
Statistical properties of intermittent maps withunbounded derivativeGiampaolo Cristadoro, Nicolai Haydn, Philippe Marie, Sandro VaientiMarch 14, 2010AbstractWe study the ergodic and statistical properties of a class of maps of the circle and of theinterval of Lorenz type which present indi�erent �xed points and points with unboundedderivative. These maps have been previously investigated in the physics literature. Weprove in particular that correlations decay polynomially, and that suitable Limit Theorems(convergence to Stable Laws or Central Limit Theorem) hold for Hölder continuous observ-ables. We moreover show that the return and hitting times are in the limit exponentiallydistributed.
1 IntroductionThe prototype for intermittent maps of the interval is the well known Pomeau-Mannevillemap T de�ned on the unit interval [0, 1] and which admits a neutral �xed point at 0with local behavior T (x) = x+ cx1+α; otherwise it is uniformly expanding. The constant
α belongs to (0, 1) to guarantee the existence of a �nite absolutely continuous invariantprobability measure and the constant c could be chosen in such a way that the map T hasa Markov structure. This map enjoys polynomial decay of correlations and this propertystill persists even if the map is not anymore Markov [33].Another interesting class of maps of the interval are the one-dimensional uniformlyexpanding Lorenz-like maps (see [17, 32, 13] for their introduction and for the study oftheir topological properties), whose features are now the presence of points with unboundedderivatives and the lack of Markov structure: in this case one could build up towers and�nd various rates for the decay of correlations depending on the tail of the return timefunction on the base of the tower, see, for instance [9] and [10]. The latter paper dealsin particular with one-dimensional maps which admit critical points and, possibly, pointswith unbounded derivatives, but it leaves open the case where there is presence of neutral�xed points.In this paper we are interested in maps which exhibit the last two behaviors, namelyneutral �xed points and points with unbounded derivatives. Such maps have been in-troduced into the physics literature by Grossmann and Horner in 1985 [16]; they showednumerically a polynomial decay of correlations and they also studied other statistical prop-erties like the susceptibility and the 1/f -noise. Another contribution by A. Pikovsky [28]1



showed, still with heuristic arguments, that these maps produce anomalous di�usion withsquare displacement growing faster than linearly. R. Artuso and G. Cristadoro [3] im-proved the latter result by computing the moments of the displacement on the in�nitereplicas of the fundamental domain and showed a 'phase transition' in the exponent ofthe moments growth. Recently Lorenz cusp maps arose to describe the distribution of theCasimir maximum in the Kolmogorov-Lorenz model of geo�uid dynamics [27]. Despitethis interesting physical phenomenology, we did not �nd any rigorous mathematical inves-tigation of such maps. These maps are de�ned on the torus T = [−1, 1]\ ∼ and depend onthe parameter γ (see below); when γ = 2 the corresponding map was taken as an exampleof the non-summability of the �rst hyperbolic time by Alves and Araujo in [2]. This mapsreads:
T̃ (x) =

{
2
√
x− 1 if x ≥ 0

1 − 2
√
|x| otherwise (1)and it was proved in [2] that it is topologically mixing, but no other ergodic propertieswere studied.Actually, the Grossmann and Horner maps are slightly di�erent from those investigatedin [28] and [3], the di�erence being substantially in the fact that the latter are de�ned onthe circle instead than on the unit interval. We will study in detail the circle versionof these maps in Sections 2 to 5, and we will show in Section 6 how to generalize ourresults to the interval version: since both classes of maps are Markov, the most importantinformation, especially in computing distortion, will come from the local behavior aroundthe neutral �xed points and the points with unbounded derivatives and these behaviorswill be the same for both versions. There is nevertheless an interesting di�erence. Thecircle version introduced in Section 1 is written in such a way that the Lebesgue measureis automatically invariant. This is not the case in general for the interval version quotedin Section 6. However the strategy that we adopt to prove statistical properties (Lai-SangYoung towers) will give us as well the existence of an absolutely continuous invariantmeasure and we will complete it by providing informations on the behavior of the density.It is interesting to observe that in the class of maps considered by Grossmann and Horneron the interval [−1, 1] (see Sect. 6), the analog of (1) is given by the following map:

S̃(x) = 1 − 2
√
|x| . (2)This map was investigated by Hemmer in 1984 [21]: he also computed by inspection theinvariant density which is ρ(x) = 1

2(1 − x) and the Lyapunov exponent (simply equal to
1/2), but he only argued about a slow decay of correlations. We will show in Sect. 6 howto recover the qualitative behavior of this density (and of all the others in the Grossmannand Horner class).In this paper we study the one-parametric family of continuous maps T (Fig. 1) whichare C1 on T \ {0}, C2 on T \ ({0} ∪ {1}) and are implicitly de�ned on the circle by theequations:

x =






1

2γ
(1 + T (x))γ if 0 ≤ x ≤ 1

2γ

T (x) +
1

2γ
(1 − T (x))γ if 1

2γ
≤ x ≤ 1

(3)and for negative values of x by putting T (−x) = −T (x). We assume that parameter
γ > 1. Note that when γ = 1 the map is continuous with constant derivative equal to2



2 and is the classical doubling map. The point 1 is a �xed point with derivative equalto 1, while at 0 the derivative becomes in�nite. The map leaves the Lebesgue measure νinvariant (it is straightforward to check that the Perron-Frobenius operator has 1 as a �xedpoint). We will prove in the next sections several statistical properties: these will followfrom existing techniques, especially towers, combined with the distortion bound proved inthe next section, which will tell us that the logarithm of the derivative of the �rst returnmap is (locally) Hölder on each cylinder of a countable Markov partition associated to
T . Actually one could induce on a suitable interval only (called I+

0 in the following): theproof we give is intented to provide disortion on all cylinders of the countable Markovpartition covering mod 0 the whole space [−1, 1], since this is necessary to get the localsmoothness of the invariant density is Sect. 6 and in order to apply the inducing techniqueof [6] which will give us the statistical features of recurrence studied in Sect. 5. We nowsummarize the kind of statistical properties which we are going to prove and that couldbe useful in physical applications whenever these maps arise as the �rst return maps insuitable Poincaré sections; we remind that we are dealing with two class of maps, T and
S which share a few properties but that also exhibit a few di�erencies, in particular theexistence of an absolutely continuous invariant measure must be proved for the maps Sand the regularity of the density must be investigated. The interesting features, even forapplications, are (we defer to the precise statements in the next sections for the correctchoice of the parameters):

• The maps T and S enjoy polynomial decay of correlations for Hölder observablesand this decay is optimal in the sense that we can exhibit a speci�c class of functionsthat vanishes in a neighborhood of the indi�erent �xed point and for which thecorrelations have polynomial lower bounds.
• When we consider the map S, the density of the absolutely continuous invariant mea-sure is relevant from the physical point of view since it is related to some quantitiesand invariants (see, e.g., [27]). We show that the density is Lipschitz continuous andbounded, but we believe that a precise knowledge of the map could allow to improvethe smoothness of the density.
• The process Sn√

n
, where Sn =

∑n−1
k=0 φ ◦ T k and with φ an Hölder observable ofzero mean (the same holds for the map S), will tend in distribution to the normallaw for certain values of the parameters de�ning the maps; for other values of suchparameters the process Sn

nι will converge to a stable law and with ι depending onthe parameters. Our examples enriches the list one-dimensional maps for which thestable laws could be exactly computed.
• The process 1

nSn satis�es large deviations bounds for the maps T and S in the sensethat, if µ denotes the invariant measure and given a positive ε, then the distribution
µ(| 1

n
Sn| > ε)decays in n polynomially to zero.

