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Abstract

Equilibrium states of rational maps Hölder continuous potentials are not φ-
mixing, mainly due to the presence of critical points. Here we prove that for
disks the normalised return times of arbitrary orders are in the limit Poisson
distributed as the radius of the disks go to zero. The return times are nor-
malised by the measure of the disks. We also show that rational maps are
weakly Bernoulli with respect to the partition given by Denker and Urbanski.

1 Introduction

We intend to investigate the effect of mixing on the distribution of return times. Let
T be an expansive transformation on the space Ω and let µ be a probability measure
on Ω. For a point x we denote by χε the characteristic function of the ε-ball Bε(x).
Then we can consider the ‘random variable’

ξε =
[t/µ(χε)]∑
j=0

χε ◦ T j.

The value of ξε measures the number of times a given point returns to the ε-
neighbourhood of x within the normalised time t (the normalisation is with respect
to the µ-measure of the set ‘return-set’ Bε(x)). If µ is the measure of maximal
entropy for the shift transformation on a subshift of finite type, then it was shown
by Pitskel [10] that the return times are in the limit Poisson distributed for cylinder
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sets and µ-almost every x. For equilibrium states of Hölder continuous functions,
Hirata ([6], [7]) has similar results for the zeroth return time r = 0 using the transfer
operator restricted to the complement of ε-balls in the shiftspace (the argument for
the higher order return times r ≥ 1 seems to be incomplete).

Pitskel’s proof relies on a general result by Sevast’yanov [12] which asserts that
a process is Poisson distributed of all orders if one has sufficiently good mixing
properties most of the time. In fact, Pitskel’s result can easily be generalised to the
case when µ is an equilibrium state for a Hölder continuous potential. Applied to
cylinder sets, Galves and Schmitt [4] have succeeded in obtaining rates of conver-
gence for the zeroth order return times (r = 0) although the return times have to
suffer some additional rescaling at every step. Going one step further that result
was subsequently used in [1] to show that repetition times are in the limit normal
distributed.

The Central Limit Theorem for equilibrium measures for rational maps has been
proven in [3] and requires a much weaker mixing property.

In fact, M Hirata, B Saussol and S Vaienti [8] are now able to show that certain
family of interval maps with a parabolic point have Poisson distributed return times.

In this paper T is a rational map of degree at least 2 and J its Julia set. Assume
that we executed appropriate branch cuts on the Riemann sphere so that we can
define univalent inverse branches Sn of T n on J for all n ≥ 1 (see Lemma 2 for
details). Put An = {ϕ(J) : ϕ ∈ Sn}.

Let f be a Hölder continuous function on J so that P (f) > sup f (P (f) is the
pressure of f), let µ be its unique equilibrium state on J and define the ‘random
variable’ ξε to measures the number of times a given point returns to Bε within the
normalised time t/µ(Bε). In our main result, Theorem 12, we then show that for
almost every x there exists a sequence εj → 0 so that

µ(Nr,εj)→
tr

r!
e−t, (1)

as j →∞, where Nr,εj = {y ∈ Ω : ξεj(y) = r} are the r-levelsets of ξεj .
In Section 2 we recall prior results about rational maps and the inverse branches

of their iterates and the convergence of the transfer operator. In the same section
we also estimate the measures of neighbourhoods of critical values (Lemma 6). In
Section 3 we show that one has uniform r-fold mixing properties for all r (Lemma
9). Section 4 is used to approximate metric balls by unions of cylinder sets. The
main part of the proof of the main theorem in Section 5 is devoted to show that
short return times occur rarely and can in the limit be neglected. This is done in
Lemmas 14 to 16. In the last section we show that T is weakly Bernoulli.
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Constants typed in capitals, C1, C2, . . ., retain their meaning throughout the
paper, while constants in lower case, c1, c2, . . . are used locally.

I’m grateful for the comments made by the referee, in particular with respect to
Lemma 14 and a remark that led to Lemma 6.

2 The transfer operator

Let T : C → C be a rational map of degree d ≥ 2, and denote by J its Julia set.
For f : J → R, one defines the transfer operator L by

Lφ(x) =
∑

y∈T−1x

ef(y)φ(y),

where φ are functions on J and x ∈ J . In order to use the euclidean metric on C
(rather than the spherical metric on C̄) let us assume that ∞ 6∈ J (in particular
we ask for simplicity’s sake that J 6= C), and denote by Cα(J), α > 0, the Hölder
continuous functions on J with Hölder exponent α, that is, if f ∈ Cα(J) then there
exists a smallest constant |f |α so that |f(x)− f(y)| ≤ |f |α|x− y|α, for all x, y ∈ J .
If we denote by |f |∞ the supremum norm on J , then the natural norm on Cα(J) is
given by ‖ · ‖α = | · |α + | · |∞.

If f : J → R is a continuous function, then we would like to consider the action of
the associated transfer operator Lf . It is well known that for real f the operator Lf
has a largest simple eigenvalue whose associated eigenfunction and eigenfunctional
define an invariant measure µ on J which is conformal with respect to P (f) − f ,
where P (f) is the pressure of f . If the function f is Hölder continuous and satisfies
the condition P (f) − f > 0 (‘supremum gap’), then it was shown [2] that µ is in
fact the equilibrium state for f , which means that it realises the maximum in the
variational principle

P (f) = sup
ν

(h(ν) + µ(f)),

where the supremum is over all T -invariant probability measures ν on J , and h(ν)
denotes the metric entropy of ν. Let us put ρ = esup f−P (f) which by assumption is
less than one.

We shall need the following result.

Lemma 1 [5] Let 0 < λ < 1. Then there exist ε > 0, η ∈ (0, 1), a sequence of
simply connected regions Ωn, n ∈ N, and a disjoint decomposition of the inverse
branches of T n on Ωn into two subsets S ′n = S ′n(λ) and S ′′n = S ′′n(λ) so that
(a) |S ′′n| ≤ c1λ

−n, n ∈ N, for some constant c1.
(b) |ϕ′(z)| ≤ 1

2
ηn for z ∈ Ωn and in particular diam(ϕ(Ωn)) ≤ 1

2
ηn,∀ϕ ∈ S ′n, n ∈ N.

(c) dist(z,Ωn) ≤ c2e
−nε for all z ∈ J, n ∈ N, for some constant c2 > 0.
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In fact more can be said about the regions Ωn on which the inverse branches are
defined. Let us recall how the quasidisks Ωn are constructed. In order to get uni-
form distortion estimates, the branch cuts had to be thickened by an exponentially
small amount e−εn. Moreover we grouped branch cuts that were too close and thus
achieved that the thickened branch cuts were separated by at least a distance of
order e−βn, where β > 0 was smaller than ε. With the branch cuts all parallel to
the imaginary axes we obtain contracting inverse branches S̃ ′n and non-contracting
branches S̃ ′′n. If we use branch cuts which are at an angle with the imaginary axis,
where the angle is chosen to be of the order e−βn (chosen so that the new fattened
branchcut forms an angle with the previous one without intersection another nearby
one), then we obtain a second set of contracting branches S̄ ′n and non-contracting
branches S̄ ′′n such that for every branch ϕ̃ ∈ S̃ ′n we can find a (unique) branch ϕ̄ ∈ S̄n
which allows us to analytically continue ϕ̃ outside the region Ω̃n to a quasi disk Ωn

which has ordinary branch cuts (no thickness) and deletes neighbourhoods of the
critical values of T n whose diameters are of the order e−(ε−β)n. In particular if ϕ̃
and ϕ̄ are both contracting then the continuation ϕ is also contracting. We hence
get the following improvement of the previous lemma (C2 ≤ 2c1).

