(x) ≥ j}) =
∞∑
j=1

µ({x ∈ B : τB(x) ≥ j}) =

∫
B

τB dµ = 1.

However, if for a sequence of sets Bn, µ(Bn)→ 0, the functions F̂Bn converge to a limiting

distribution F̂ then
∫∞

0
F̂ (t) dt = 1 if the the sequence F̂Bn is tight. In general we can

only say that
∫∞

0
F̂ (t) dt ≤ 1
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Lacroix has shown in 2002 that if F̂ (t) is an eligible limiting distribution, that is it
satisfies F (0) = 1, is right continuous, convex, monotonically decreasing on (0,∞) and
F (t) → 0+ as t → ∞, then for any ergodic T -invariant probability measure µ there
exists a sequence of positive measure sets Bn ⊂ Ω so that µ(Bn) → 0 and such that
F (t) = limn→∞ FBn(t) for every point of continuity t ∈ (0,∞). Of course, the sets Bn are
typically pretty wild looking and in particular they are not topological balls or cylinder
sets (if there is a given partition).

Theorem 4. [33, 32] Let µ be ergodic. Then for every eligible limiting distribution F̂

(
∫∞

0
F̂ (t) dt = 1) there exists a sequence of sets Um ⊂ Ω, µ(Um) > 0, so that

⋂
m Um = {x}

and F̂Um converges to F̂ .

Proof. We proceed in two steps. In the first step one constructs the ‘stamp’ for ra-
tional distribution functions and in the second step F̂ will be approximated by rational
distributions.

(I) A distribution function G(t), t ≥ 0, is rational if it is piecewise constant with finitely
many discontinuities 0 < t1 < t2 < · · · < tk, tj ∈ N, βj =

pj
q

, where βj = G(t−j ) − G(t+j ),

and where the return set B has measure α = p
q
. One clearly has

∑
j βj = 1 which implies∑

j pj = q. One now constructs a periodic system with invariant probability measure µ

in which the subset B has measure α and return times distribution µ({x ∈ B : τB(x) =
`}) is equal to αβj is ` = tj and equal to 0 otherwise. Notice that by Kac’s theorem∑

j tjµ({x ∈ B : τB(x) = tj}) = 1

Let m be some positive integer and put H = Mq2 and nj = Mppj, j = 1, 2, . . . , k.
Notice that

∑
j nj = Mp

∑
j pj = Mpq. The unit interval B will be divided into Mpq

equal intervals which are grouped into blocks of n1, n2, . . . , nk subintervals. On the jth
block of nj subintervals we construct over each subinterval a tower with tj floors. The
map T is then given by mapping one floor to the next floor above and mapping the top
most floor to the bottom most floor (which is an interval of B) of the next tower. The
invariant measure µ is then equal distribution.

By Kac’s theorem 1 =
∑

j tjαβj =
∑

j tj
p
q

pj
q

implies
∑

j tjpj = q2

p
. The total height of

the tower construction is then
∑

j tjnj = Mp
∑

j tjpj = Mq2 = H and the measure of the

return set B is thus µ(B) = Mpq
H

= p
q

= α.

For the return times we obtain µ({x ∈ B : τB(x) = tj}) = 1
H
nj =

Mppj
Mq2

=
ppj
q2

= αβj, or

µ̂(τB = tj) = βj where µ̂ is the induced measure on B. All other return times have zero
measure. Hence, the distribution function of the system is G.

(II) For almost everyx ∈ Ω we can find neighbourhoods Bn ∈ Ω, µ(Bn) → 0, {x} =⋂
nBn and so that τ(Bn) = infy∈Bn τBn(y)→∞ as n→∞. Let F̂ be a given distribution.

Let αm → 0 be rational Gm rational distribution functions as in part (I) with discontinu-
ities t1 < t2 < · · · < tk (dropping the index m) and jumps βj, j = 1, . . . , k,

∑
j βj, such

that Gm(αmt)→ F̂ (t) at points of continuity. By erodicity Ω is described by the Rokhlin

tower ∆ =
⋃∞
`=1

⋃`−1
j=0 T

jBn,`, where Bn,` are the level sets {y ∈ Bn : τBn(y) = `}. Choose

an integer M and construct a stamp Sm for Gm as described in part (I). If n = n(m)
is large enough, then τ(Bn) is much larger than Lm = Mq2. We label the floors in the
Rokhlin tower according to repeated application of the stamp over the level sets Bn,` and
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say that T jBn,` belongs to Um whenever we hit one of the Mpq base subintervals of the
stamp. That is T jBn,` ⊂ Um if

j ∈ {0, t1, 2t1, · · · , n1t1, n1t1 + t2, . . . , Lm − tk} mod Lm.

Let ε > 0 then if τ(Bn) is large enough we achieve that |µ(Um) − αm| < εµ(Um) and

µ(y ∈ Un : τUm(y) 6∈ {t1, t2, . . . , tk}) < εµ(Um). This implies that F̂Um(t)− F̂ (t) +O(ε).

3.4. Relation between entry and return times distributions. The restriction of the
function τB to the set B ⊂ Ω is called the return time function and we correspondingly
call

F̃B(t) = PB
(
τB >

t

µ(B)

)
the return times distribution. For instance, if Ω is the shiftspace Σ andB = U(x0x1 · · ·xn−1)
is an n-cylinder then τB(~x) for ~x ∈ B measures the ‘time’ it take to see the word
x0x1 · · ·xn−1 again, that is

τB(~x) = min{j ≥ 1 : xjxj+1 · · ·xj+n−1 = x0x1 · · ·xn−1}.

The function F̃B(t) then measures the probability to see the first n-word again after
rescaled time t/µ(B).

The following theorem relates the limiting entry times distribution to the limiting return
times distribution. It turns out that a simple formula allows us to compute one from the
other one.

{HLV}
Theorem 5. [18] Let Bn ⊂ Ω (µ(Bn) > 0) be a sequence of sets so that µ(Bn)→ 0+. If
the limits F (t) = limn→∞ FBn(t), F̃ (t) = limn→∞ F̃Bn(t) exist (pointwise) then

F (t) =

∫ ∞
t

F̃ (s) ds.

Observe that the limiting entry times distribution and return times distribution are the
same only if they are exponential, that is F̃ = F if only if F (t) = F̃ (t) = e−t. Also note,
that in conjunction with the previous theorem, we conclude that the limiting return times
distribution of the restricted system (U, T̂ , µ̂) (for some positive measure U ⊂ Ω) is the
same as the limiting return times distribution of the entire system (Ω, T, µ).