• The maps T and S have exponential return and hitting time statistics with respectto the invariant measure µ and around balls whose center is chosen µ-almost surely.Moreover the number of visits in such balls converge to the Poissonian distributionwhenever the radius of the ball goes to zero. Finally extreme values laws hold forthe distribution of partial maximum. 3
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2 DistortionNotations: With an ≈ bn we mean that there exists a constant C ≥ 1 such that C−1bn ≤
an ≤ Cbn for all n ≥ 1; with an . bn, or equivalently an = O(bn) with an and bn nonnegative, we mean that there exists a constant C ≥ 1 such that ∀n ≥ 1, an ≤ Cbn; with
an ∼ bn we mean that limn→∞

an

bn
= 1. Throughout the paper ν will denote the Lebesguemeasure. The letter C will denote often di�erent constants.There is a countable Markov partition {Im}m∈Z∗

S

{0±} associated to the map (3); thepartition is built mod ν as follows: Im = (am−1, am) for all m ∈ Z
∗ and I+

0 = (0, a0+) and
I−0 = (a0− , 0), where:

a0+ =
1

2γ
, a0− = − 1

2γ
and ai = T−i

+ a0+ , a−i = T−i
− a−0, i ≥ 1,with T+ = T|(0,1), T− = T|(−1,0). Then we de�ne ∀i ≥ 1:

b−i = T−1
− ai−1 and bi = T−1

+ a−(i−1) .We now state without proof a few results which are direct consequences of the de�nitionof the map. 4



Lemma 1. 1. When x→ 1−: T (x) = 1 − (1 − x) − 1
2γ (1 − x)γ + o((1 − x)γ)

DT (x) = 1 + 1
2(1 − x)γ−1 + o((1 − x)γ−1)

D2T (x) = − (γ−1)
2 (1 − x)γ−2 + o((1 − x)γ−2).2. When x→ 0+: T (x) = −1 + (2γ)

1
γ x

1
γ + o(x

1
γ )

DT (x) = (2γ)
1
γ 1

γx
1
γ
−1

+ o(x
1
γ
−1

)

D2T (x) = (2γ)
1
γ 1

γ ( 1
γ − 1)x

1
γ
−2

+ o(x
1
γ
−2

)The derivations at point 2. are obvious since the map is explicit. The formulae for thederivatives at point 1. are obtained by computing the �rst and the second derivative of thelocal inverse of T and by using succesively the local expansion of T in the neighborhoodof 1.Lemma 2. We have for all n, a±(n+1) = a±n ± 1
2γ (1 ∓ a±n)γ and:

1 − an ∼
(

2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

;

a−n + 1 ∼
(

2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

;

ln := length[an−1, an] ∼ 1

2γ

(
2γ

γ − 1

) γ
γ−1 1

n
γ

γ−1

n > 1 ;

|b±n| ∼ 1

2γ

(
2γ

γ − 1

) γ
γ−1 1

(n− 1)
γ

γ−1

, n > 1.Our next step is to induce over subsets where the �rst return map is mixing and hasa nice topological structure. We will see that the �rst return map is Bernoulli on thecylinders Im = (am−1, am),m ∈ Z
∗ and I±0 introduced above. A distortion estimate onthose cylinders is possible altough quite lengthy. We proceed therefore in another way.We perform the distortion estimate on the interval Ĩm := (a−m, am)/{0} which turns outto be much easier, and we will show that such distortion persists over the (Bernoulli)cylinders Im ⊂ Ĩm (see Corollary 1 below)1. It is important to stress that the distortiononly is not enough to work on the sets of the form Ĩm, since, for example, on the set

(a0−, a0+) the �rst return map is irreducible but not aperiodic, as it is easy to check byinspection. We then proceed to induce on the interval Ĩm to get a bounded distortionestimate for the �rst return map. We de�ne: Z+
m,1 := (bm+1, am), Z−

m,1 := (a−m, b−(m+1))and Z+
m,p>1 := (bm+p, bm+p−1), Z−

m,p>1 := (b−(m+p−1), b−(m+p)). Note that Ĩm = ∪p≥1Z
±
m,pand that the �rst return map T̂m = Ĩm → Ĩm acts on each Z±

m,p as T̂m = T p and inparticular:
T p(Z+

m,p) =

{
(a−m, am−1) p = 1

(a−m, a−(m−1)) p > 1
T p(Z−

m,p) =

{
(a−(m−1), am) p = 1

(am−1, am) p > 1 .We �nally observe that the induced map T̂m is uniformly expanding in the sense that foreach m and p there exists β > 1 such that |DT̂m(x)| > β, ∀x ∈ Ĩm.21We warmly thank the anonimous referee who suggested us this strategy which greatly simplies our previousdistortion estimate performed on each cylinder Im with long combinatorics.2Using the chain rule we can see that β ≡ infx∈Zm,1
|DT (x)| > 1.5



Proposition 3. Let us induce on Ĩm; then there exists a constant K > 0 that depends onm, such that for all p and for all x, y in a cylinder of the form Z+
m,p or Z−

m,p, we have:
∣∣∣∣∣
DT̂m(x)

DT̂m(y)

∣∣∣∣∣ =

∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ ≤ eK|T p(x)−T p(y)| ≤ e2K .Remark 1. The techniques of the proof allows us to get the equivalent result, especiallyused in Sect. 6. Let us consider as before the interval Ĩm; then there exists a constant
K ′ > 0 that depends on m, such that for all p and for all x in a cylinder of the form Z±

m,p,we have (Adler's condition):
|D2T̂ (x)|
|DT̂ (x)|2

≤ K ′ (4)Proof. We work on the cylinders of the form Z−
m,p, the other case being completely similarby simmetry. We denote with lm the length of the interval (am−1, am) (when m = 0, l0=length of (0, a0+)). We start by observing that

∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ = exp




p−1∑

q=0

∣∣∣∣
D2T (ξ)

DT (ξ)

∣∣∣∣ |T qx− T qy|



 , (5)where ξ is a point between T qx and T qy.We divide the cases p = 1 and p > 1.
• p = 1For (x, y) ∈ Z−

m,1 and by using |x− y| < |T (x) − T (y)|, we directly get:
∣∣∣∣
DT (x)

DT (y)

∣∣∣∣ ≤ exp [K1|T (x) − T (y)|] ,where K1 = sup(Z−

m,1)D
2T = D2T (am).

• p > 1We start with x, y ∈ Z−
m,p; since Tx, Ty ∈ (am+p−2, am+p−1); T 2x, T 2y ∈ (am+p−3, am+p−2);

. . . ; T p−1x, T p−1y ∈ (am, am+1) we �nally have:
(5) ≤ exp




sup(Z−

m,p)

(
|D2T |

)

inf(Z−

m,p)

(
|DT |

) |x− y| +
p−1∑

q=1

sup(am+p−q−1,am+p−q)

(
|D2T |

)

inf(am+p−q−1,am+p−q)

(
|DT |

) |T qx− T qy|





≤ exp




sup(Z−

m,p)

(
|D2T |

)

inf(Z−

m,p)

(
|DT |

) |x− y| +
p−1∑

q=1

sup
(am+p−q−1,am+p−q)

(
|D2T |

)
|T qx− T qy|



 (6)To continue we need the followingLemma 4. For x, y ∈ Z−
m,p we have:(i) ∑p−1

q=1 sup(am+p−q−1,am+p−q)

(
|D2T |

)
|T qx− T qy| ≤ C1|T p−1Z|(ii) supZ−

m,p

(
|D2T |

)
|x− y| ≤ C2

|T p−1Z|
lm+1

,where we set for convenience Z the interval with endpoints x and y.6



Proof. (i) Denote T p−1x = zx and T p−1y = zy; since the derivative is positive anddecreasing on (0,m) we have:
|T qx− T qy| ≤ 1

DT p−1−q(am+p−q)
|zx − zy| . (7)Let's now consider the term:

DT p−1−q(am+p−q) = DT (am+p−q)DT (Tam+p−q) . . . DT (T p−2−qam+p−q) (8)Since for q ≥ 1 and ξ1 ∈ (aq, aq+1):
DT (aq) ≥ DT (ξ1) =

T (aq+1) − T (aq)

aq+1 − aq
=
aq − aq−1

aq+1 − aqit follows that
(8) ≥ am+p−q − am+p−q−1

am+p+1−q − am+p−q
·am+p−q−1 − am+p−q−2

am+p−q − am+p−q−1
. . .

am+2 − am+1

am+3 − am+2
≥ am+2 − am+1

am+p+1−q − am+p−qand thus:3
1

DT p−1−q(am+p−q)
≤ am+p+1−q − am+p−q

am+2 − am+1
.Moreover: |zx − zy| ≤ |T p−1Z|. Finally:

(7) ≤ am+p+1−q − am+p−q

am+2 − am+1
|T p−1Z| (9)Using lemmas 1 and 2 we see that there exists a constant C0 depending only on themap T such that:

(
sup

(am+q−1,am+q)
|D2T |

)
(am+q+1−am+q) ≤ C0 ·

1

(q +m)
γ−2
γ−1 (q +m)