Lemma 2 Let 0 < λ < 1. Then there exist ε > 0, η ∈ (0, 1), a sequence of qua-
sidisks Ωn, n ∈ N, which have regular branch cuts and delete C1e

−nε-neighbourhoods
(C1 > 0) of the critical values of T n, and a disjoint decomposition of the inverse
branches of T n on Ωn into two (disjoint) subsets S ′n = S ′n(λ) and S ′′n = S ′′n(λ) so
that
(a) |S ′′n| ≤ C2λ

−n, n ∈ N, for some C2.
(b) |ϕ′(z)| ≤ ηn for z ∈ Ωn and in particular diam(ϕ(Ωn)) ≤ ηn,∀ϕ ∈ S ′n, n ∈ N.

In property (a) we can assume that C2 = 1 for all large enough n.
In the following we shall indicate by ϕ̃ an extension of the inverse branch ϕ ∈ Sn

to a quasidisk Ω̃n which has ordinary branch cuts (so that µ(Ω̃n∩J) = 1). We denote
by S̃n those extended inverse branches, whose restrictions ϕ to Ωn lie in Sn (similarly
for S̃ ′n and S̃ ′n). Put An = {ϕ(J ∩ Ωn) : ϕ ∈ Sn} and Ãn = {ϕ̃(J ∩ Ω̃n) : ϕ̃ ∈ S̃n}.

There are other ways to introduce inverse branches, notably by Denker and
Urbanski in [2] whose inverse branches we shall use in the last section to prove the
weak Bernoulli property. In the above setting (Lemma 2) we get better control
on the number of non-contracting branches (property (a)) and in return have to
pay for it in property (b), where the exponential contraction only applies to the
image under the inverse branch ϕ ∈ S ′n and nothing much can be said about (T kϕ)′

for k = 1, 2, . . . , n. (We also cut out some holes around critical values.) On the
other hand Denker and Urbanski’s inverse branches (Lemma 23) don’t provide such
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good control on the number on non-contracting branches but instead have uniform
contraction estimates for T kϕ for k = 1, . . . , n.

By [3] the eigenfunction h to the largest eigenvalue eP (which is a single eigenvalue)
of the transfer operator Lf : Cα → Cβ, for real f ∈ Cα, is Hölder continuous
with some exponent β. Moreover h is bounded and strictly positive. Hence on can
introduce a normalised transfer operator L̂ : Cα → Cγ by L̂ = e−P (f)Lf̂ , where

f̂ = f + log h − log h ◦ T is Hölder continuous with exponent β (P (f̂) = 0). The
principal eigenvalue of the normalised transfer operator is 1 and the associated
eigenfunctions are the constants: L̂1 = 1. The normalised transfer operator is given
by

L̂nφ =
∑
ϕ∈S̃n

(gnφ)ϕ,

where gn = ef̂+f̂T+···+f̂Tn−1
. The equilibrium state µ now satisfies L̂∗µ = µ and is

e−f̂ -conformal, where by assumption ef̂ ≤ ρ < 1.
Since T n is one-to-one of the atoms Aϕ̃ = ϕ̃(J ∩ Ω̃n) we get µ(Aϕ̃) ≤ ρn. Hence,

with the choice λ =
√
ρ (cf. Lemma 2) the collective µ-measure onS the atoms

Aϕ for non-contracting branches ϕ ∈ S̃ ′′n is (for all large enough n) bounded by
(ρ/λ)n = ρn/2, since the number of non-contracting branches is bounded by λ−n.

In Section 5 we shall repeatedly use the bound:

∑
ϕ̃∈S̃′′n

µ(Aϕ̃) ≤
(
ρ

λ

)n
,

for all large enough n.

Proposition 3 [5] Let ψ ∈ Cα and µ the equilibrium state for some potential f ∈
Cα which satisfies the supremum condition sup f < P (f). Then there exists a σ < 1
and a constant C3, such that for all k ≥ 1:

|L̂kψ − µ(ψ)|∞ ≤ C3σ
k‖ψ‖α.

The following result will be needed below to prove the multiple mixing property of
Lemma 7.

Lemma 4 ([3]) There exists a constant C4 > 1 and γ0, ξ > 0, so that diam(ϕ(Bγ(x))) ≤
Cn

4 γ
ξ for all x ∈ J , inverse branches ϕ (on some quasidisk) of T n, n ≥ 0, γ ≤ γ0

and small enough δ.
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Let us denote by HD(µ) the Hausdorff dimension of µ (HD(µ) > 0). The (lower)

pointwise dimension of µ, D(x) = lim infε→0
log µ(Bε(x))

log ε
, is µ-almost everywhere equal

to the Hausdorff dimension. The following lemma states that the pointwise dimen-
sion is always strictly positive. For completeness sake (and lack of a reference) we
include a proof.

Lemma 5
inf
x∈J

D(x) > 0

Proof. According to [2] µ is an e−f̂ -conformal measure, that is µ(TA) =
∫
A e
−f̂(x)dµ(x)

on (measurable) sets A on which T is one-to-one. This implies that D(x) = D(Tx)
for all x ∈ J for which T is conformally one-to-one in a neighbourhood of x (i.e.
T ′(x) 6= 0). If x is a critical point of order k, then T (y) = T (x) + (y − x)kψ(y),
where ψ(y) is analytic and non-zero in a neighbourhood of x. This implies that
D(x) = kD(Tx).

Let x ∈ J be such that none of its preimages T−kx, k = 0, 1, 2, . . ., contains a
critical point of T . Then D is a constant equal to D(x) on P =

⋃∞
k=0 T

−kx. To show
that D(x) ≥ HD(µ) let us assume that D(x) < HD(µ) and choose D(x) < δ′ <
HD(µ). Then for every ε > 0 we can find numbers 0 < r(y) < ε/3, so that

µ(Br(y)(y)) ≥ r(y)δ
′

for all y ∈ P . Since P is dense in J , {Br(y)(y) : y ∈ P} is an open cover of J ,
and by compactness there is a finite P ′ ⊂ P so that J ⊂ ⋃

y∈P ′ Br(y)(y). We now
prune the set P ′ by successively removing points in the following manner. Let y be a
point so that r(y) is largest. Then remove all the y′ for which Br(y′)(y

′) ⊂ B3r(y)(y).
The remaining disks Br(y′)(y

′) will be disjoint from Br(y)(y). Now pick among the
remaining disks (other than Br(y)(y)) the one with the largest r and remove in the
same way (smaller) disks that are contained in the disk of triple radius. Successive
application of this procedure yields after finitely many steps a set P ′′ ⊂ P ′ which
has the property that Br(y)(y)∩Br(y′)(y

′) = ∅ for y, y′ ∈ P ′′, y 6= y′ and also satifies
that J ⊂ ⋃y∈P ′′ B3r(y)(y).