We will first prove the following lemma from which the theorem follows by taking limits.

Lemma 6. For any B ⊂ Ω (µ(B) > 0) let F ′B be the right sided derivative of the largest
continuous piecewise linear function that lies below FB and is linear on the intervals
[kµ(B), (k + 1)µ(B)], k ∈ N. Then

−F ′B(t) = F̃ (t).

Proof. We have that FB(t) = P(τB > t/µ(B)), F̃B(t) = PB(τB > t/µ(B)). By a previous
lemma we have that

µ ({x ∈ B : τB(x) ≥ s}) = P(τB = s).
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If we put s = t
µ(B)

, then we can also write

P(τB = s) = P(τB > s− 1)− P(τB > s)

= P
(
τB >

t

µ(B)
− 1

)
− P

(
τB >

t

µ(B)

)
= FB(t− µ(B))− FB(t)

= −µ(B)F ′B(t− µ(B)).

Combining this with the previous identity for P(τB = s) yields

−F ′B(t− µ(B)) =
µ({x ∈ B : τB > (t− µ(B))/µ(B)})

µ(B)

= PB
(
τB >

t− µ(B)

µ(B)

)
= F̃B(t− µ(B)).

Proof of the theorem. We apply the lemma to the sets Bn. Integration yields

FBn(t) =

∫ ∞
t

−F ′Bn(s) ds =

∫ ∞
t

F̃Bn(s− µ(Bn)) ds

as FB(t), F̃B(t) → 0 as t → ∞ (Poincaré and ergodicity). Now let n go to infinity
(µ(Bn)→ 0+).

As noted above the limiting entry distribution F is Lipschitz continuous. Since the limiting
return distribution F̃ (t) is monotonically decreasing to zero, we now easily see that F (t)
is in fact always convex.

3.5. Entry and return times for the induced map. In this section we show that the
limiting distributions for the map are the same as for the induced map. We first prove
the following useful identity:

Lemma 7. Assume µ is ergodic. Let U ⊂ Ω, µ(U) > 0 and put Vk = {x ∈ U : τU(x) ≥ k}.
Then for every A ⊂ Ω one has

µ(A) =
∞∑
k=1

µ(T−kA ∩ Vk).

Proof. Put

Akj = T−kA \
k−1⋃
i=j

T−iU = {x ∈ T−kA : T ix 6∈ U, i = j, . . . , k − 1}.

Then A0
0 = A, A1

0 = T−1A\U , Ak1 = T−1Ak−1
0 and T−kA∩Vk = U ∩Ak1 = Ak1 \Ak0. Hence

N∑
k=1

µ(T−kA ∩ Vk) =
N∑
k=1

(
µ(Ak−1

0 )− µ(Ak0)
)

= µ(A0
0)− µ(AN0 ) = µ(A)− µ(AN0 ).
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To show that the last term goes to zero as N → ∞ we use that µ(AN0 ) = µ(AN+1
1 ) and

estimate as follows:

µ(AN0 ) =
∞∑

`=N+1

µ(x ∈ Ω : τU(x) = `)

=
∞∑

`=N+1

µ(x ∈ U : τU(x) ≥ `)

≤
∞∑

`=N+1

`µ(x ∈ U : τU(x) = `)

=

∫
U

τUχτU>N dµ

which decays to 0 as N →∞ since τU is integrable over U by Kac’s theorem.

In the same way one can also show that µ(A\U) =
∑∞

k=1 µ(T−kA∩Vk+1). The assumption
of ergodicity of µ can be replaced with the assumption that Ω =

⋃
n T
−nU (up to nullsets).

The following theorem shows that a restricted system (U, T̂ , µ̂) has the same limiting entry
times distribution as the original system (Ω, T, µ).

Theorem 8. [17, 21] Let µ be ergodic, U ⊂ Ω, µ(U) > 0. Assume there exists a sequence
of sets Bn ⊂ U , µ(Bn)→ 0+, so that

F (t) = lim
n→∞

FBn(t), FBn(t) = P
(
τBn >

t

µ(Bn)

)
F̂ (t) = lim

n→∞
F̂Bn(t), F̂Bn(t) = P

(
τ̂Bn >

t

µ̂(Bn)

)
where

τB(x) > min{j ≥ 1 : T jx ∈ B}, τ̂B(x) > min{j ≥ 1 : T̂ jx ∈ B}
and T̂ = T τU is the induced transformation on U .

Then F (t) = F̂ (t) for all t ∈ R+.

For ergodic Radon measures µ this was proven in [11] in 2003 where the Lebesgue Density
theorem1 was used. The limit there was along metric balls Bn that shrink to a point x ∈ Ω.

Proof. We first relate τB to τ̂B (B ⊂ U, µ(B) > 0). If we put m = τ̂B(x), x ∈ U , then

τB(x) = τU(x) + τU(T̂ x) + τU(T̂ 2x) + · · ·+ τU(T̂m−1x) = nm(x),

where we wrote the ergodic sum of the function n = τU |U for the return time on (U, T̂ ).

By the Birkhoff ergodic theorem on (U, T̂ , µ̂) we get as µ̂ is ergodic:

1

m
τB(x) =

1

m
nm(x)→

∫
U

n(x) dµ(x) =

∫
U

τU(x)
dµ(x)

µ(U)
=

1

µ(U)

by Kac’s theorem for almost every x ∈ U .

1It says that if G is a full measure set then µ(G∩Br(x))
µ(Br(x))

→ 1 almost surely as the radius r → 0.
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Let ε > 0, then there exists Gε ⊂ U , and Mε ∈ N so that∣∣∣∣ 1

m
nm(x)− 1

µ(U)

∣∣∣∣ < ε ∀ x ∈ Gε, m ≥Mε

and µ(Gc
ε) < ε. Thus

τB(x) =

τ̂B(x)−1∑
j=0

τU ◦ T̂ j =
τ̂B(x)

µ(U)
+O(τ̂B(x)ε)

for all x ∈ Gε such that τ̂B(x) ≥ Mε. Since τU is integrable on U there exists a δ > 0
(depending on ε) so that

∫
S
τU dµ < ε for any set S ⊂ U for which µ(S) < δ. We can

assume that µ(Gc
ε) < min(δ, ε).