γ
γ−1

= C0 ·
1

(q +m)2Therefore the sum over q = 1, 2, . . . is summable and there exists a constant C1 suchthat for x, y ∈ Z−
m,p:

p−1∑

q=1

(
sup

(am+p−q−1,am+p−q)
|D2T |

)
|T qx− T qy| ≤ C1|T p−1Z| (10)(ii) In this case we need to control the behavior of the map close to 0. In particular,by using lemmas 1 and 2 (and the symmetry of b±i) we start by noticing that

(sup(bi+1,bi) |D2T |
inf(bi+1,bi) |DT |

)
|bi − bi+1| = O(

1

i

i
2γ−1
γ−1

i
2γ−1
γ−1

) = O(
1

i
). (11)Combining (10) and (11) with (6) we get that there exists a constant D2 so that forall j ≤ p− 1

1

D2
≤

∣∣∣∣
DT j(x)

DT j(y)

∣∣∣∣ ≤ D2. (12)3We have just proved that if ξ is any point in (am+p, am+p+1) (and the same result holds for its negativecounterpart (a−(m+p+1), a−(m+p)) as well) then DT p(ξ) ≥ am+2−am+1

am+p+1−am+p
. In a similar way we can prove thelower bound: DT p(ξ) ≤ a

0+

am+p−1−am+p−2
, for p ≥ 2. 7



Let's call t = b−(m+p−1), u = b−(m+p) the end points of Z−
m,p. For j1, j2 ≤ p− 1 thereexist η1 ∈ (x, y) and η2 ∈ (t, u) such that:

|T j1x− T j1y| = DT j1(η1)|x− y|,
|T j2t− T j2u| = DT j2(η2)|t− u|The distortion bound (12) yields

∣∣T j1x− T j1y
∣∣

|T j1t− T j1u| ≤ D2
2

∣∣T j2x− T j2y
∣∣

|T j2t− T j2u|If we now choose j1 = 0 and j2 = p− 1 then
(
sup
(t,u)

|D2T |
)
|x− y| ≤ D2

2

(
sup
(t,u)

|D2T |
) |t− u| · |T p−1x− T p−1y|

|T p−1t− T p−1u| .Since |T p−1t− T p−1u| = lm+1 = am − am+1 and x and y to belong to Z we get:
(
sup
(t,u)

|D2T |
)
|x− y| ≤ D2

2

(
sup
(t,u)

|D2T |
) |t− u| · |T p−1Z|

lm+1and using distortion bound (11) once more we have that there exist a constant C2such that:
(
sup
(t,u)

|D2T |
)
|x− y| ≤ C2

|T p−1Z|
lm+1

.By collecting lemma 4(i) and 4(ii) we see that the ratio |DT p(x)/DT p(y)|, (x, y ∈ Z) isbounded as:
∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ ≤ exp

[
C2

|T p−1Z|
lm+1

+ C1|T p−1Z|
]
≤ exp

[
K2|T p−1Z|

] (13)with K2 = C1 + C2/lm+1.We �nish the proof of the Proposition by choosing K = max(K1,K2)We now return to the induction over the sets of the form Im = (am−1, am),m ∈ Zwhich, for m = 0, are intended to be I+
0 = (0, a0+) and I−0 = (a0− , 0). We then de�ne apartition of Im by Wm = {Wm,1,Wm,2, . . . ,Wm,p, . . .}, where:

Wm,p = {x ∈ Im , τIm(x) = p}

τIm(x) being the �rst return time of x into Im. We call W c
m,p any of the connectedcomponents of Wm,p and we set T̂ ′

m : Im → Im the �rst return map to Im. Wm,p is thedisjoint union of its connected componentsW c
m,p and moreover T̂ (W c

m,p) = T p(W c
m,p) = Imand this application is surjective and onto.44It easy to describe symbolically such connected components; we �rst give a suitable coding of each point

x ∈ T \ S, where S = ∪i≥0T
−i{0}. We associate to such a point x the sequence: ω = (ω0 ω1 . . . ωn . . .) ; ωl ∈

Z
∗ ∪ {0−} ∪ {0+} such that (from now on n will denote a positive integer): ωl = n i� T lx ∈ (an−1, an);ωl =

−n i� T lx ∈ (a−n, a−(n−1));ωl = 0+ i� T lx ∈ I+
0 ; ωl = 0− i� T lx ∈ I−0 .8



Corollary 1. Let us consider the cylinders Im = (am−1, am),m ∈ Z. Then there existsconstants K and K ′ (possibly di�erent from those given in Proposition 3), depending on
m such that for all x, y in any connected component W c

m,p we have
∣∣∣∣∣
DT̂ ′

m(x)

DT̂ ′
m(y)

∣∣∣∣∣ =

∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ ≤ exp [K|T p(x) − T p(y)|] ≤ e2Kand
|D2T̂ ′

m(x)|
|DT̂ ′

m(x)|2
≤ K ′Proof. We �rst observe that by standard arguments the �rst return map T̂ ′

m induced by
T on Im coincides with the �rst return map induced by T̂m on Im, where T̂m is the �rstreturn map induced by T on Ĩm ⊃ Im. Then we conclude by noticing that an inducedmap of a map satisfying the bounded distortion condition or Adler's condition (on Z±

m,p inour case), satis�es the bounded distortion condition or Adler's condition as well (on W c
m,pin our case) [5].3 Decay of correlationsIn this section and in the next we prove several statistical properties for our map: theyare basically consequences of the distortion inequality got in the previous section matchedwith established techniques.Proposition 5. The map T enjoys polynomial decay of correlations w.r.t. the invariantLebesgue measure ν, for Hölder continuous functions on T. More precisely, for all Hölder

ϕ : T → R and all ψ ∈ L∞
ν , we have:

∣∣∣∣
∫

(ϕ ◦ Tn) ψ dν −
∫
ϕ dν

∫
ψ dν

∣∣∣∣ = O
( 1

n
1

γ−1

)Proof. We will use Lai Sang Young's tower technique [33]. We build the tower over theinterval I+
0 and we de�ne the return time function as the �rst return time:for all x ∈ I+

0 , τI+
0
(x) := min{n ∈ N

+ ; Tnx ∈ I+
0 }The tower is thus de�ned by:

∆ = {(x, l) ∈ I+
0 × N ; l ≤ τI+

0
(x) − 1}The grammar is the following:

ωl = n > 0 ⇒ ωl+1 = n− 1; ωl = −n < 0 ⇒ ωl+1 = −(n− 1)

ωl = 0+ ⇒ ωl+1 = 0− or − n (any n); ωl = 0− ⇒ ωl+1 = 0 + or n > 0 (any n)A cylinder (ω1, ω2, · · · , ωn), with ωi ∈ Z
∗
⋃{0±} and compatible with the grammar, will denote the open set⋂n

i=1 T
−iIωi

. Therefore we see that every Wm,p is the disjoint union of connected cylinders Wm,p(k1, . . . , kn) ofthe form:
Wm,p(k1, . . . , kn) =

(
k1 k1 − 1 . . . 1︸ ︷︷ ︸

k1

0+ 0− . . . 0+︸ ︷︷ ︸
k2

−k3 . . .− 1︸ ︷︷ ︸
k3

0−0+ . . . 0− m+ kn − 1 . . . m︸ ︷︷ ︸
kn

) (14)with k1 + . . .+ kn = p+ 1 and k1 = m. 9



and the partition of the base I+
0 is given by the sets W0+,p. Recall that the dynamics onthe tower is given by:

F (x, l) =






(x, l + 1) if l < τI+
0
(x) − 1

(T
τ
I
+
0

(x)
(x), 0) if l = τI+

0
(x) − 1According to [33], the decay of correlations is given by the asymptotics of ν{x ∈ I+

0 ; τI+
0
(x) >

n} namely
ν{x ∈ I+

0 ; τI+
0
(x) > n} =

+∞∑

p=n+1

ν{x ∈ I+
0 ; τI+

0
(x) = p} =

+∞∑

p=n+1

ν(W0+,p)Before computing explicitly this quantity, we must verify another important require-ment of the theory; this will also be useful in the next section about limit theorems. Let us�rst introduce the separation time s(x, y) between two points x and y in I+
0 . Put T̂ ′

0 the �rstreturn map on I+
0 ; we de�ne s(x, y) = minn≥0{(T̂ ′

0

n
(x), T̂ ′

0

n
(y)) lie in distinct W0+,p, p ≥

1}. We ask that ∃C > 0, θ ∈ (0, 1) such that ∀x, y ∈W0+,p, p ≥ 1, we have
∣∣∣∣∣
DT̂ ′