We therefore obtain∑
y∈P ′′

( diam (B3r(y)(y)))δ
′
= 6δ

′ ∑
y∈P ′′

r(y)δ
′ ≤ 6δ

′ ∑
y∈P ′′

µ(Br(y)(y)) ≤ 6δ
′
.

Since ε was arbitrary, we found for every ε > 0 a (finite) cover C of J so that
diam (A) ≤ ε ∀ A ∈ C and ∑

A∈C
( diam (A))δ

′ ≤ 6δ
′
,
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which implies that δ′ ≥ HD(µ). Hence D(x) ≥ HD(µ).
For an arbitrary point x ∈ J we shall use the fact that every orbit in J contains

at most c1 critical points, where c1 is some constant that depends only on the map
T . Since the order of critical points is no more than the degree d of the map, one
obtains for any x ∈ J the bound:

D(x) ≥ HD(µ)

dc1
.

2

The complement Ωc
n of the domain Ωn consists of a union of C1e

−εn-disks (ε from
Lemma 2) centred at the critical values of T n (here we disregard the fact that in
addition one has to do ‘regular’ branchcuts because their measure is zero). Note
that the number of critical values of T n grows linearly in n.

Lemma 6 There exists an α ∈ (0, 1) so that for all n large enough

µ(Ωc
n) ≤ αn.

Proof. Since the radii at which one can estimate the measure of a ball using the local
dimension are not of uniform size we have to do the following auxiliary argument.

The map T has finitely many critical points z1, z2, . . . of orders k1, k2, . . .. For
every j we thus can write T (z) = T (zj) + (z − zj)

kjψj(z), where ψj is analytic
and non-zero in a neighbourhood of zj. Let ε1 > 0 be so that log |ψj(z)/ψj(zj)|
is small (e.g. between the values −1

4
and 1

4
) for z ∈ Bε1(zj) (j = 1, 2, . . .). Then

there exists an ε2 > 0 (assume ε2 < ε1) so that T is one-to-one on disks Bε2(z)
centred at z 6∈ ⋃

j Bε1(zj). Within the disks Bε1(zj) we now use the fact that T
behaves like a kjth power of z − zj. For 0 < ε3 < ε2 we delete ε3-neighbourhoods
around the critical points. Then T is one-to-one on any set A ⊂ Bε1(zj) which
satisfies diam (A) < ε3, diam (TA) < ε3 and so that A and TA both avoid the
ε3-neighbourhoods of the critical points.

If we choose ε1 small enough then we can by Lemma 5 choose a positive δ <
infx∈J D(x) so that µ(Bε(zj)) ≤ εδ for all critical points zj and all ε ≤ ε1.

Denote by Crit (T ) the critical points of T , choose u ∈ (e−ε, 1) (where ε is as in
Lemma 2) and assume that n is large enough so that C1e

−nε < un/2 ≤ ε2/6. Let

m = [n | log u|
2 log |T ′|∞ ] and divide the critical values of T n into two classes: P and Q. We

say a critical value z of T n lies in P if dist (T kz, Crit (T )) ≤ 4un/2 for some k ≤ m
and dist (T jz, Crit (T )) > 4un/2 for j = 0, . . . , k − 1. Otherwise we say z lies in Q.
Note that by choice of m we have for k ≤ m:

diam (T kBun(z)) ≤ 2un|T ′|k∞ ≤ 2un/2.

7



If z ∈ Q, then this implies the sets T kBun(z) are disjoint from the 2un/2-
neighbourhood of Crit (T ), and therefore (by the second paragraph of the proof)
T k is one-to-one on Bun(z) for k ≤ m. In particular TmBun(z) ⊂ Ω̃m (provided
we arrange appropriately for the regular branchcuts) and there exists a unique in-
verse branch ϕ̃ ∈ S̃m so that Bun(z) = ϕ̃(TmBun(z)). A rough estimate yields
µ(Bun(z)) ≤ µ(ϕ̃(J)) ≤ ρm. Since |Q| + |P | ≤ c1n for some constant c1, one there-
fore obtains ∑

z∈Q
µ(Bun(z)) ≤ c1nρ

m ≤ ρ−1c1n
(
ρ| log u|/2 log |T ′|∞

)n
→ 0

exponentially fast as n→∞.
If z ∈ P then, because of T -invariance of µ and the inclusionBun(z) ⊂ T−k(T kBun(z)),

we have (since dist (T kz, Crit (T )) ≤ 4un/2)

µ(Bun(z)) ≤ µ(T kBun(z)) ≤ µ(B2un/2(T
kz)) ≤ µ(B6un/2(z

′)),

where z′ ∈ Crit (T ) is such that |T kz − z′| ≤ 4un/2. Hence, since µ(B6un/2(z
′)) ≤

(6un/2)δ for any z′ ∈ Crit (T ), and since |P | ≤ c1n we conclude that∑
z∈P

µ(Bun(z)) ≤ c2nu
nδ/2.

Since Ωc
n ⊂

⋃
z∈P∪QBun(z) the lemma now follows for any α > max(e−εδ/2, ρε/2 log |T ′|∞)

(α < 1). 2

3 Mixing rates for rational maps

In this section we use the convergence properties of the transfer operator to deduce
mixing properties for rational maps which will be sufficient to prove the main result,
although, as one can see, it turns out that µ is not φ-mixing, since the right hand
side in Lemma 8 is not independent of n but depends exponentially on n.

Lemma 7 Let κ > 1. Then there exists a constant C5 and σ < 1 so that∣∣∣µ(Aϕ ∩ T−k−nQ)− µ(Aϕ)µ(Q)
∣∣∣ ≤ C5σ

kκnµ(Q)|gnϕ|∞,

for any inverse branch ϕ ∈ S̃n (Aϕ = ϕ(J) ∈ Ãn), k, n > 0 and Q measurable.

Proof. Let κ > 1, ϕ ∈ Sn and note that L̂nχAϕ = gnϕ. To estimate the Hölder
norm of gnϕ let us use Lemma 4 according to which |ϕx−ϕx′| ≤ Cn

4 |x− x′|ξ for all
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x, x′ ∈ J ∩ Ω̃n and some ξ > 0. Since f̂ is β-Hölder continuous we obtain for every
β′ ∈ (0, β] that

|gn(ϕx)− gn(ϕx′)| = gn(ϕx)

∣∣∣∣∣1− gn(ϕx′)

gn(ϕx)

∣∣∣∣∣
≤ |gnϕ|∞

(
Cn

4 |x− x′|ξ
)β′

≤ |gnϕ|∞Cβ′n
4 |x− x′|ξβ

′
.

Now let β′ > 0 be so small that Cβ′

4 = κ and then put γ = ξβ′. This gives
|gnϕ|γ ≤ |gnϕ|∞κn and consequently

‖gnϕ‖γ ≤ 2κn|gnϕ|∞.