With Vn =
⋃
j≥n Uj, and Uj = {x ∈ U : τU = j} we obtain by the previous lemma

FB(t) =

∫
Ω

χτB>s dµ =
∑
n

∫
Vn

χτB>s ◦ T n dµ =
∑
n≤Mε

∫
Vn

χτB>s ◦ T n dµ+ E1,

where s = t
µ(B)

. The error E1 is by assumption bounded by

|E1| ≤
∑
n>Mε

µ(Vn) ≤
∫
U

τUχτU>Mε dµ < ε.

Hence

FB(t) =
∑
n≤Mε

∫
Vn

χτB>s dµ+ E1 + E2,

where

|E2| ≤
∑
n≤Mε

∫
Vn

|χτB>s ◦ T n − χτB>s| dµ

≤
∑
n≤Mε

∫
Vn

n∑
j=0

(
χB ◦ T j + χB ◦ T s+j

)
dµ

≤
∑
n≤Mε

nµ(B)

≤ M2
εµ(B)

and therefore |E2| < ε if µ(B) is small enough. Consequently

FB(t) =

∫
U

τUχτB>s dµ+ E1 + E2 + E3,

as
∑

n χVn = τU , where

|E3| ≤
∑
n>Mε

∫
Vn

χτB>s dµ ≤
∑
n>Mε

µ(Vn) =

∫
U

τUχτU>Mε dµ < ε

by choice of Mε.
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Next we replace τB by τ̂B using the relation τB
τ̂B

= 1
µ(U)

+O(ε) which implies τB = τ̂B
µ(U)

+η

where η : U → R has the bound |η| ≤ εµ(U)τ̂B ≤ ετ̂B. Hence

FB(t) =

∫
U

τUχτ̂B> t
µ̂(B)

+η dµ+ E1 + E2 + E3.

Now we want to introduce a power k of the induced map T̂ so that we can average over
k and use the ergodic theorem on (U, T̂ , µ̂). By T̂ -invariance of µ̂

FB(t) =

∫
U

(
τUχτ̂B> t

µ̂(B)
+η

)
◦ T̂ k dµ+ E1 + E2 + E3

=

∫
Gε

(
τUχτ̂B> t

µ̂(B)
+η

)
◦ T̂ k dµ+ E1 + E2 + E3 +Hk,

where we get for the error

Hk =

∫
Gcε

(
τUχτB> t

µ(B)

)
◦ T̂ k dµ ≤

∫
Gcε

τU ◦ T̂ k dµ =

∫
T̂−kGcε

τU dµ < ε

since by assumption µ(T̂−kGc
ε) = µ(Gc

ε) < δ as µ restricted to U is T̂ -invariant.
In the principal term we want to exploit the identity

∑
j χVj = τU on U . For that

purpose note that{
x ∈ U : τ̂B(T̂ kx) ≥ s

}
\
k−1⋃
`=1

T̂−`B = {x ∈ U : τ̂B(x) ≥ s+ k}

which yields (here we use s = t
µ̂(B)

+ η)

FB(t) =

∫
Gε

(
τUχτ̂B> t

µ̂(B)
+η+k

)
◦ T̂ k dµ+ E1 + E2 + E3 +Hk +Kk,

where the individual errors are bounded by:

Kk ≤
∫
Gε

τU ◦ T̂ k
k−1∑
`=1

χB ◦ T̂ ` dµ.

We now estimate the average error over k ∈ {0, 1, . . . , n− 1}:

K̂n =
1

n

n−1∑
k=0

Kk

=

∫
Gε

1

n

n−1∑
k=0

k−1∑
`=1

(τU ◦ T̂ k)(χB ◦ T̂ `) dµ

=

∫
Gε

n−2∑
`=1

(χB ◦ T̂ `)

(
1

n

n−1∑
k=`+1

τU ◦ T̂ k
)
dµ

≤ c1
1

µ(U)

∫
Gε

n−2∑
`=1

(χB ◦ T̂ `) dµ

≤ c1nµ̂(B)
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where we used the estimate

1

n

n−1∑
k=`+1

τU ◦ T̂ k ≤
1

n

n−1∑
k=0

τU ◦ T̂ k ≤
1

µ(U)
+ ε ≤ c1

1

µ(U)

for some constant c1 and for all x ∈ Gε provided n ≥Mε. Thus

FB(t) =
1

n

n∑
k=1

∫
Gε

(
τU ◦ T̂ k

)
χ
τ̂B>

1
1−η′

t+kµ̂(B)
µ̂(B)

dµ+ E0 + Ĥn + K̂n,

where |E0| < 3ε, Ĥn = 1
n

∑n−1
k=0 Hk < ε and η′′ : U → R satisfies the bound |η′′| < ε.

Consequently (as |E0 + K̂n| < 3ε+ c1nµ̂(B))

FB(t) =

∫
Gε

1

n

n∑
k=1

(
τU ◦ T̂ k

)
χτ̂B>(1+η′′) t

µ̂(B)
dµ+O(ε+ nµ̂(B))

=

∫
Gε

χτ̂B>(1+η′′) t
µ̂(B)

dµ̂+O(ε+ nµ̂(B))

as 1
n

∑n
k=1 τU ◦ T̂ k = 1

µ(U)
+O(ε) on Gε, where η′′ : U → R satisfies |η′′| < c2|η′|+ n

t
µ̂(B)

(c2 > 0). To adjust for the ‘time shift’ in the lower bound of the entry function, we use

the fact that |F̂B(t)− F̂ (s)| ≤ |t− s|+ µ̂(B) and thus obtain (for a c3)

|FB(t)− F̂B(t)| < c3ε+
(n
t

+ 1
)
µ̂(B) + c1nµ̂(B)

for all n ≥Mε. If µ(B) is small enough so that µ̂(B) < min( εt
Mε
, ε

(c1+1)n
), then

|FB(t)− F̂B(t)| < (c3 + 1)ε

and as µ(B)→ 0 we obtain |F (t)−F̂ (t)| < (c3+1)ε for any positive ε. Thus FB(t) = F̂B(t)
for all t > 0.

{limiting.entry.times}
3.6. Limiting entry times distributions.

Definition 9. (I) We say µ is mixing if ∀U, V ⊂ Ω:

µ(U ∩ T−jV )→ µ(U)µ(V )

as n→∞.
(II) We say µ is weakly mixing if ∀U, V ⊂ Ω:

1

n

n−1∑
j=0

∣∣µ(U ∩ T−jV )− µ(U)µ(V )
∣∣→ 0

as n→∞.