0(x)

DT̂ ′
0(y)

∣∣∣∣∣ ≤ exp[Cθs(T̂ ′

0(x),T̂ ′

0(y))] (15)Let us prove this inequality. Suppose s(T̂ ′
0(x), T̂

′
0(y)) = n; then since the orbits (under T̂ ′

0)of the two points will be in the same cylinder of type W0+,p, p ≥ 1 up to time n − 1 andon these cylinders T̂ ′
0 is monotone and uniformly expanding, |DT̂ ′

0| ≥ β > 1 (see footnote1), we have |T̂ ′
0(x) − T̂ ′

0(y)| ≤ β−(n−1). Therefore by the distortion inequality (13) we get
∣∣∣∣∣
DT̂ ′

0(x)

DT̂ ′
0(y)

∣∣∣∣∣ ≤ exp

[
Kβ−(n−1)

l0

]
≤ exp[Cθs(T̂ ′

0(x),T̂ ′

0(y))] (16)where C = Kβ
l0

and θ = β−1. This bound is often called the local Hölder condition for
log |DT̂ ′

0| with exponent θ; we will encounter it again pretty soon and when we will referto it, it will be associated to a given Markov partition of the induced space. We now comeback to estimate the quantity ν(W0+,p). The cylinder-set W0+,p could be easily describedusing symbolic dynamics (see footnote 4): it will be the disjoint union of cylinders of thefollowing form:
Cp,q =

(
0+ −q · · · − 1︸ ︷︷ ︸

q

0− p− q − 2 · · · 1︸ ︷︷ ︸
p−q−2

0+

)Thus, there are p−1 cylinders whose �rst return time in I+
0 is p. Noticing that T p : Cp,q →

I+
0 is surjective we know that there exists ξ ∈ Cp,q such that: ν(Cp,q) =

ν(I+
0 )

|DT p(ξ)| . Sinceas usual DT p(ξ) = DT (ξ)DT q(Tξ)DT (T q+1ξ)DT p−q−2(T q+2ξ) and ξ ∈ (b−q−1, b−q) and
T q+1ξ ∈ (bp−q−2, bp−q−1), by using the asymptotic bound on the b±n given by Lemma2 and the lower bound on the term DT p(x), x ∈ (ap−1, ap) given in the footnote 3, we

10



immediately get:
ν(Cp,q) ≤

a+0

DT (b−q)DT (bp−q−2)

aq − aq−1

a1 − a+0

ap−q−2 − ap−q−3

a1 − a+0

≤ a+0

DT (b−q)DT (bp−q−2)

(1 − aq−1)
γ

(1 − 1
2γ )γ

(1 − ap−q−3)
γ

(1 − 1
2γ )γ

.
a+0

q(p− q − 2)

1

(q(p− q − 2))
γ

γ−1

.
1

(
q(p− q − 2)

) γ
γ−1

+1The cases q = 0 (for which Cp,0 = (0+ 0− (p − 2) . . . 2 1 0+)) and q = p − 2 (forwhich Cp,p−2 = (0+ − (p− 2) . . . − 2 − 1 0− 0+) can be computed in a similar wayand both are bounded by a quantity of order 1

(p−2)
γ

γ−1+1
.Since there are only p− 1 ways to place 0− in Cp,q, we get:

ν(W0+,p) = ν
( p−2⋃

q=0

Cp,q

)

.




p−3∑

q=1

1

q
γ

γ−1
+1

(p− q − 2)
γ

γ−1
+1



 +
2

(p− 2)
γ

γ−1
+1

.
1

p
γ

γ−1
+1




[ p−3

2
]∑

q=1

1

q
γ

γ−1
+1

(1 − q−2
p )

γ
γ−1

+1



 +
2

(p− 2)
γ

γ−1
+1

.
1

p
γ

γ−1
+1Finally:

ν{x ∈ I+
0 ; τI+

0
(x) ≥ n} .

+∞∑

p=n

1

p
γ

γ−1
+1

.
1

n
γ

γ−1According to [33] the correlations decay satis�es ∣∣∫ (ϕ ◦ Tn) ψ dν −
∫
ϕ dν

∫
ψ dν

∣∣ = O(
∑

k>n ν{x ∈
I+
0 ; τI+

0
(x) ≥ n}) and the right hand side of this inequality behaves like O

(
1

n
1

γ−1

).Optimal boundsThe previous result on the decay of correlations could be strengthened to produce a lowerbound for the decay of correlations for integrable functions supported on the cylinders ofthe countable Markov partition Im constructed in the previous section. We will use forthat the renewal technique introduced by Sarig [31] and successively improved by Gouëzel[15]. At this regard we need a few assumptions that we directly formulate in our setting:
• Suppose we induce on the rectangle I+

0 ; call W+
0 the Markov partition into therectangles W0+,p with �rst return p. A cylinder [d0, d1, · · · , dn−1] with di ∈ W+

0 willbe the set ∩n−1
l=0 T̂

′
0

−l
dl.We �rst need that the jacobian of the �rst return map is locally Hölder continuouswith exponent θ, but this is an immediate consequence of formula (16) with θ = β−1and C = Kβ/l0. Using the separation time s(·, ·), we de�ne D0+f = sup |f(x) −

f(y)|/θs(x,y), where f is an integrable function on I+
0 and the supremum is takenover all couples x, y ∈ I+

0 . We then put ||f ||L
θ,0+

≡ ||f ||∞ + D0+f . We call Lθ,0+the space of θ-Hölder functions on I+
0 and we call D0+f the Hölder constant of f (on

I+
0 ). 11



• We need the so-called big image property, which means that the Lebesgue measureof the images, under T̂ ′
0, all the rectangles W0+,p ∈ W+

0 are uniformly bounded frombelow by a strictly positive constant. This is actually the case since all these imagescoincide with I+
0 .

• We �nally need that ν(x ∈ Im|τ(x) > n) = O(n−χ), for some χ > 1 (this is Gouëzel'sassumption, which improves Sarig's one, asking for χ > 2). But this has been provedabove with χ = γ
γ−1 .Under these assumptions, Sarig and Gouëzel proved a lower bound for the decay of corre-lations which we directly specialize to our map and for the interval I+

0 : the same kind ofresult of course holds for any other rectangle Im:Proposition 6. There exists a constant C such that for all f ∈ Lθ,0+ and g ∈ L∞
ν withnorm || · ||∞ and both supported in I+

0 we have
∣∣∣∣∣Corr( f, g ◦ T

n) − (
∞∑

k=n+1

ν(x ∈ I+
0 |τ(x) > n))

∫
g dν

∫
f dν

∣∣∣∣∣ ≤ CFγ(n)||g||∞||f ||L
θ,0+where Fγ(n) = 1

n
γ

γ−1
if γ < 2, (log n)/n2 if γ = 2 and 1

n
2

γ−1
if γ > 2.Moreover, if ∫

f dν = 0, then ∫
(g ◦Tn) f dν = O( 1

n
γ

γ−1
). Finally the central limit theoremholds for the observable f .Remark 2. The last sentence about the existence of the central limit theorem will be alsoobtained, using a di�erent technique, in Proposition 7, part 2, (a).4 Limit theoremsLet us recall the notion of stable law (see [11, 14]): a stable law is the limit of a rescaledi.i.d process. More precisely, the distribution of a random variable X is said to be stableif there exist an i.i.d stochastic process (Xi)i∈N and some constants An ∈ R and Bn > 0such that in distribution:

1

Bn

( n−1∑

i=0

Xi −An

)
−→ XWe will denote by X(p, c, ϑ) the law whose characteristic function is

E(eX(p,c,ϑ)) = e−c|t|p
(
1−iϑsgn(t) tan( pπ

2
)
)where p ∈ (0, 1) ∪ (1, 2], c > 0, ϑ ∈ [−1, 1]. Note that when p ∈ (1, 2] the law is ofzero expectation. The case p = 2 corresponds to the normal law and the value of ϑ isirrelevant. The case p = 1 is problematic and it is not included here. We defer to [14] fora caracterization of the constant c in terms of the asymptotic bahavior of the distributionof the random variable X. For one-dimensional Gibbs-Markov maps such a constant centers the tail of the �rst return times, as it is showed in eq. (17) below.Proposition 7. Let us denote Snϕ =