Since

µ(Aϕ ∩ T−k−nQ) = µ
(
L̂n

(
χAϕ(χQ ◦ T k+n)

))
= µ

(
(χQ ◦ T k) (gnϕ)

)
,

we get using Proposition 3 (note: µ(Aϕ) = µ(gnϕ))∣∣∣µ((χQ ◦ T k) (gnϕ))− µ(Q)µ(Aϕ)
∣∣∣ ≤ µ

(
χQ

∣∣∣L̂k(gnϕ)− µ(Aϕ)
∣∣∣)

≤ C3µ(Q)σk‖gnϕ‖γ,

(where C3 depends on the Hölder exponent γ). The lemma now follows with C5 =
2C3. 2

Lemma 8 There exist ν > 1, σ < 1 and a constant C6 so that for all k, n ∈ N, Q
measurable and finitely many (distinct) A1, . . . , A` ∈ Ãn one has∣∣∣µ(W ∩ T−k−nQ)− µ(W )µ(Q)

∣∣∣ ≤ C6σ
kνnµ(W )µ(Q),

where W =
⋃`
j=0Aj.

Proof. Let us first prove the lemma in the case when W consists of a single atom
Aϕ = ϕ(J) for some ϕ ∈ S̃n. Observe that there exists a constant ν ′ > 1 (e.g.

ν ′ = exp(sup f̂ − inf f̂)) so that for all n ∈ N and ϕ ∈ S̃n one has

|gn|∞ ≤ ν ′n inf gnϕ,

which in turn implies

|gn|∞ ≤ ν ′n inf gnϕ ≤ ν ′nµ(gnϕ) = ν ′nµ(Aϕ).
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Now apply Lemma 7 and put ν = κν ′.
For the general case we use the fact that the interiors of the atoms of Ãn are

disjoint and that the boundaries have zero measure (i.e. Ãn is a partition for µ).
Hence

∣∣∣µ(W ∩ T−k−nQ)− µ(W )µ(Q)
∣∣∣ ≤ ∑̀

j=0

∣∣∣µ(Aj ∩ T−k−nQ)− µ(Aj)µ(Q)
∣∣∣

≤
∑̀
j=0

C6σ
kνnµ(Aj)µ(Q)

≤ C6σ
kνnµ(W )µ(Q).

2

For r ≥ 1 and (large) N denote by Gr(N) the r-vectors ~v = (v1, . . . , vr) for which 0 ≤
v1 < v2 < · · · < vr ≤ N . (Geometrically Gr(N) is the portion of a cone in Nr which
lies within distance N of the origin.) In our setting the numbers vk are the return
(or hitting) times. For ~v = (v1, v2, . . . , vr) ∈ Gr we put d(~v) = min1≤s<r(vs+1 − vs).

Lemma 9 Let r > 1 an integer. Then there exist ς ∈ (0, 1), a constant C7 and a
q > 0 so that for any r numbers n1, . . . , nr and ~v = (v1, v2, . . . , vr) ∈ Gr for which
vs+1 − vs > (1 + q)ns for s = 1, . . . , r − 1 one has∣∣∣∣∣µ(C~v)−

r∏
s=1

µ(Ws)

∣∣∣∣∣ ≤ C7ς
d(~v)

r∏
s=1

µ(Ws),

for any choice of Ws each of which is a union of atoms in Ãns, s = 1, . . . , r, where
C~v =

⋂r
s=1 T

−vsWs.

Proof. Put for k = 1, 2, . . . , r:

Dk =
r⋂
s=k

T−(vs−vk)Ws.

In particular we have C~v = T−v1D1 and of course µ(C~v) = µ(D1). Also note that

Dk = Wk ∩ T−(vk+1−vk)Dk+1

and Dr = Wr. Hence by Lemma 8 we obtain

|µ(Dk)− µ(Wk)µ(Dk+1)| ≤ µ(Dk+1)µ(Wk)σ
vk+1−vk−nkνnk .
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Repeated application of the triangle inequality yields∣∣∣∣∣µ(C~v)−
r∏
s=1

µ(Ws)

∣∣∣∣∣ ≤
r−1∑
k=1

|µ(Dk)− µ(Wk)µ(Dk+1)|
k−1∏
s=1

µ(Ws).

Now if we choose q > 0 so that (σqν)1/(q+1) = ς < 1, then we obtain:

µ(Dk) ≤ µ(Wk)µ(Dk+1)
(
1 + σvk+1−vk−nkνnk

)
≤ 2µ(Wk)µ(Dk+1)

since by assumption that vk+1 − vk − nk > qnk. Inductively then

µ(Dk) ≤ 2r−k
r∏
s=k

µ(Ws),

for k = r, r − 1, r − 2, r − 3, . . . , 1. Thus (since σ ≤ ς)∣∣∣∣∣µ(C~v)−
r∏
s=1

µ(Ws)

∣∣∣∣∣ ≤
r−1∑
k=1

µ(Dk+1)µ(Wr)σ
vk+1−vk−nk2r−kνnk

k−1∏
s=1

µ(Ws)

≤
r−1∑
k=1

σvk+1−vk−(1+q)nk(σqν)nk2r−k
r∏
s=1

µ(Ws)

≤ 2r+1ςd(~v)
r∏
s=1

µ(Ws).

Now put C7 = 2r+1. 2

4 Approximability of balls by cylinder sets

Let us define for α > 0 the set

Oα =

{
x ∈ J : lim inf

β→0

µ(Bβ(x))

µ(Bβ−β2(x))
− 1 ≥ α

}
.

Then for every x ∈ Oα there exists a γ(x) so that
µ(Bβ(x))

µ(Bβ−β2 (x))
−1 ≥ α

2
for all β < γ(x).

Moreover let us define
Oα,β = {x ∈ Oα : γ(x) ≥ β} .

Clearly Oα =
⋃
β>0Oα,β and therefore, if we can show that the measure of Oα,β is

zero for every positive β, then Oα is a null set.

11



Lemma 10 µ(Oα,β) = 0 for every positive α and β.

Proof. With α, β > 0 given, we have by assumption µ(Bη−η2(x)) ≤ 1
1+α/2

µ(Bη(x))
for all x ∈ Oα,β and η ≤ β. In particular

µ(B(j+1)−1(x)) ≤ 1

1 + α/2
µ(Bj−1(x)),

for all j ≥ k = [1/β] + 1. Iteration yields

µ(Bj−1(x)) ≤
(

1

1 + α/2

)j−k
µ(Bk−1(x)),

For simplicity’s sake we can assume that the Julia set does not contain the point
∞ (a Möbius transform can achieve this) and therefore is contained in a compact
subset of the open complex plane. There exists a constant c1 (independent of η > 0)
so that J can be covered by at most c1η

−2 many balls of radius η/2. In particular,
we can cover Oα,β by at most c1η

−2 balls of radius η and centres in Oα,β. Thus (as
µ(Bk−1(x)) ≤ 1)

µ(Oα,β) ≤ 4c1j
2

(
1

1 + α/2

)j−k
,

and since j is arbitrary we conclude that µ(Oα,β) = 0. 2

As observed above, this implies that µ(Oα) = 0 for every positive α. Taking a union
over α > 0 we put

O =
⋃
α

Oα =

{
x ∈ J : lim inf

β→0

µ(Bβ(x) \Bβ−β2(x))

µ(Bβ−β2(x))
> 0

}
,

and obtain the following result which will be used in lemma 18.