Mixing clearly implies the weak mixing property and both imply ergodicity.

Example: The (irrational) rotation Rα : [0, 1) 	 given by Rαx = x + α mod 1 is not
mixing (nor is it weakly mixing) because there exists a sequence nj →∞ so that Rα0→ 0
as j → ∞. For instance one can take nj = qj where

pj
qj

are the approximats of α. They
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satisfy
∣∣∣α− pj

qj

∣∣∣ ≤ c1
qj

for some constant c1. Then njα = qjα = pj + O(q−1
j ) = O(q−1

j )

mod 1. Then with U = V = [0, 1
2
], say, one gets µ(U ∩Rn−j

α V )→ 1
2
6= 1

4
= µ(U)µ(V ).

To obtain meaningful results for the limiting distribution of entry and return times
we have to make some assumptions, in particular on the rates of mixing. Let A =
{A1, A2, . . . , AM} be a finite measurable partition of Ω, that is Ω =

⋃
j Aj and Ai∩Aj = ∅

for i 6= j. Denote by

An =
n−1∨
j=0

T−jA

its nth joint. Here we use the notation that for two partitions A and B one gets the finer
partitionA∨B = {A∩B : A ∈ A, B ∈ B}. Hence A ∈ An if ∃Aij ∈ A for j = 0, 1, . . . , n−1

so that A =
⋂n−1
j=0 T

−jAij , or, in other words, T jA ⊂ Aij for j = 0, 1, . . . , n− 1.

Example: (Shift space) For the full M shift space Σ = {1, . . . ,M}N0 with the left shift
map σ : Σ 	 one sets A = {U(i) : i = 1, . . . ,M}, where U(i) = {~x ∈ Σ : xo = i} are
1-cylinder sets. Then An =

⋃
x0x1···xn−1

{U(x0x1 · · ·xn−1)} where U(x0 · · ·xn−1) = {~y :

y0 · · · yn−1 = x0 · · ·xn−1} are n-cylinder sets.

We say A is generating if A∞ consists of singletons only containing single points.
Let µ be a T -invariant measure and A a finite generating partition. Put A∗ =

⋃
n≥1An.

Then we say:
(I) µ is ψ-mixing if ∀U ∈ σ(An), V ∈ σ(An):∣∣∣∣µ(U ∩ T−n−kV )

µ(U)µ(V )
− 1

∣∣∣∣ ≤ ψ(k)↘ 0.

(II) µ is right φ-mixing if ∀U ∈ σ(An), V ∈ σ(An):∣∣∣∣µ(U ∩ T−n−kV )

µ(V )
− µ(U)

∣∣∣∣ ≤ φ(k)↘ 0.

One similarly calls an invariant measure µ left φ-mixing measure if ∀U ∈ σ(An), V ∈
σ(An): ∣∣∣∣µ(U ∩ T−n−kV )

µ(U)
− µ(V )

∣∣∣∣ ≤ φ(k)↘ 0.

(III) µ is α-mixing if ∀U ∈ σ(An), V ∈ σ(An):∣∣µ(U ∩ T−n−kV )− µ(U)µ(V )
∣∣ ≤ α(k)↘ 0.

Clearly ψ-mixing implies φ-mixing implies α-mixing.

Example: (Bernoulli measures) Let Σ = {1, . . . ,M}N0 and A = {u(i) : i} be as before.
Then a probability vector ~p = (p1, . . . , pM) induces a shift invariant probability measure
µ on Σ which is ψ-mixing with ψ(k) = 0 for all k.

Example: (Markov measures) Let Σ = {1, . . . ,M}N0 and P an M×M stochastic matrix
with left probability eigenvector ~p. This induces a shift invariant probability measure µ
on Σ which is ψ-mixing decaying exponentially fast.
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For U ∈ σ(An) and s << 1/µ(U) put λs(U) = − log P(τU>s)
sµ(U)

.
{thm.Abadi}

Theorem 10. [1] Let T : Ω 	 and µ be a T -invariant probability measure. Assume there
is a finite generating partition A of Ω so that µ is α-mixing with α(k) = O(k−p) for some
p > 1. Then there exists a constant C so that∣∣P(τAn(x) > t)− e−λs(An(x))µ(An(x))t

∣∣ ≤ Cµ(An(x))ε

for all s << t/µ(An(x)), where An(x) denotes the unique partition element of An which
contains the point x.

Proof. For U ∈ σ(An) we notice that

{τU > s} =
s⋂
i=0

T−iU c ∈ σ(An+s).

For any ∆ > 0 (and t > ∆)

{τU > s+ t} ⊂ {τU > s} ∪ T−t{τU > t−∆} ⊂ {τU > s+ t} ∪
s+∆⋃
i=s+1

T−iU

and

{τU > t} ⊂ {τU > t−∆} ⊂ {τU > t} ∪
t⋃

i=t−∆+1

T−iU.

By the α-mixing property we thus obtain

|P(τU > s+ t)− P(τU > s)P(τU > t)|
≤

∣∣P(τU > s+ t)− P({τU > s} ∩ T−t{τU > t−∆}
∣∣

+ |P(τU > s+ t)− P(τU > s)P(τU > t−∆)|
+P(τU > s) |P(τU < t)− P(τU > t−∆)|

≤ ∆µ(U)(1 + P(τU > s)) + α(∆− n)

≤ 2∆µ(U) + α(∆− n).

Iterating this estimate yields∣∣P(τU > ks)− P(τU > s)k
∣∣

≤
k∑
j=1

|P(τU > js)− P(τU > (j − 1)s)P(τU > s)|P(τU > s)k−j

≤ (2∆µ(U) + α(∆− n))
k∑
j=1

P(τU > s)k−j

≤ 2∆µ(U) + α(∆− n)

1− P(τU > s)

=
2∆µ(U) + α(∆− n)

P(τU ≤ s)
.
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Put λs(U) = − log P(τU>s)
sµ(U)

. For t = ks+ r, 0 ≤ r < t the remainder, we get∣∣P(τU > t)− e−λs(U)µ(U)t
∣∣ ≤ |P(τU > t)− P(τU > ks)|+

∣∣P(τU > ks)− P(τU > s)k
∣∣

+e−λs(U)µ(U)ks
∣∣1− e−λs(U)µ(U)r

∣∣
≤ ∆µ(U) +

2∆µ(U) + α(∆− n)

P(τU ≤ s)
+ c1∆µ(U)

for some c1. Now we choose s so that P(τU ≤ s) ≥ µ(U)δ for some δ > 0. Then we put
∆ ∼ µ(U)−β for some β > 0 which implies that α(∆− n) ∼ ∆−p ∼ µ(U)βp. Hence∣∣P(τU > t)− e−λs(U)µ(U)t

∣∣ ≤ c2µ(U)1−β +
µ(U)1−β + µ(U)βp

µ(U)δ
= O(µ(U)ε),

where ε = min{1 − β, βp} − δ is positive if δ is small enough and β < 1. Now put
U = An(x).