∑n−1
k=0 ϕ ◦ T k, where ϕ is a υ-Hölder observable,with ∫

ϕ(x) dx = 0. 12



1. If γ < 2 then the Central Limit Theorem holds for any υ > 0. That is to saythere exists a positive constant σ2 such that Snϕ√
n

tends in distribution to N (0, σ2).Moreover σ2 = 0 i� there exists a measurable function ψ such that ϕ = ψ ◦ T − ψ.2. If γ > 2 then:(a) If ϕ(1) = 0 and |ϕ(x)| ≤ C̃|x − 1|υ′

T
, where | · |T denotes the distance on thecircle, C̃ is a positive constant and 1

2(γ− 2) < υ′ < γ− 1 then the Central LimitTheorem still holds with a positive variance σ2. Moreover σ2 = 0 i� there existsa measurable function ψ such that ϕ = ψ ◦ T − ψ.(b) If ϕ(1) 6= 0 then Snϕ

n
γ−1

γ

converges in distribution to the stable law X
(
p, c, ϑ

) with:
p =

γ

γ − 1

c =
1

γ

(
2γ|ϕ(1)|
γ − 1

) γ
γ−1

Γ(
1

(1 − γ)
) cos(

πγ

2(γ − 1)
)

ϑ = sgnϕ(1)3. If γ = 2 then:(a) If ϕ(1) = 0 then the Central Limit Theorem holds.(b) If ϕ(1) 6= 0 then there exist a constant b such that Snϕ√
n logn

tends in distributionto N (0, b).Proof.1. As a by-product of the tower's theory we get the existence of the central limit theoremwhenever the rate of decay of correlations is summable ([33], Th. 4); this happens inour case for γ < 2. As usual we should avoid that ϕ is a co-boundary.2. (a)We proceed as in [14] Th. 1.3 where this result was proven for the Pomeau-Mannevilleparabolic maps of the interval. We defer the reader to Gouezel's paper for thepreparatory theory; we only prove here the necessary conditions for its application.We induce again on I+
0 and we put ϕI+

0
(x) :=

∑τ
I
+
0

(x)−1

i=0 ϕ(T ix). We need:
• ϕ must be locally Hölder continuous on I+

0 ( with exponent θ).
• ν{x ∈ I+

0 ; τI+
0
(x) = n} = O(1/nη+1), for some η > 1

• ϕI+
0
∈ L2

(
I+
0

)Recall that the induced map T̂ ′
0 on I+

0 is uniformly expanding with factor β > 1;therefore for any couple of points x, y ∈ T we have |x − y|T ≤ Bβ−s(x,y), where Bis a suitable constant and | · |T denotes the distance on the circle. Using the Hölderassumption on ϕ we get |ϕ(x) − ϕ(y)| ≤ D|x − y|υ
T
≤ Eβ−υs(x,y), which shows that

ϕ is locally Hölder with θ = β−υ < 1.The quantity in the second item above is exactly ν(W0+,n) for which we obtained inthe previous section a bound of order n−( γ
γ−1

+1). Hence η = γ/(γ − 1).13



To prove the third item denote Cϕ =
∫
I+
0
|ϕ(x)|2dx. As in section 3 we obtain (wesimply put here dν = dx):

∫

I+
0

|ϕI+
0
(x)|2 dx ≤ Cϕ +

+∞∑

l=2

∫

W0+,l

∣∣∣

τ
I
+
0
−1

∑

i=0

ϕ(T ix)
∣∣∣
2
dx

≤ Cϕ +
+∞∑

l=2

l−2∑

q=0

∫

Cl,q

∣∣∣
l−1∑

i=0

ϕ(T ix)
∣∣∣
2
dx

. Cϕ + C̃
+∞∑

l=2

l−2∑

q=0

∫

Cl,q

∣∣∣
l−1∑

i=0

|T ix− 1|υ′

T

∣∣∣
2
dx

. Cϕ + C̃
+∞∑

l=2

l−2∑

q=0

∫

Cl,q

∣∣∣
q∑

m=0

|a−m + 1|υ′

+

l−q−2∑

m=0

|am − 1|υ′

∣∣∣
2
dx

. Cϕ + C̃
+∞∑

l=2

l−2∑

q=0

ν(Cl,q)
∣∣q

−υ′+γ−1
γ−1 + (l − q − 2)

−υ′+γ−1
γ−1

∣∣2

. Cϕ + C̃
+∞∑

l=2

[(l−2)/2]∑

q=0

ν(Cl,q)(l − q − 2)
2(−υ′+γ−1)

γ−1

∣∣∣1 +
( q

(l − q − 2)

)−υ′+γ−1
γ−1

∣∣∣
2

. Cϕ + C̃
+∞∑

l=2

l
2(−υ′+γ−1)

γ−1

l
γ

γ−1
+1



1 +

(l−2)/2∑

q=1

1

q
γ

γ−1





. Cϕ + C̃
+∞∑

l=2

l
2(−υ′+γ−1)

γ−1

l
γ

γ−1
+1Finally if 2(−υ′+γ−1)

γ−1 − γ
γ−1 − 1 < −1 (i.e. υ′ > 1

2(γ − 2)) then ϕI+
0
∈ L2

(
I+
0

).(b)The proof proceeds as for the analogous case of Th. 1.3 in [14]; in order to use whatwe got at the point (a) above, we introduce the auxiliary function ϕ = ϕ(1)+ϕ̃ where
ϕ̃ is υ-Hölder and satis�es ϕ̃(1) = 0. The corresponding functions on the inducedspace will verify ϕI+

0
= ϕ̃I+

0
+ s, where s(x) = nϕ(0) when x belongs to the cylinders

Z0+,n with �rst return n. It is argued in [14], and the same remains true in our case,that the constant c of the stable law should veri�es
ν(s > nϕ(1)) = ν(τI+

0
> n) ∼ cng (17)where g is a given exponent. Previous estimates suggest that g = −( γ

γ−1), but theyare not enough to get the asymptotic equivalence prescribed to obtain the constant
c. This is achieved by the following lemma:Lemma 8. Let us de�ne Rn = (τI+

0
> n); then
ν(Rn) ∼ 2bnThe proof of this lemma is postponed to the Appendix; thanks to it we immediatelysee that c = 1

γ ( 2γ
γ−1)

γ
γ−1 . 14



3. This could also be obtained as in the proof of Th. 1.3 in [14]
Large deviations.The knowledge of the measure of the tail for the �rst returns on the tower (in our case builtover I+

0 ), will allows us to apply the results of Melbourne and Nicol [24], Melbourne [25]and Pollicott and Sharp [29] to get the large deviations property for particular classes ofobservables. We will apply to our map Melbourne's result [25], which states that whenever
ν(x; τI+

0
> n) = O(n−(ζ+1)), with ζ > 0 (in our case ζ = 1

γ−1), then for some observables
φ : [−1, 1] → R (for the regularity see below), which we take of zero mean, we have :Proposition 9. If ζ > 0 (γ > 1) then the map T veri�es the following large deviationsbounds:(I) whenever the observable φ is Hölder5, then for all ε > 0 there exists a constant Cφ,εsuch that

ν





∣∣∣∣∣∣
1

n

n−1∑

j=0

φ(T j(x))

∣∣∣∣∣∣
> ε



 ≤ Cφ,εn
− 1

γ−1for all n ≥ 1.(II)There exists a constant c1 and an open and dense set A of Hölder observables in thespace of of Hölder observables, such that whenever φ ∈ A, then one can �nd ε0 > 0 suchthat for all ε ∈ (0, ε0) we have
ν





∣∣∣∣∣∣
1

n

n−1∑

j=0

φ(T j(x))

∣∣∣∣∣∣
> ε



 ≥ c1n
− 1

γ−1for in�nitely many n.5 RecurrenceFirst returns.In the past ten years the statistics of �rst return and hitting times have been widely usedas new and interesting tools to understand the recurrence behaviors in dynamical systems.Surveys of the latest results and some historical background can be found in [22, 19, 1].Take a ball Br(x) of radius r around the point x ∈ T and consider the �rst return
τBr(x)(y) of the point y ∈ Br(x) into the ball. If we denote with νr the conditionalmeasure to Br(x), we ask whether there exists the limit of the following distribution when
r → 06:

F e
r (t) = νr

(
y ∈ Br(x); τBr(x)(y)ν(Br(x)) > t

)
.The distribution F h

r (t) for the �rst hitting time (into Br(x)) is de�ned analogously justtaking y and the probability ν on the whole space T.5In the paper [25] the observable φ is in L∞
ν . But in this case one needs a speci�c assumption on the algebraicdecay of correlations for L∞

ν functions.6We call it distribution with abuse of language; in probabilistic terminology we should rather take 1 minusthat quantity. 15



A powerful tool to investigate such distributions for non-uniformly expanding andhyperbolic systems is given by the conjunction of the following results, which reduce thecomputations to induced subsets.
• Suppose (T,X, µ) is an ergodic measure preserving transformation of a smooth Rie-mannian manifold X; take X̂ ⊂ X an open set and equip it with the �rst returnmap T̂ and with the induced (ergodic) measure µ̂. For x ∈ X̂ we consider the ball
Br(x) (Br(x) ⊂ X̂) around it and we write τ̂Br(x)(y) for the �rst return of the point
y ∈ Br(x) under T̂ . We now consider the distribution of the �rst return time for thetwo variables τBr(x) and τ̂Br(x) in the respective probability spaces (Br(x), µr) and(Br(x), µ̂r) (where again the subindex r means conditioning to the ball Br(x)), as :

F e
r (t) = µr(y ∈ Br(x); τBr(x)(y)µ(Br(x)) > t)and
F̂ e

r (t) = µ̂r(y ∈ Br(x); τ̂Br(x)(y)µ̂(Br(x)) > t)In [6] we proved the following result: suppose that for µ-a.e. x ∈ X̂ the distribution
F̂ e

r (t) converges point wise to the continuous functions fe(t) when r → 0 (rememberthat the previous distribution depends on x via the location of the ball Br(x)); thenwe have as well F e
r (t) → fe(t) and the convergence is uniform in t7. We should notethat whenever we have the distribution fe(t) for the �rst return time we can insurethe existence of the weak-limit distribution for the �rst hitting time F h

r (t) → fh(t)where fh(t) = 1 −
∫ t
0 f

e(s)ds, t ≥ 0 [18].Note: From now on we will say that we have fe(t) as limit distributions for balls, ifwe get them in the limit r → 0 and for µ-almost all the centers x of the balls Br(x).
• The previous result is useful if we are able to handle the recurrence on inducedsubsets, see [7, 8] for a few applications. Induction for one-dimensional maps oftenproduces piecewise monotonic maps with countably many pieces. We proved in [6],Th. 3.2, that whenever such maps are of Rychlik's type [30] (see Def. 3.1 in [6] fora precise de�nition), then we have exponential return time statistics around balls(i.e. fe(t) = fk(t) = e−t). Our �rst return maps on the Im are Bernoulli andexpanding; in order to satisfy the Rychlik's property it will be enough to show thatthe total variation of the potential, in our case 1/|DT (x)|, is �nite. This is again aneasy consequence of the bounded distortion property 8.We therefore have7The result proved in [6] is slightly more general since it doesn't require the continuity of the asymptoticdistributions over all t ≥ 0. We should note instead that we could relax the assumption that X̂ is open justremoving from it a set of measure zero, which happens on our induced sets Im.8Let us consider the cylinder Im and partition it into the cylinders Wm,p with �rst return p ≥ 1; then wehave for the variation on ImVar 1

|DT̂ ′
m|

≤
∑

Wm,p

∫

Wm,p

|D2T̂ ′
m(t)|

|DT̂ ′
m(t)|2

dν(t) + 2
∑

Wm,p

sup
Wm,p

1

|DT̂ ′
m|By the distortion bound proven in the �rst section we have that K ≥ | log

DT̂ ′

m(x)

DT̂ ′

m(y)
| = |

∫ y

x

D2T̂ ′

m(t)

DT̂ ′

m(t)
dν(t)| =

∫ y

x

|D2T̂ ′

m(t)|

DT̂ ′

m(t)
dν(t) for any x, y ∈ Wm,p, since the �rst derivative is always positive and the second deriva-tive has the same sign for all the points in the same cylinder. But this immediately implies that16



Proposition 10. The map T has exponential return and hitting time distributions withrespect to the measure ν provided γ > 1.Number of visits.Let us come back to the general framework introduced in Sect. 5.1 with the two probabilityspaces (X,T, µ) and (X̂, T̂ , µ̂). We now introduce the random variables ξe
r and ξ̂e

r whichcount the number of visits of the orbits of a point y ∈ Br(x) to the ball itself and up to acertain rescaled time. Namely:
ξe
r(x, t) ≡

h

t
µ(Br(x))

i

∑

j=1

χBr(x)

(
T j(y)

)where χ stands for the characteristic function and x ∈ X. If we take x ∈ X̂ we can de�nein the same manner the variable ξ̂e
r(x, t) by replacing the action of T with that of T̂ . Wenow introduce the two distributions

Ge
r(t, k) = µr(x; ξ

e
r(x, t) = k), Ĝe

r(t, k) = µ̂r(x; ξ̂
e
r(x, t) = k)where again the index r for the measures means conditioning on Br(x). We proved in [6]that whenever the distribution Ĝe

r(t, k) converges weakly (in t) to the function g(t, k) andfor almost all x ∈ X̂, the same happens, with the same limit, to the distribution Ge
r(t, k).For systems with strong mixing properties the limit distribution is usually expected to bePoissonian [22, 19, 20, 1]: tke−t

k! .In [12] it was shown that Rychlik maps enjoy Poisson statistics for the limit distributionof the variables ξe
r and whenever the center of the ball is taken a.e.. Hence we get thefollowing result.Proposition 11. Let γ > 1. Then for ν-almost every x the number of visits to the balls

Br(x) converges to the Poissonian distribution as r → 0.Extreme Values.The last quoted paper [12] contains another interesting application of the statistic ofthe �rst hitting time that we could apply to our map T too. Let us �rst brie�y recallthe Extreme Value Theory. Given the probability measure preserving dynamical system
(X,T, µ) and the observable φ : X → R ∪ {±∞}, we consider the process Yn = φ ◦ Tnfor n ∈ N. Then we de�ne the partial maximum Mn ≡ max{Y0, · · · , Yn−1} and we look ifthere are normalising sequences {an}n∈N ⊂ R

+ and {bn}n∈N ⊂ R such that
µ({x : a− n(Mn − b− n) ≤ y}) → H(y)

∫
Wm,p

|D2T̂ ′

m(t)|

|DT̂ ′

m(t)|2
dν(t) ≤ supWm,p

1
|DT̂ ′

m|
K. Since T̂ ′

m maps Wm,p di�eomorphically onto Im there will be apoint ξ for which DT̂ ′
m(ξ)ν(Wm,p) = ν(Im). Applying the bounded distortion estimate one more time, we get

supWm,p

1
|DT̂ ′

m|
≤ eK ν(Wm,p)

ν(Im) . We �nally obtainVar 1

|DT̂ ′
m|

≤ eK(2 +K)

ν(Im)

∑

Wm,p

ν(Wm,p) ≤ eK(2 +K) ≤ ∞.17



for some non-degenerate distribution function H: in this case we will say that an ExtremeValue Law (EVL) holds for Mn. If the variables Yn were i.i.d., the classical extremevalue theory prescribes the existence of only three types of non-degenerate asymptoticdistributions for the maximum Mn and under linear normalisation, namely:
• Type 1: EV1 = e−e−y for y ∈ R, which is called the Gumbel law.
• Type 2: EV2 = e−y−α for y > 0, EV2 = 0, otherwise, where α > 0 is a parameter,which is called Frechet law.
• Type 3: EV3 = e−(−y)α for y ≤ 0, EV3 = 1, otherwise, where α > 0 is a parameter,which is called Weibull law.In the paper [12] it has been proved, in a very general setting which applies to our situationtoo, that whenever the system (X,T, µ) has exponential hitting time statistics, then itsatis�es an extreme value theory for the partial maximum Mn constructed on the process