Lemma 11
µ(O) = 0.

5 Distribution of return times

Let T be an expansive transformation on the space Ω and let µ be a probability
measure on Ω. For x ∈ J and ε > 0 let χε be the characteristic function of Bε =
Bε(x). Then

ξε =
[t/µ(Bε)]∑
k=0

χε ◦ T k. (2)

12



measures the number of times x point returns to the set Bε within the normalised
time t/µ(Bε). We have the following limiting behaviour.

Theorem 12 For µ-almost every x, there exists a sequence of εj → 0 so that

µ(Nr,εj)→
tr

r!
e−t, (3)

as j tends to infinity, where Nr,εj = {y ∈ J : ξεj(y) = r} is the r-levelset of ξεj .

We shall need the following result which is due to Sevast’yanov [12] and was previ-
ously employed by Pitskel. It’s usefulness mainly stems from relation (8) which is
the mixing property of Lemma 9 and avoids estimating the measures of sets whose
points return exactly r times (at times ~v) within the time interval [0, t/µ(Bε)]. The
mixing property (8) applies when the separation between the hitting times is large
enough. The rare set, Rr below, consists of those hitting patterns that have short
return times. Most of our effort will be directed to verify relation (6) (Lemma 16),
that is to show that almost all returns are on a ‘long timescale’.

Proposition 13 Let {ηnv : v = 1, . . . , N(n)} for n ≥ 1 be an array of random 0, 1-
valued variables and µ a probability measure. Put ζn =

∑N
v=1 η

n
v , and for ~v ∈ Gr

let bn~v = µ(ηn~v ), where ηn~v =
∏r
s=1 η

n
vs (in particular bnv = µ(ηnv )). Assume that the

following five assumptions are satisfied:

lim
n→∞

max
1≤v≤N

bnv = 0, (4)

lim
n→∞

N∑
v=1

bnv = t > 0. (5)

Moreover assume that there exist rare sets Rr ⊂ Gr (r ≥ 1)

lim
n→∞

∑
~v∈Rr

bn~v = 0, (6)

lim
n→∞

∑
~v∈Rr

bnv1 · · · b
n
vr = 0, (7)

lim
n→∞

bnv1 · · · b
n
vr

bn~v
= 1, (8)

uniformly in ~v ∈ Gr \Rr. Then

lim
n→∞

µ(Nr) =
tre−t

r!
,

where Nr = {y : ζn(y) = r} is the r-levelset of ζn.

13



Put N = [t/µ(Bε)] = [t/µ(χε)]. The random variable η is then given by ηnv = χε◦T v.
The sum ζn then equals ξε of Theorem 12 and µ(Nr,ε) =

∑
~v∈Gr b

n
~v , where bn~v = µ(C~v),

C~v =
⋂r
k=1 T

−vkBε (note that ηn~v is the characteristic function of C~v).
The following lemma establishes that outside a zero measure set ‘very short’

returns occur only finitely many times.

Lemma 14 There exists a monotone function p(ε)→∞ as ε↘ 0 so that

lim
ε→0

µ
({
x ∈ J : Bε(x) ∩ T−mBε(x) 6= ∅ for some 0 < m ≤ p(ε)

})
= 0

Proof. For ε > 0 and m ∈ N put

Um,ε =
{
x ∈ J : Bε(x) ∩ T−mBε(x) 6= ∅

}
,

and denote by Fm the (finitely many) m-periodic points of T . For j = 1, 2, . . ., put
Fj =

⋃j
m=1 Fm and let βj > 0 be small enough so that µ(B2βj(Fj)) ≤ 1/j (as µ is

non-atomic), where B2βj(Fj) =
⋃
x∈Fj B2βj(x). Then

γj(k) = inf
x 6∈Bβj (Fj)

d(x, T−kx)

is positive for every k ≤ j, since J \Bβj(Fj) is closed and has no k-periodic points.
Put γj = mink≤j γj(k). If εj ≤ βj is small enough so that εj ≤ γj/4 and the
components of T−mBεj(x) have diameters less than γj/2, then

Bεj(x) ∩ T−mBεj(x) = ∅,

m = 1, . . . , j, for all x 6∈ B2βj(Fj). Consequently

µ

 j⋃
m=1

Um,εj

 ≤ µ
(
B2βj(Fj)

)
<

1

j
.

If we now define p(ε) = min{j : εk ≤ ε ∀k ≥ j} we obtain that µ(
⋃p(ε)
m=1 Um,ε) goes

to zero as ε goes to zero. 2

Put differently, the lemma states that for µ-almost every x ∈ J the intersections
Bε(x)∩T−mBε(x) are empty for all m = 1, . . . , p(ε) for ε small enough. This implies
that for almost every x ∈ J and small enough ε the set

C~v =
r⋂
s=1

T−vsBε(x)

14



is empty if the hitting vector ~v lies in the set Ir(N) (i.e. one of the repeat times
mj = vj+1 − vj is less or equal to p(ε)). We will need this fact in Lemma 15 below
where we shall assume that for almost all points and small enough ε the rare set
only consists of Kr(N) and we don’t encounter returns shorter than p(ε).

As in Section 2 let HD(µ) denote the Hausdorff dimension of the measure µ. On

a full measure set M one has limε→0
log µ(Bε(x))

log ε
= HD(µ) for all x ∈ M. We can

assume that M lies in the complement of O. Since 0 < HD(µ) (or because of
Lemma 5) one has for all x ∈M that limε→0 µ(Bε(x)) log ε = 0. Pick some number
δ′ larger than HD(µ) and a positive δ < HD(µ).

We shall assume that x is not a critical value of an iterate of T (of which there
are only countably many).

Let εj be a decreasing sequence so that µ(Bεj+ε2j/3
)/µ(Bεj−ε2j/2) → 1 as j → ∞

(possible since x 6∈ O and (1
2

+ 1
3
)ε2
j ≤ (εj − ε2

j/2)2).
We shall construct inner and outer approximations of Bε by unions of elements

in An for suitable n = n(ε). First we determine n: Fix j, let ` = [log εj
3
/ log η] + 1

(so that η` ≤ εj
3

) and find n ≥ 2` so that (ρ/λ)n ≤ ε
1+(r−1)δ′

j . In fact we can arrange
that

n = [C8| log εj|]
for some constant C8 > max(rδ′/εδ, δ′/| logα|) independent of j (where α is given
by Lemma 6). With this choice of n we achieve that εj ≤ e−n/C8 and

µ(Ωc
n)

µ(Bεj)
≤ c1

αn

εδ
′
j

≤ c2ε
C8| logα|−δ′
j → 0, (9)

as j → ∞, since C8 > δ′/| logα| has been chosen large enough to get a positive
exponent.