To better estimate λs we now assume that the measure µ is φ-mixing. But first we prove
the following topological result.

For a set U ⊂ Ω put τ(U) = infy∈U τU(y) for the period of U . This is equivalent to
U ∩ T−jU = ∅ for j = 1, . . . , τ(U)− 1 and U ∩ T−τ(U)U 6= ∅.

Lemma 11. Let A be a (finite) generating partition of Ω. Then the sequence τ(An(x)),
n = 1, 2, . . . is bounded if and only if x is a periodic point.

Proof. Let us put τn = τ(An(x)) and notice that τn+1 ≥ τn for all n. Thus either
τn →∞ or τn has a finite limit τ∞. Assume τn → τ∞ <∞. Then τn = τ∞ for all n ≥ N ,
for some N , and thus An(x) ∩ T−τ∞An(x) 6= ∅ for all n ≥ N . Since the intersections
An(x)∩ T−τ∞An(x) are nested, i.e. An+1(x)∩ T−τ∞An+1(x) ⊂ An(x)∩ T−τ∞An(x) we get

∅ 6=
⋂
n≥N

(An(x) ∩ T−τ∞An(x)) =
⋂
n≥N

An(x) ∩
⋂
n≥N

T−τ∞An(x) = {x} ∩ {T−τ∞x}

which implies that x = T τ∞x is a periodic point. Conversely, if x is periodic then clearly
are the τn are bounded by its period.

Lemma 12. Let µ be φ-mixing. Then there exists ϑ ∈ (0, 1) and a constant C so that

µ(A) ≤ Cϑn, ∀ A ∈ An, ∀ n.

Proof. Since maxA∈A µ(A) < 1 we can find k so that ϑ′ = maxA∈A µ(A) + φ(k − 1) < 1.
For A ∈ An there exists A′ ∈

∨r−1
j=0 T

−jkA, where r = [n/k], and so that A ⊂ A′. Clearly,

there exist Bj ∈ A, j = 0, . . . , r−1, so that A′ =
⋂r−1
j=0 T

−jkBj. By the φ-mixing property

µ

(⋂̀
j=0

T−jkBj

)
≤ µ

(
`−1⋂
j=0

T−jkBj

)
(µ(B`) + φ(k − 1))

for ` = 1, . . . , r − 1 and therefore

µ(A) ≤ µ(A′) ≤
r−1∏
j=0

(µ(B`) + φ(k − 1)) ≤ ϑ′r.
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Now put ϑ = k
√
ϑ′.

Lemma 13. Let µ be φ-mixing with φ(k) = O(k−p) for some p > 1. Then for U ∈ σ(An):

P(τU ≤ s)

sµ(U)
→ 1−

as sµ(U)→ 0 and τ(U)→∞.

Proof. One has the simple upper bound P(τU ≤ s) = µ
(⋃s

j=1 T
−jU

)
≤ sµ(U). In order

to find a lower bound put Ns =
∑s

j=1 χU ◦ T j for the counting function for hitting U up

to time s. Clearly {τU ≤ s} = {Ns ≥ 1} and also E(Ns) = sµ(U). By Cauchy-Schwarz

(µ(Ns))
2 = (µ(NsχNs≥1))2 ≤ µ(N2

s )µ(χ2
Ns≥1) = µ(N2

s )P(τU ≤ s).

Thus

P(τU ≤ s) ≥ s2µ(U)2

µ(N2
s )

,

where we can write

µ(N2
s ) = µ

(
s∑
j=1

χU ◦ T j
)2

= sµ(U) + 2
s∑
j=1

(s− j)µ(χU(χU ◦ T j)).

For j = 1, . . . , τ(U) − 1 the terms in the sum are zero. For j = τ(U), . . . , 2n we put
U j ∈ σ(A[j/2]) so that U ⊂ U j. Then by the φ-mixing property

µ(χU(χU ◦ T j)) ≤ µ(U j ∩ T−jU) ≤ µ(U)(µ(U j) + φ(j/2)).

For j = 2n+ 1, . . . , s the φ-mixing property yields

µ(χU(χU ◦ T j)) = µ(U ∩ T−jU) ≤ µ(U)(µ(U) + φ(j − n)) ≤ µ(U)(µ(U) + φ(j/2)).

Hence

µ(N2
s ) ≤ sµ(U)

1 + 2
2n∑

j=τ(U)

µ(U j) +
s∑

j=2n+1

µ(U) +
∞∑

j=τ(U)

φ(j/2)


≤ sµ(U)

1 + c1

∞∑
j=τ(U)

ϑj/2 + sµ(U) + c2

∞∑
j=τ(U)

(j/2)−p


≤ sµ(U)

(
1 + c3ϑ

τ(U)/2 + sµ(U) + c4τ(U)−p+1
)

where we used the estimate µ(U j) ≤ Cϑ[j/2] and that φ(k) ∼ k−p. Consequently

P(τU ≤ s) ≥ 1

1 + c3ϑτ(U)/2 + sµ(U) + c4τ(U)−p+1

and therefore P(τU ≤ s)→ 1− if we let sµ(U)→ 0 and τ(U)→∞.

Theorem 14. Let µ be φ-mixing and φ(k) = O(k−p) for p > 1. Then

Fn(t) = P
(
τAn(x) >

t

µ(An(x))

)
→ e−t

as n→∞, for every non-periodic point x ∈ Ω.
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For ψ-mixing measures summability of ψ(k) is enough.
In light of Theorem 5 we get the same result for the limiting return times distribution.

Corollary 15. Let µ be a T -invariant probability measure. Assume there is a finite
generating partition A of Ω so that µ is φ-mixing. Then

F̃n(t) = PAn(x)

(
τAn(x) >

t

µ(An(x))

)
→ e−t

for every non-periodic x.