φ(x) = g(d(x, ξ)), where d denotes the distance function, ξ is a chosen point in X and gis a strictly decreasing non-negative bijection in a neighborhood of 0 where it attains aglobal maximum. In particular for some choices of g (see [12] for the details), one recoversthe Gumbel, Frechet and Weibull laws.Of course this result can be immediately applied to the mapping T under investigationin this paper.6 Generalizations to Lorenz-like mapsAs mentioned in the Introduction, the original paper by Grossmann and Horner [16] dealtwith di�erent Lorentz-like symmetric maps S which map [−1, 1] onto itself with two sur-jective branches de�ned on the half intervals [−1, 0) and (0, 1]: we will suppose that themap is C1 on [−1, 1]/{0} and C2 on [−1, 1]/{0} ∪ {±1}). Moreover we will ask for thefollowing local behaviours (C will denote a positive constant which could take di�erentvalues from one formula to the other):
S(x) = 1 − b|x|κ + o(|x|κ), x ∼ 0, b > 0

|DS(x)| = C|x|κ−1 + o(|x|κ−1); |D2S(x)| = C|x|κ−2 + o(|x|κ−2), x ∼ 0,

S(x) = −x+ a|x− 1|γ + o(|x− 1|γ), x ∼ 1−, a > 0

DS(x) = −1 +C|x− 1|γ−1 + o(|x− 1|γ−1);D2S(x) = C|x− 1|γ−2 + o(|x− 1|γ−2), x ∼ 1−

S(x) = x+ a|x+ 1|γ + o(|x+ 1|γ), x ∼ −1+, a > 0

DS(x) = 1 +C|x+ 1|γ−1 + o(|x+ 1|γ−1);D2S(x) = C|x+ 1|γ−2 + o(|x+ 1|γ−2), x ∼ −1+where κ ∈ (0, 1) and γ > 1 are two parameters. We also require that(i) in all points x 6= −1, 1 the derivative is strictly bigger than 1.(ii) S is strictly increasing on [−1, 0), strictly decreasing on (0, 1] and convex on the twointervals (−1, 0), (0, 1).The map has a cusp at the origin where the left and right �rst derivatives diverge to ±∞and the �xed point −1 is parabolic (Fig. 2). Although the map S is Markov with respectto the partition {[−1, 0), (0, 1]} it will be more convenient to use a countable Markovpartition whose endpoints are given by suitable preimages of 0 (see below).18
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The re�ection symmetry of the map T in Sect. 2 was related to the invariance of theLebesgue measure. We do not really need the map S being symmetric with respect to theorigin. We did this choice to get only two scaling exponents (κ and γ) in 0 and in ±1. Thisimplies in particular the same scalings for the preimages of 0 on (−1, 0) and (0, 1). If theleft and right branches are not anymore symmetric, still preserving the Markov structureand the presence of indi�erent points and a point with unbounded derivative, one shouldplay with at most four scaling exponents giving the local behavior of S in 0 and ±1.We denote by S1 (resp. S2) the restriction of S to [−1, 0) (resp. (0, 1]) and de�ne a0+ =

S−1
2 0; a0− = S−1

1 0; a−p = S−p
1 a0−; ap = S−1

2 S
−(p−1)
1 a0− for p = 1, 2, . . . . It followsthat Sa−p = Sap = a−(p−1). In the same way as we did in the �rst section we de�nethe sequence bp, p ≥ 1 as: Sb±p = ap−1. The countable Markov partition mod ν will be{

(a−p, a−(p−1)) : p ≥ 1
}
∪ {(ap, ap+1) : p ≥ 1} ∪ {I0±}; I0+ = (0, a0+); I0− = (a0−, 0).From the local behaviors one gets the following scaling relations (use the symmetry to

19



get the analogous relations for a−p and b−p):
1 − ap ∼

(
1

a(γ − 1)

) 1
γ−1 1

p
1

γ−1

ap − ap+1 ∼ a

(
1

a(γ − 1)

) γ
γ−1 1

p
γ

γ−1

bp ∼
(

1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

p
1

κ(γ−1)

bp−1 − bp ∼ 1

κ(γ − 1)

(
1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

p
κ(γ−1)+1

κ(γ−1)Bounded distortion, invariant measure and decay of correlations. An important di�erencewith the map on the circle is that we are not guaranteed that the Lebesgue measure νis anymore invariant; so we have to build an absolutely continuous invariant measure µ.Fortunately the tower's technique helps us again but we �rst need a useful change. Aswe did in Section 2 we will induce over the disjoint union: I0 ≡ (a0−, 0) ∪ (0, a0−). Thecylinders Zp of I0 with �rst return time p will have the form
Z1 = (a0−, b−1) ∪ (b1, a0+) (18)
Zp = (b−(p−1), b−p) ∪ (bp, bp−1) p > 1 .The �rst return map Ŝ for S on I0 is not onto I0 on each cylinder Zp with prescribed �rstreturn time. In fact Ŝ maps all the cylinders (bp, bp−1) and (b−(p−1), b−p) onto (a0−, 0),but it maps the cylinders (a0−, b−1) and (b1, a0+) onto (0, a0−). Nevertheless Ŝ is anirreducible and aperiodic Markov map, as it is easy to check, and this is enough for thenext considerations; moreover distortion can be proved exactly as in Proposition 3. 9The advantage of this induction scheme could be immediately seen in the exact scalingof the following tail (the Lebesgue measure of the points in I0 with �rst return bigger than

n, cf. (17)), the precise form of it being essential to get stable laws later on:
ν(x ∈ I0; τI0(x) > n) = 2

∞∑

p=n+1

(bp−1 − bp) ∼
2

κ(γ − 1)

(
1

ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

n
1

κ(γ−1)(19)For the decay of correlations we invoke Th. 1 in Lai-Sang Young's paper [33] and we get :Proposition 12. Let us consider the map S depending upon the parameters γ and κ.Then for 0 < κ < min( 1
γ−1 , 1), we get the existence of an absolutely continuous invariantmeasure µ which mixes polynomially fast on Hölder observables with rate O

(
n
− 1−κ(γ−1)

κ(γ−1)
).The map has exponential return and hitting times distributions and Poissonian statisticfor the limit distribution of the number of visits in balls.9If one wants a genuine �rst return Bernoulli map, one should induce over (a0−, 0): the cylinders with given�rst return time are simply slightly more complicated to manage with. One could reduce to this situation as inCorollary 1. 20



DensityBefore continuing with the other statistical properties, we need a better knoweledge of theinvariant density ρ for the measure µ. This will be accomplished in two steps: we will�rst prove that the density is Lipschitz continuous on the open interval (−1, 1) and wewill succesively gives its local behavior around 1 and −1. The �rst task is easily achievedby moving the induction over the set In ≡ (a−n, 0)∪ (0, an). As in 18 it is straightforwardto check that the cylinders Zp,n of In with �rst return time p will have the form:
Z1,n = (a−n, b−(n+1)) ∪ (bn+1, an)

Zp,n = (b−(n+p−1), b−(n+p)) ∪ (bn+p, bn+p−1), p > 1and moreover the �rst return map Ŝn for S on In applies (a−n, b−(n+1)) and (bn+1, an) onto
(a−(n−1), an) and all the cylinders (b−(n+p−1), b−(n+p)) and (bn+p, bn+p−1), with p > 1, onto
(a−n, a−(n−1)). We have thus shown that our �rst return map Ŝn on In is Gibbs-Markovaccording to the terminology of Aaronson and Denker in [4] 10 . We now observe thatas a consequence of the action of Ŝn on In, the sigma-algebra generated by the images ofthe rectangles (18) is the same as that generated by the open intervals (a−n, a−(n−1)) and
(a−(n−1), an). Hence by the Doëblin-Fortet inequality proved in Proposition 1.4 in [4], themap Ŝn admits a mixing absolutely continuous invariant measure µ̂n whose density ρ̂n isLebesgue essentially bounded on In and Lipschitz continuous on each on the two intervals
(a−n, a−(n−1)) and (a−(n−1), an).11 It is possible to get one more property of the density
ρ̂n, namely it is bounded away from zero from below: this has been proved in [26] and in[23]. We �nally relate the densities ρ̂n and ρ over In. The measures µ and µ̂n satisfy:

µ(B) = Cr

∑

i

τi−1∑

j=0

µ̂n(S−j(B) ∩ Zi,n) (20)where B is any Borel set in [−1, 1] and the �rst sum runs over the cylinders Zi,n withprescribed �rst return time τi and whose union gives In. The normalising constant Cr =
µ(In) satis�es 1 = Cr