In equation (2) replace Bε by B◦ε = Bε ∩ T−nΩn and define the modified process

ξ◦ε =
N∑
k=0

χB◦ε ◦ T
k

(ξ◦ε ≤ ξε). The difference between the two processes can now be estimated using
Lemma 6 (with some c3):

µ(|ξε − ξ◦ε |) ≤
N∑
k=0

µ(T−k(Bε \B◦ε ))

=
N∑
k=0

µ(Bε \B◦ε )
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≤ (N + 1)µ(T−n(Ωc
n))

≤ c3
µ(Ωc

n)

µ(Bεj)
→ 0, (10)

by equation (9), as j →∞. Let us now define the following unions of preimages of
Ωn under the inverse branches of T n:

W ′
j =

⋃
Aϕ⊂Bεj ,ϕ∈S′n

Aϕ,

W ′′
j =

⋃
Aϕ∩Bεj 6=∅,ϕ∈S′n

Aϕ,

W ′′′
j =

⋃
ϕ∈S′′n

Aϕ,

then by construction B◦εj−ε2j/2
⊂ W ′

j ∪W ′′′
j , W ′

j ⊂ Bεj , B
◦
εj
⊂ W ′′

j ∪W ′′′
j and W ′′

j ⊂
Bεj+ε2j/3

, since diam (Aϕ) ≤ ηn ≤ ε2
j/3 for all ϕ ∈ S ′n.

We shall moreover use the sets W̃ ′
j , W̃

′′
j , W̃

′′′
j which are obtained from the above

sets by applying the preimages to Ω̃n (rather than Ωn as above). We then have
Bεj−ε2j/2 ⊂ W̃ ′

j ∪ W̃ ′′′
j and Bεj ⊂ W̃ ′′

j ∪ W̃ ′′′
j .

By equation (9) and choice of the values εj we have

µ(Bεj \W ′
j)

µ(Bεj)
≤
µ(Bεj \Bεj−ε2j/2)

µ(Bεj)
+
µ(Ωc

n)

µ(Bεj)
→ 0 (11)

as j → ∞, and, since µ(W̃ ′′′
j ) ≤ |S ′′n|ρn ≤ (ρ/λ)n ≤ ε

1+(r−1)δ′

j (x ∈ M), we also
obtain

µ((W ′′
j ∪W ′′′

j ) \Bεj)

µ(Bεj)
≤
µ(Bεj+ε2j/3

\Bεj)

µ(Bεj)
+
µ(W ′′′

j )

µ(Bεj)
→ 0 (12)

as j →∞.
We say that W ′

j is the inner approximation of Bεj and W ′′
j ∪ W ′′′

j is its outer
approximation.

The ‘rare sets’ Rr(N) consist of two disjoint subsets: Ir(N) and Kr(N). Let p(ε) be
the positive and integer valued function of Lemma 14 (which goes monotonically to
infinity as ε↘ 0), and let q > 0 be given by Lemma 9. Then we define the following
disjoint subsets of Gr(N) (where n = n(ε) is as introduced above and, as always,
N = [t/µ(Bε)]):

Ir(N) = {~v ∈ Gr(N) : min(vs+1 − vs) ≤ p(ε)},
Kr(N) = {~v ∈ Gr(N) : p(ε) < min(vs+1 − vs) ≤ (1 + q)n}.
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(If p(ε) ≥ n(ε) then Kr(N) is empty.) The rare set is now Rr(N) = Ir(N)∪Kr(N).
The next two lemmas together with Lemma 14 serve to verify condition (6) of
Proposition 13.

Let us consider the following ‘random variables’ ξ′j, ξ
′′
j associated with the inner and

outer approximations of Bεj and which are defined by

ξ′j =
N∑
k=0

χW ′j ◦ T
k,

ξ′′j =
N∑
k=0

χW ′′j ∪W ′′′j ◦ T
k,

where χW is the characteristic function of the set W . We shall write ∗ for ′ (inner
approximation) or ′′ (outer approximation). Let us introduce the sets C∗~v as follows

C ′~v =
r⋂
s=1

T−vsW ′
j

C ′′~v =
r⋂
s=1

T−vs(W ′′
j ∪W ′′′

j ),

where obviously C ′~v ⊂ C ′′~v .
For a cylinder set V = ψ(Ωm) for some ψ ∈ Sm we denote by Ṽ its associated

extension ψ̃(Ω̃m), and similarly for unions of cylinder sets. The following lemma
serves to verify condition (7) of Theorem 13 outside the zero measure set of Lemma
14.

Lemma 15 For almost all x ∈ J the inner and outer approximations (∗ =′,′′) both
satisfy

lim
n→∞

∑
~v∈Kr

b∗n~v = 0,

provided ε is small enough.

Proof. We shall prove the lemma for the outer approximation ξ′′j (and assume that
p(ε) < n(ε), for otherwise nothing has to be shown). Put Ks

r for those ~v ∈ Kr where
vi+1 − vi ≥ (1 + q)n for exactly s indices i1, i2, . . . , is and note that always s < r.

Let i1, i2, . . . , is be the indices for which vik+1 − vik ≥ n(1 + q) for k = 1, . . . , s.
All the other differences we can by Lemma 14 assumed to be greater than pj =
p(εj + ε2

j/3) and are by assumption smaller than (1 + q)n. Let m` = (v`+1 − v`) be
the return times. From now on we assume that ` 6= ik (k = 1, . . . , s). Hence we have

17



m` ∈ (pj, (1 + q)n). Put m′` = [m`/(1 + q)] and denote by V ′′j,` the union of those

Aψ` ∈ S ′m′
`

which have non-empty intersection with W ′′
j . Clearly W ′′

j ⊂ Ṽ ′′j,` ∪ Ṽ ′′′j,`,
where V ′′′j,` =

⋃
ψ∈S′′

m′
`

Aψ and Ṽ ′′j,`, Ṽ
′′′
j,` are the associated extensions.

Using diam V ′′j,` ≤ diam W ′′
j + ηm

′
` ≤ c1η

m′` + 2εj and Lemma 6 one obtains

µ(Ṽ ′′j,`) ≤ (c1η
m′` + 2εj)

δ + µ(Ωc
m′
`
) ≤ 3c1η

m′`δ + αm
′
` (13)

(where we assume without loss of generality that εj < c1η
m′`). Now we can use

Lemma 9 (in the second inequality below), where we replace d(~v) by 0 and use the
identification: Wik = W̃ ′′

j for k = 1, 2, . . . , s − 1 and otherwise W` = Ṽ ′′j,` ∪ Ṽ ′′′j,` if
` 6= ik for k = 1, . . . , s− 1. Thus

µ

(
r⋂
i=1

T−viW ′′
j

)
≤ µ

s−1⋂
k=1

T−vikW̃ ′′
j ∩

⋂
v` 6=vik , k=1,...,s

T−v`(Ṽ ′′j,` ∪ Ṽ ′′′j,`)