4. Higher order returns {higher.order.returns}
If individual returns are independent of one another then we expect that higher order

returns are Poisson distributed. Here we will describe a method that allows us to prove
precisely such results for α-mixing measures.

4.1. Stein-Chen method. Denote by νt the Poisson distribution on N0 with parameter

t > 0, that is νt({k}) = e−t t
k

k!
. We will now describe the Stein-Chen method to estimate

how close a given probability measure ν is to a Poisson distribution νt. Let F = {f :
N0 → R} for the function space of functions on the non-negative integers. We then define
the Stein operator S : F → F by

S f(k) = tf(k + 1)− kf(k).

For given h ∈ F we want to find f so that

S f = h− νt(h).

This is the Stein equation. For a given h one can in fact compute explicitly f by solving

S f(k) = tf(k + 1)− kf(k) = h(k)− νt(h)

for f(k + 1). Then

f(k + 1) =
k

t
f(k) +

1

t
(h(k)− νt(h)

=
k(k − 1)

t2
f(k − 1) +

k

t2
(h(k − 1)− νt(h)) +

1

t
(h(k)− νt(h))

and recursively

f(k + 1) =
k!

tk
f(0) +

k!

tk

k∑
i=0

(h(i)− νt(h))
ti

i!
,

where f(0) is arbitrary. Similarly one can also show that

f(k + 1) = −k!

tk

∞∑
i=k+1

(h(i)− νt(h))
it

i!

Lemma 16. Let E ⊂ N0 and h = χE. Then if f solves the Stein equation S f =
χE − νt(E) we get

fχE(k) ≤
{

1 if k ≤ t
2+t
k

if k > t
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and

m∑
i=1

fχE(i) ≤
{

m if m ≤ t
t+ (2 + t) log m

t
if m > t

.

This is proven by using the explicit representation given above.
One has the following result.

Proposition 17. [9] A probability measure ν on N0 is Poisson for t if and only if∫
N0

S f dν = 0 for all bounded f ∈ F .

Proof. One has ∫
S f dν =

∑
k

S f(k)νt({k})

=
∑
k

(tf(k + 1)− kf(k)) νt({k})

=
∑
`

f(`) (tνt({`− 1})− `νt({`})) .

Hence
∫

S f dν = 0 for all f ∈ F if and only if tν({`− 1}) = `ν({`})∀`. Hence ν({`}) =
t
`
ν({`−1}) = t2

`(`−1)
ν({`−2}) = · · · = t`

`!
ν({0}). That means ν is Poisson for t and ν({0})

is the normalising term.

4.2. Higher order returns for α-mixing measures. We want to apply this to higher
order returns and assume we have a map T : Ω 	 and a T -invariant probability measure
µ on Ω. For a subset A ⊂ Ω we put

Wm =
m∑
i=1

χA ◦ T i

for the counting function on orbit segments of lengths m. Then t = E(Wm) = µ(Wm) =
mµ(A) by invariance of µ. That is m = t

µ(A)
(Kac scaling). We now state the main result

of this section.
{theorem.poisson}

Theorem 18. Let µ be an α-mixing T -invariant measure on Ω. Then there exists a
constant C so that for A ∈ σ(An), (n ∈ N) and E ⊂ N0 one has

|P(Wm ∈ E)− νt(E)| ≤ C inf
n<∆<m

(
∆µ(A) +

α(∆)

µ(A)
+ PA(τA < ∆)

)
| log µ(A)|
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For E ⊂ N0 let again be h = χE and f the solution of the Stein equation S f = χE−νt(E).
Then for a probability measure ν on N0 we have

ν(E)− νt(E) =

∫
χE dν −

∫
χE dνt

=

∫
(χE − νt(E)) dν

=

∫
S (f) dν

=

∫
(tf(k + 1)− kf(k)) dν(k).

Let E ⊂ N0 and f the solution to Stein’s equation S f = χE − νt(E). Let ν be the
probability measure on N0 given by ν(E) = P(Wm ∈ E). Then

∫
S f ν = ν(E) − νt(E)

and consequently

µ(Wm ∈ E)− νt(E) =

∫
S f dν = E(tf(Wn + 1))− E(Wmf(Wm)).

With Ii = χA ◦ T i and Wm =
∑m

i=1 Ii we get Wmf(Wm) =
∑m

i=1 Iif(Wm) and

|P(Wm ∈ E)− νt(E)| =

∣∣∣∣∣tE(f(Wm + 1))−
m∑
i=1

E(Iif(Wm))

∣∣∣∣∣
=

∣∣∣∣∣∑
i

µ(Ii) (E(f(Wm + 1))− E(f(Wm)|Ii))

∣∣∣∣∣
= µ(A)

∑
i

∣∣∣∣∣
m∑
a=0

(f(a+ 1)P(Wm = a)− f(a)P(Wm = a|Ii))

∣∣∣∣∣
≤ µ(A)

∑
a

f(a+ 1)εa,i,

where

εa,i = |P(Wm = a)− P(Wm = a+ 1|Ii)|

=

∣∣∣∣P(Wm = a)− P(Wm = a ∩ T−iA)

µ(A)

∣∣∣∣
≤

∣∣∣∣P(Wm = a)− P(W i
m = a)µ(A) + ξa,i

µ(A)

∣∣∣∣
≤

∣∣P(Wm = a)− P(W i
m = a)

∣∣+
ξa,i
µ(A)

,

where W i
m = Wm − Ii and

ξa,i =
∣∣P(W i

m = a ∩ T−iA)− P(W i
m = a)µ(A)

∣∣ .
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Proposition 19. Let µ be α-mixing. Then there exists a constant C so that for all
A ∈ σ(An),

m∑
a=0

f(a+ 1)ξa,i ≤ Cµ(A) inf
rA≤∆<m

(
∆µ(A) +

α(∆)

µ(A)
+ PA(τA ≤ ∆)

)
lgm,

i = 1, . . . ,m, where
rA = min{j ≥ 1 : A ∩ T−iA 6= ∅}

is the period of A.

Remark: If µ is φ-mixing, then

P(τA ≤ ∆) ≤
∆∑

i=rA

δA(j)

where
δA(j) = inf

0≤w≤j
(µ(Aw(A)) + φ(j − w))

and Aw(A) ∈ Aw is the w-cylinder that contains A.