≤ (1 + C7)µ(W̃ ′′

j )s
∏

v` 6=vik , k=1,...,s

(µ(Ṽ ′′j,`) + µ(Ṽ ′′′j,`))

≤ c2µ(W̃ ′′
j )s

∏
v` 6=vik , k=1,...,s

(
ηm
′
`δ + αm

′
` +

(
ρ

λ

)m′`)
,

where in the last inequality we used (13) and the bound µ(Ṽ ′′′j,`) ≤ (ρ/λ)m
′
` . Hence

µ(C ′′~v ) ≤ µ

(
r⋂
i=1

T−viW̃ ′′
j

)
+ rµ(W̃ ′′′

j )

≤ c3µ(W̃ ′′
j )s

∏
v` 6=vik , k=1,...,s

ς ′m` + rµ(W̃ ′′′
j ),

where max(ηδ/(1+q), (ρ/λ)1/(1+q), α1/(1+q)) < ς ′ < 1.
For given values of the short return times m` (` 6= ik, k = 1, . . . , s), each of the

s remaining entry times ≥ (1 + q)n assumes no more than t/µ(Bεj) values. Since
the indices i1, . . . , is can be picked in r!

s!(r−s)! many ways, the number of possibilities
is bounded by

r!

s!(r − s)!

(
t

µ(Bεj)

)s
.

and therefore, since µ(W̃ ′′
j ) ≤ µ(Bεj+ε2j/3

) + µ(Ωc
n), we obtain

∑
~v∈Ks

r

µ(C ′′~v ) ≤ c4t
s
∑
m`

µ(Bεj+ε2j/3
) + µ(Ωc

n)

µ(Bεj)

s ∏
v` 6=vik , k=1,...,s

ς ′m` + r
µ(W̃ ′′′

j )

µ(Bεj)
s

 ,
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where the sum is over m`1 , . . . ,m`r−s ∈ [pj, (1 + q)n]. To estimate this sum, let us
note:

(i) The sum over the second term inside the brackets is crudely estimated using
the fact that each of the short return times m` assumes no more than (1+q)n values.
Thus the summation has at most ((1 + q)n)r−s ≤ c5| log εj|r−s terms.

(ii) By (9) and choice of εj the ratio
µ(B

εj+ε
2
j
/3

)+µ(Ωcn)

µ(Bεj )
(whose sth power appears

within the first term inside the brackets) converges to 1 as j →∞.
(iii) The product which is part of the first term inside the brackets can be written

as follows ∑
m`

∏
v` 6=vik , k=1,...,s

ς ′m` =
(r−s)(1+q)n∑
m=(r−s)pj

ς ′mMm,

where Mm is the number of integers m`1 , . . . ,m`r−s ∈ [pj, (1 + q)n] whose sum
m`1 + . . . + m`r−s equals m. For some constant c6 ∼ 1/(r − s − 1)! one has Mm ≤
c6m

r−s−1, which implies that∑
m`

∏
v` 6=vik , k=1,...,s

ς ′m` ≤ c7ς
′(r−s)pj/2

for some c7.
We can thus estimate (note that s ≤ r − 1)

∑
~v∈Ks

r

µ(C ′′~v ) ≤ c8t
s

µ(Bεj+ε2j/3
) + µ(Ωc

n)

µ(Bεj)

s ς ′(r−s)pj/2 + c5r| log εj|r−sε1+(r−1)δ′

j ε−sδ
′

j

which (for every value of t > 0) decays to zero. Therefore, as j goes to infinity,

∑
~v∈Kr

µ(C ′′~v ) =
r−1∑
s=0

∑
~v∈Ks

r

µ(C ′′~v )→ 0.

The statement for the inner approximation is now evident because µ(C ′~v) ≤
µ(C ′′~v ) for all ~v. 2

We can summarise the previous two lemmas as follows:

Lemma 16 For almost every x ∈ J and ε small enough one has (for both approxi-
mations)

lim
n→∞

∑
~v∈Rr

b∗n~v = 0.
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The next lemmas serve to verify the remaining conditions (4), (5), (7) and (8) of
Proposition 13 for both approximations, inner and outer.

Lemma 17 limn→∞ max1≤v≤N b
∗n
v = 0.

Proof. Since (for both cases: ∗ =′ and ∗ =′′)

b∗nv ≤ µ(χW ′′j ∪W ′′′j ◦ T
v) = µ(W ′′

j ∪W ′′′
j )→ 0,

as j, and therefore n, goes to infinity. Hence every bnv vanishes as n goes to infinity.
2

Lemma 18 limn→∞
∑n
v=1 b

∗n
v = t.

Proof. Since N = t/µ(Bεj) we obtain for the inner approximation

N∑
v=1

b′nv =
N∑
v=1

µ(χW ′j ◦ T
v) = Nµ(W ′

j) = t

(
1−

µ(Bεj \W ′
j)

µ(Bεj)

)
→ t

by construction of the sets W ′
j and equation (11). Similarly for the outer approxi-

mation:

N∑
v=1

b′′nv = Nµ(W ′′
j ∪W ′′′

j ) = t

(
1 +

µ(W ′′
j ∪W ′′′

j \Bεj)

µ(Bεj)

)
→ t,

by construction of the sets W ′′
j ,W

′′′
j and (12). 2

Lemma 19
lim
n→∞

∑
~v∈Rr

b∗v1b
∗
v2
· · · b∗vr = 0

Proof. For the inner approximation: since b′vs = µ(W ′
j) for all s by invariance of

the measure µ, we obtain

b′v1b
′
v2
· · · b′vr = µ(W ′

j)
r ≤ µ(Bεj)

r.

To estimate the cardinality of Rr(N) note r− 1 indices each has at most N choices
while the remaining one has at most (r − 1)(1 + q)n choices. This implies

|Rr(N)| ≤ (r − 1)(1 + q)nN (r−1)
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and that (c1 > 0) ∑
~v∈Rr

b′v1 · · · b
′
vr ≤ |Rr(N)|µ(Bεj)

r

≤ (r − 1)(1 + q)ntr−1µ(Bεj)

≤ c1µ(Bεj)| log εj|

converges to zero as j →∞.
For the outer approximation we get (c2, c3 > 0) by equation (12)∑

~v∈Rr
b′′v1 · · · b

′′
vr ≤ |Rr(N)|µ(W ′′

j ∪W ′′′
j )r

≤ |Rr(N)|µ(Bεj)
r

(
1 +

µ(W ′′
j ∪W ′′′

j \Bεj)

µ(Bεj)

)r
≤ c2nµ(Bεj)

≤ c3µ(Bεj)| log εj|

converges to zero as j →∞. 2

Lemma 20 For both approximations:

lim
n→∞

b∗nv1 · · · b
∗n
vr

b∗n~v
= 1,

uniformly for ~v ∈ Gr(N) \Rr(N).

Proof. If ~v 6∈ Rr(N) then vs+1− vs ≥ (1 + q)n for all s = 1, . . . , r−1 and we obtain
the desired result by lemma 9. (As ς < 1 the convergence is exponential.) 2

It follows from Sevast’yanov’s theorem (Proposition 13) that both processes ξ′n, ξ
′′
n

are in the limit Poisson distributed. Since

ξ′j ≤ ξεj , ξ◦εj ≤ ξ′′j ,

where by equation (10)

µ({y ∈ J : ξεj(y) 6= ξ◦εj(y)}) ≤ µ(|ξεj − ξ◦εj |)→ 0.

Since

µ({y ∈ J : ξ′εj(y) = r}) ≤ µ({y ∈ J : ξεj(y) = r})
≤ µ({y ∈ J : ξ′′εj(y) = r})

+µ({y ∈ J : ξεj(y) 6= ξ◦εj(y)}),
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we conclude that ξεj converges almost everywhere to a Poisson distribution as j →
∞. This proves Theorem 12. 2

Remark 1: In the requirement that
µ(Bε+ε2 )

µ(Bε)
→ 1 the square ε2 can be replaced by

any (finite) power of ε. The result will still hold true.

Remark 2: If in Lemma 11 one can replace “lim inf” by “lim sup” then the state-
ment in Theorem 12 generalises to

µ(Nr,ε)→
tr

r!
e−t,

as ε→ 0 for almost every x ∈ J .
This is always true if the Hausdorff dimension of µ is larger than 1. To see this

observe that the shell Bε+ε2 \Bε can be covered by at most 2π/ε balls with radii ε2

each of which has µ-measure ≤ ε2δ. On the other hand µ(Bε) ≥ εδ
′
. Hence for the

measure of the shell we get the ratio:

µ(Bε+ε2 \Bε)

µ(Bε)
≤ 2π

ε
ε2δε−δ

′
= 2πε2δ−1−δ′ ,

where the exponent 2δ − 1 − δ′ can be made positive for suitable choices of δ, δ′,
1 < δ < HD(µ) < δ′. Thus the ratio goes to zero as ε → 0 almost everywhere if
HD(µ) > 1.

Remark 3: Finally, instead of considering balls as return sets, let us consider the
case when the return sets are ‘cylinders’. For a point x and integer n > 1 we can
find a An(x) ∈ Ãn so that x ∈ An(x). We denote by χn the characteristic function
of An(x). Then we can consider the ‘random variable’

ζn =
[t/µ(An(x))]∑

k=0

χn ◦ T k.

The value of ζn measures the number of times a point returns to the set An(x) within
the normalised time t/µ(An(x)).

Corollary 21 For µ-almost every x,

µ(Nr)→
tr

r!
e−t,

as n tends to infinity, where Nr = {y ∈ J : ζn(y) = r} is the r-levelset of ζn.
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Remark 4: We can define the point process Pε,x,y on R+ by

Pε,x,y[B] =
[t/µ(Aε]∑
k=0

δτkε (y)/µ(Aε)[B],

B a Borel set on R+, where δ is the unitmass and τ k is the k-th return time, defined
by τ 1 = τ and inductively by τ k = τ k−1 + τ ◦ T τk−1

for k > 1. A consequence
of Theorem 12 is then the following convergence result (| · | denotes the Lebesgue
measure on R):

Corollary 22 For almost every x ∈ J there exists a sequence εj → 0, so that for
every Borel set B ⊂ R+

µ
({
y ∈ J : Pεj ,x,y[B] ∈ B

})
→ |B|

r

r!
e−|B|

6 T is Weakly Bernoulli

Here we shall use the inverse branches for the iterates of T as introduced by Denker
and Urbanski. Of particular interest is property (b) which will be needed in equation
(15) below.

Lemma 23 [2] Let ε > 0 and λ ∈ (0, 1). Then there exists a quasidisk Ω, an integer
m and inverse branches Ŝjm of T jm, j = 1, 2, . . ., on Ω so that
(a) µ(

⋃
ϕ∈Ŝjm ϕ(J)) ≥ 1− ε for all j.

(b) |(T kmϕ)′| ≤ C9λ
j−k for k = 0, 1, . . . , j (some C9), for ϕ ∈ Ŝjm.

(c) there exists an integer s and a metric generator Gsm of T for µ so that Âsm ⊂
Gsm, where Âsm = {ϕ(J) : ϕ ∈ Ŝsm}

Let us note that Lemmas 7 to 9 remain valid if one uses the branches Ŝ∗ instead of
the contracting branches S ′∗. Put Ân = {ϕ(J) : ϕ ∈ Ŝn}, where we assume that n
and p, q below are multiples of m, once m has been determined.

We shall show that the rational map T is weakly Bernoulli for the partitions Ân
for suitable but arbitrarily large n.

Theorem 24 For every ε > 0 there exists a k0 so that there are arbitrarily large
u, v for which ∑

U∈Gu,V ∈Gv

∣∣∣µ(U ∩ T−u−kV )− µ(U)µ(V )
∣∣∣ ≤ ε,

for all k ≥ k0.
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Proof. Let ε > 0, put in Lemma 23 ε = ε/6 and determine m accordingly. Let
u ∈ N be given and assume for simplicity’s sake that v is a multiple of m. Let
r ≤ u be a multiple of m and assume that the pressure of f is zero, that is, µ is ef -
conformal. Since U is a “u-cylinder”, T rU is a “(u− r)-cylinder”, i.e. T rU ∈ Âu−r,
and we obtain by Lemma 8∣∣∣µ(T r(U ∩ T−k−uV ))− µ(T rU)µ(V )

∣∣∣ ≤ c1ν
u−rσkµ(T rU)µ(V ). (14)

If P = ϕ(J) with ϕ ∈ Ŝq then we have by Lemma 23 (b):

|f r(x)− f r(x′)| ≤ c2η
α(u−r), (15)

for some c2 > 0 and all x, x′ ∈ U , where f r is the r-ergodic sum of f . Hence in (14)
we can replace on both sides µ by e−f

r
µ (but not in the µ(V ) term) without making

an error larger than c2η
α(u−r)µ(U)µ(V ) and use the fact that µ is ef -conformal to

obtain ∣∣∣µ(U ∩ T−k−uV )− µ(U)µ(V )
∣∣∣ ≤ (

c1ν
u−rσk + c2η

α(u−r)
)
µ(U)µ(V )

≤ c3σ
′kµ(U)µ(V ),

for a suitable choice of r, and where σ′ = max(
√
σ, η

α log σ
2 log ν ). Summing over U ∈

{ϕ(J) : ϕ ∈ Ŝu}, V ∈ {ϕ(J) : ϕ ∈ Ŝv} yields

∑
U∈Âu,V ∈Âv

∣∣∣µ(U ∩ T−u−kV )− µ(U)µ(V )
∣∣∣ ≤ ε

3

for all k ≥ k0 where k0 chosen so that c3σ
′k0 ≤ ε/3.

Since property (a) of Lemma 23 yields

∑
U∈Gu\Âu

µ(U) ≤ ε

6

we get ∑
U∈Gu\Âu,V ∈Gv

∣∣∣µ(U ∩ T−u−kV )− µ(U)µ(V )
∣∣∣ ≤ ε

3

(similarly for the sum over U ∈ Gv, V ∈ Gu \ Âv). This proves the theorem.
2
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