Proof. Let us establish the following notation:

W i
m = Wm − Ii = W i,−

m +W i,+
m + U i,−

m + U i,+
m ,

where

W i,−
m =

∑
j<i−∆

Ij, W i,+
m =

∑
j>i+∆

Ij, U i,−
m =

∑
i−∆≤j<i

Ij, U i,+
m =

∑
i+∆≥j>i

Ij

and also W̃ i
m = W i,−

m +W i,+
m for the total sum with gap and U i

m = U i,−
m +U i,+

m for the gap
terms without Ii. Then

P(W i
m = a ∩ T−iA) =

∑
a±,a0,±

a−+a++a0,−+a0,+=a

P({W i,±
m = a±} ∩ {U i,±

m = a0,±} ∩ T−iA)

and
ξa,i ≤ R1(a) +R2(a) +R3(a),

where
R1(a) =

∣∣∣P({W i
m = a} ∩ T−iA)− P({W̃ i

m = a} ∩ T−iA)
∣∣∣

for opening the gap,

R2(a) =
∣∣∣P({W̃ i

m = a} ∩ T−iA)− P(W̃ i
m = a)µ(A)

∣∣∣
to get independence,

R3(a) =
∣∣∣P(W̃ i

m = a)− P(W i
m = a)

∣∣∣µ(A)

for filling in the gap again.
We estimate the terms independently:

(I) For opening the gap we note that

{W i
m = a} ∩ T−iA ⊂

(
{W̃ i

m = a} ∩ T−iA
)
∪
(
{U i

m > 0} ∩ T−iA
)
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and similarly

{W̃ i
m = a} ∩ T−iA ⊂

(
{W i

m = a} ∩ T−iA
)
∪
(
{U i

m > 0} ∩ T−iA
)
.

This implies that R1 ≤ b−i + b+
i , where

b−i = P({U i,−
m > 0} ∩ T−iA), b+

i = P({U i,+
m > 0} ∩ T−iA).

Since

b+
i = P({U i,+

m > 0}|Ii)µ(A) = PA(τA < ∆)µ(A)

and similarly for b−i = b+
i one has

R1(a) ≤ µ(A)2PA(τA < ∆).

(II) Estimate of R3. We observe that

{W i
m = a} ⊂ {W̃ i

m = a} ∪ {U i
m > 0}, {W̃ i

m = a} ⊂ {W i
m = a} ∪ {U i

m > 0}

which implies that

∣∣∣P(W̃ i
m = a)− P(W i

m = a)
∣∣∣ ≤ P(U i

m > 0) ≤ 2P

(
∆⋃
k=1

{Ii+k = 1}

)
≤ 2∆µ(A)

and consequently

R3(a) ≤ 2∆µ(A)2.

(III) We use the mixing property to estimate the second error term

R2(a) =
∣∣∣P({W̃ i

m = a} ∩ T−iA)− P(W̃ i
m = a)µ(A)

∣∣∣
=

∣∣∣∣∣ ∑
a−+a+=a

(
P({W i,±

m = a±} ∩ T−iA)− P(W i,±
m = a±)µ(A)

)∣∣∣∣∣
≤

∑
a−+a+=a

(R2,1(a−, a+) +R2,2(a−, a+) +R2,3(a−, a+)).

The three steps are first splitting off W i,−
m then splitting off T−iA and finally putting W i,−

m

and W i,+
m back together again. For the first term we obtain accordingly

R2,1(a−, a+) = P({W i,±
m = a±} ∩ T−iA)− P({W i,+

m = a+} ∩ T−iA)P(W i,−
m = a−)

and we want to estimate
∑

a f(a+ 1)R2,1(a−, a+). For simplicity we assume that t << m
is small and put

σa−,a+ = sgn
(
P({W i,±

m = a±} ∩ T−iA)− P({W i,+
m = a+} ∩ T−iA)P(W i,−

m = a−)
)
.
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Then by the previous lemma

R+
2,1 =

∑
a

∑
a−+a+=a
σa−,a+=+1

f(a+ 1)R2,1(a−, a+)

≤
∑
a

∑
a−+a+=a
σa−,a+=+1

2 + t

a+ 1
R2,1(a−, a+)

≤
lgm∑
k=0

2 + t

m2−k

m2−k∑
a+=0

∑
a−∈[0,m2−k)
σa−,a+=+1

(
P({W i,±

m = a±} ∩ T−iA)− P({W i,+
m = a+} ∩ T−iA)P(W i,−

m = a−)
)

where we used exponential progression to approximate the function f(a + 1), i.e. subdi-
vided into classes where a ∈ [m2−k−1,m2−k). Thus

R+
2,1 ≤

lgm∑
k=0

2 + t

m2−k

m2−k∑
a+=0

P({W i,+
m = a+} ∪

⋃
a−,σa−,a+=+1

{W i,−
m = a−} ∩ T−iA)

− P({W i,+
m = a+} ∩ T−iA)P(

⋃
a−,σa−,a+=+1

{W i,−
m = a−})


≤

lgm∑
k=0

2 + t

m2−k

m2−k∑
a+=0

α(∆− n)

where we used that

{W i,+
m = a+} ∩ T−iA ∈ T−i−∆σ(Am−i+n), {W i,−

m = a−} ∈ σ(Ai−∆+n).

Hence (n << ∆)

R+
2,1 ≤ c1(2 + t)

lgm∑
k=0

α(∆) ≤ c2(2 + t)α(∆) lgm.

In a similar way one estimates the terms with σa−,a+ = −1 to get R−2,1 ≤ c2(2+t)α(∆) lgm.
Consequently R2,1 ≤ 2c2(2 + t)α(∆) lgm.

Similarly one estimates

R2,2 =
∑
a

f(a+ 1)
∑

a−+a+=a

(
P({W i,+

m = a+} ∩ T−iA)− P(W i,+
m = a+)µ(A)

)
P(W i,−

m = a−)

≤ α(∆)(2 + t) lgm

and

R2,3 ≤ α(2∆)(2 + t) lgm.

These three estimates combined yield

R2 ≤ c3(2 + t)α(∆) lgm

and everything combined proves the statement in the proposition.
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Proof of Theorem 18. For the proof of the theorem we get

|P(Wm ∈ E)− νt(E)| ≤
m∑
i=1

µ(A)
m∑
a=0

f(a+ 1) (µ(A) + ξa,i)

≤
∑
a

f(a+ 1)µ(A) +
∑
a

f(a+ 1)
ξa,i
µ(A)

≤ c1µ(A) lgm+ c2 inf
∆

(
α(∆)

µ(A)
+ ∆µ(A) + PA(τA ≤ ∆)

)
lgm.

4.3. φ-mixing measures. Let µ be polynomially φ-mixing so that φ(k) . k−p. In order
to estimate the third term inside the brackets of Theorem 18 we get for A = An(x) an
n-cylinder at some point x that

P(τA < ∆) ≤
∆∑

j=rA

µ(An(x) ∩ T−jAn(x))

where the individual terms in the sum are for a right φ-mixing measure µ bounded by

µ(An(x) ∩ T−jAn(x)) ≤
(
µ(A j

2
∧n(x)) + φ(j/2)

)
µ(An(x)).

Hence, if we choose ∆ ∼ µ(An(x))−ω for any ω ∈ (0, 1) then

P(τA < ∆) ≤ µ(An(x))
∆∑

j=rA

(
µ(A j

2
∧n(x) + φ(j/2)

)
and consequently

PA(τA < ∆) ≤ c1

(
ϑrA/2 + r

−(p−1)
A + ∆µ(An(x)

)
. r

−(p−1)
A

since µ(Aw(x)) . ϑw for some ϑ < 1. If x is not a periodic point, then rAn(x) → ∞ as
n→∞.

The first term inside the brackets of Theorem 18 converges to zero as n goes to infinity
because ∆µ(An(x)) . µ(An(x))1−ω and ω is positive.

The second term is estimated thusly

α(∆)

µ(An(x))
≤ φ(∆)

µ(An(x))
.

∆−p

µ(An(x))
. µ(An(x))pω−1

which goes to zero as n→∞ since we can choose ω < 1 close enough to 1 so that ωp > 1.
Since the same argument can be made for left φ-mixing measures, we obtain the fol-

lowing result.

Theorem 20. Let µ be a left or right φ-mixing measure so that φ(k) . k−p for some
p > 2. Then for all x not periodic we obtain

P
(
τ kAn(x) >

t

µ(An(x))

)
−→

k−1∑
i=0

e−t
ti

i!
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as n→∞ provided log µ(An(x)) . n and rAn(x) & n.
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[12] V Chamôıtre and M Kupsa: k-limit laws of return and hitting times; Discrete and Continuous
Dynamical Systems 15 (2006), 73–86.

[13] J-R Chazottes and P Collet: Poisson approximation for the number of visits to balls in nonuniformly
hyperbolic dynamical systems; Ergod. Th. & Dynam. Syst. 33 (2013), 49–80.

[14] M Denker, M Gordin and A Sharova: A Poisson limit theorem for toral automorphisms; Illinois J.
Math. 48(1) (2004), 1–20.

[15] D Faranda, A C Moreira Freitas, J Milhazes Freitas, M Holland, T Kuna, V Lucarini, M Nicol, M
Todd, S Vaienti; Extremes and Recurrence in Dynamical Systems, Wiley, New York, 2016.

[16] A Galves and B Schmitt: Inequalities for hitting times in mixing dynamical systems; Random
Comput. Dynam. 5 (1997), 337–347.

[17] N Haydn: A note on the limiting entry and return times distributions for induced maps; available
at http://arxiv.org/abs/1208.6059.

[18] N Haydn, Y Lacroix and S Vaienti: Hitting and Return Times in Ergodic Dynamical Systems: Ann.
of Probab. 33 (2005), 2043–2050

[19] N Haydn and Y Psiloyenis: Return times distribution for Markov towers with decay of correlations;
Nonlinearity 27(6) (2014), 1323–1349

[20] N Haydn and K Wasilewska: Limiting distribution and error terms for the number of visits to balls
in non-uniformly hyperbolic dynamical systems; Disc. Cont. Dynam. Syst. 36(5) (2016), 2585–2611.

[21] N Haydn, N Winterberg and R Zweimüller: Return-time statistics, Hitting-time statistics and In-
ducing; in Ergodic Theory, Open Dynamics and Coherent Structures, Bahsoun, Bose and Froyland
editors, Springer Proceedings in Mathematics & Statistics Vol. 70, 2014

[22] N Haydn and S Vaienti: The limiting distribution and error terms for return times of dynamical
systems; Disc. Cont. Dyn. Syst. 10 (2004) 589–616.

[23] N Haydn and S Vaienti: The distribution of return times near periodic orbits; Probability Theory
and Related Fields 144 (2009), 517–542.



ENTRY AND RETURN TIMES DISTRIBUTIONS 29

[24] N Haydn and F Yang: A Derivation of the Poisson Law for Returns of Smooth Maps with Certain
Geometrical Properties; Contemporary Mathematics Proceedings in memoriam Chernov 2017

[25] N Haydn and F Yang: Entry times distribution for dynamical balls on metric spaces; J. Stat.
Phys. (2017) DOI: 10.1007/s10955-017-1745-7.

[26] N Haydn and F Yang: Entry times distribution for mixing systems; J. Stat. Phys. (2016) DOI
10.1007/s10955-016-1487-y.

[27] M Hirata: Poisson law for Axiom A diffeomorphisms; Ergod. Th. & Dynam. Syst. 13 (1993), 533–
556.

[28] M Hirata: Poisson law for the dynamical systems with the “self-mixing” conditions; Dynamical
Systems and Chaos, Vol. 1 (Worlds Sci. Publishing, River Edge, New York (1995), 87–96.

[29] M Hirata, B Saussol and S Vaienti: Statistics of return times: a general framework and new appli-
cations; Comm. Math. Phys. 206 (1999), 33–55.

[30] M Kac: On the notion of recurrence in discrete stochastic processes; Bull. A.M.S. 53 (1947),1002–
1010.

[31] Y Kifer, A Rapaport: Poisson and compound Poisson approximations in conventional and noncon-
ventional setups, Probab. Th. Related Fields 160 (2014), 797–831.

[32] M Kupsa and Y Lacroix: Asymptotics for hitting times, Ann. of Probab. 33(3) (2005), 610–614.
[33] Y Lacroix: Possible limit laws for entrance times of an ergodic aperiodic dynamical system; Israel

J. Math. 132 (2002), 253–264.
[34] B Pitskel: Poisson law for Markov chains; Ergod. Th. & Dynam. Syst. 11 (1991), 501–513.
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