∑
i τiµ̂(Zi,n)n and ρ(x) = Crρ̂n(x), x ∈ I0. By sending n → ∞we have therefore proven that the density ρ for our invariant measure µ is bounded andLipschitz continuous on the interval (−1, 1). We are now ready to investigate the localbehavior of the density when x → 1− (resp. x → −1+). For that it will be enough (andsimpler) to consider the former induction over I0: we call µ̂ the density of the �rst returnmap on it. Since, as we said above, µ̂ is uniformly equivalent to ν, we will use the lattermeasure in the next computations. We �rst note that in order to estimate the µ-measure ofa set B we need to consider only the cylinders Zp of I0 which iterates will have non-empty10We already checked that the partition, mod-ν, of In given by the rectangles {Zp,n} is Markov and more-over the �rst return map Ŝn is uniformly expanding. We are left with the proof of the Adler's condition

supx∈Zp,n∈In

|D2Ŝn(x)|

|DŜn(x)|2
< ∞; but this can be proved along the same lines of the proof of proposition 3, as wealready pointed out in remark 1.11It is argued in [4] that if α is a Markov partition of the standard probability metric space (X,B,m, T ) withdistance d, then Tα ⊂ σ(α), where σ(α) denotes the sigma-algebra generated by the partition α, and therefore itexists a (possibly countable) partition β coarser than α such that σ(Tα) = σ(β). Moreover if the system is Gibbs-Markov, then the space Lip∞,β of functions f : X → R, f ∈ L∞

m and which are Lipschitz continuous on each
Z ∈ β is a Banach space with the norm: ||f ||Lip∞,β

= ||f ||L∞

m
+Dβf , where Dβf = supZ∈β supx,y∈Z

|f(x)−f(y)|
d(x,y) .The space Lip∞,β is compactly injected into L1

m, which gives the desired conclusions on the smoothness of thedensity as soon as the Doëblin-Fortet (or Lasota-Yorke) inequality is proved.21



intersection with B before they return to I0: we use that to estimate the µ-measure of thecylinder (an−1, an) (for big n) near the point 1. We get that S−1(an−1, an)∩Zn+1 = Zn+1is the only possible non-empty intersection of the preimage S−j(an−1, an) with Zp, forevery p and for 0 ≤ j ≤ p− 1. Therefore we have:
µ((an−1, an)) ≈ Crν(Zn+1) ≈ n

− 1−κ+κγ
κ(γ−1)The density on (an−1, an) will satisfy

1

ν((an−1, an))

∫

(an−1,an)
ρdν =

µ((an−1, an))

ν((an−1, an))
≈ n

− 1−κ
κ(γ−1)We now study the density in the neighborhood of−1, by considering the cylinder (a−n, a−n+1),for large n > 0. The cylinders Zp of I0 whose iterates will have non-empty intersectionwith (a−n, a−n+1) before they return to I0, have p ≥ n+ 2. Therefore we get in the usualway:

µ((a−n, a−n+1)) ≈ Cr

∞∑

p=n+2

ν(Zp) ≈ n
− 1

κ(γ−1)The density on (a−n, a−n+1) will satisfy
1

ν((a−n, a−n+1))

∫

(a−n,a−n+1)
ρdν =

µ((a−n, a−n+1))

ν((a−n, a−n+1))
≈ n

− 1−κγ
κ(γ−1)Now, suppose that in the last estimate the exponent of n is strictly negative, namelythat κ < 1/γ. We want to prove that limx→−1+ ρ(x) = 0 (rember the limit exists sincethe density is continuous). Suppose it is not zero, say v > 0; �x 0 < ε < v, then thereexists δ > 0 such that for all −1 < x < −1 + δ, we have v − ε < ρ(x). Take n largeenough such that (a−n, a−n+1) ⊂ (−1,−1 + δ). Then on such a rectangle we have that

1
ν((a−n,a−n+1))

∫
(a−n,a−n+1) ρdν > v − ε, which is false. This argument could be applied tothe various cases above to get the following result:Proposition 13. Let us consider the map S with γ > 1 and 0 < κ < min( 1

γ−1 , 1).The density ρ of the invariant measure µ is Lipschitz continuous and bounded on (−1, 1);moreover we have
• limx→1− ρ(x) = 0

• When x→ −1+ the density veri�es:(i) if κ = 1
γ then limx→−1+ ρ(x) =O(1)(ii) if 1

γ < κ, then limx→−1+ ρ(x) = ∞(iii) if 1
γ > κ, then limx→−1+ ρ(x) = 0Note that our Proposition �ts with the density found by Hemmer for the map (2); forthis map and its circle companion (1) the correlations decay as n−1.Optimal bounds.As we did in the previous section, the result on the decay of correlations could be strength-ened to produce a lower bound for the decay of correlations using the renewal techniqueintroduced in [31] and [15]. The only di�erence from the previous section is that now22



Lebesgue measure is not any more invariant and thus we additionally need to show thatthe invariant density ρ is Lipschitz in the region of inducing. We established above the Lips-chitz continuity of the density on the rectangles (a−p, a−(p−1)), (ap, ap+1), (a0−, 0), (0, a0+),
p ≥ 1. We now keep, for instance, I0− = (a0−, 0); the space of locally Hölder continu-ous functions with exponent θ and Hölder constant D0− (on I0−), will produce the space
Lθ,0−,µ by adding to the Hölder constant on I0− the L∞

µ norm of the function analogouslyto what we did before proposition 6. We thus get in the same manner:Proposition 14. There exists a constant C such that for all f ∈ Lθ,0−,µ and g ∈ L∞
µ withnorm || · ||∞, and both supported in I0− we have (remember that γ > 1):

∣∣∣∣∣Corr( f, g ◦ S
n) − (

∞∑

k=n+1

µ(x ∈ I0−|τ(x) > n))

∫
gdµ

∫
f dµ

∣∣∣∣∣ ≤ CFγ,κ(n)||g||∞||f ||L
θ,0−,µwhere

Fγ,κ(n) =






n
− 1

κ(γ−1) if 0 < κ < min(
1

2(γ − 1)
, 1)

(log n)/n2 if κ =
1

2(γ − 1)

n
− 2

κ(γ−1)
+2 if 1

2(γ − 1)
< κ < min(

1

γ − 1
, 1)Moreover, if ∫

fdµ = 0, then ∫
(g◦Tn)f dµ = O( 1

n
1

κ(γ−1)

). Finally the central limit theoremholds for the observable f .Remark 3. The last sentence about the existence of the central limit theorem will be alsoobtained in Proposition 15, part 2, (a).Limit theoremsTo get the limit theorems we could induce again over I0 since we only need that theinduced map is Gibbs-Markov with a density which is eventually piecewise Lipschitz. Aswe stressed above the advantage to induce over I0 is that we easily control the Lebesguemeasure of the points in I0 with �rst return bigger than n, see formula (19). Passing fromLebesgue to the invariant measure µ we have to take care of the fact that the density couldbe discontinuous at 0. Following the corresponding arguments in section 3 we thus have:Proposition 15. Let us denote Snϕ =
∑n−1

k=0 ϕ ◦ Sk, where ϕ is an υ-Hölder observable,with ∫
ϕ(x) dx = 0.1. If 0 < κ < min( 1

2(γ−1) , 1), then the Central Limit Theorem holds for any υ > 0,namely there exists a positive constant σ2 such that Snϕ√
n

tends in distribution to
N (0, σ2). Moreover σ2 = 0 i� there exists a measurable function ψ such that ϕ =
ψ ◦ S − ψ.2. If 1

2(γ−1) < κ < min( 1
γ−1 , 1), then:(a) If ϕ(−1) = 0 and |ϕ(x)| ≤ Ĉ|x + 1|υ′′, where Ĉ is a positive constant and

υ′′ > 1
2κ(γ−1) then the Central Limit Theorem still holds with positive variance

σ2. Moreover σ2 = 0 i� there exists a measurable function ψ such that ϕ =
ψ ◦ S − ψ. 23



(b) If ϕ(−1) 6= 0 then Snϕ

n
1
p

converges in distribution to the stable law X
(
p, c, ϑ

)with:
p =

1

κ(γ − 1)

c = (ρ+ + ρ−)

( |ϕ(−1)|
ab(γ−1)(γ − 1)

) 1
κ(γ−1) 1

κ(γ − 1)
Γ(1 − p) cos(

πp

2
)

ϑ = sgnϕ(−1)3. If κ = 1
2(γ−1) then:(a) If ϕ(−1) = 0 then the Central Limit Theorem holds.(b) If ϕ(−1) 6= 0 then there exist a constant b such that Snϕ√

n log n
tends in distributionto N (0, b).Large deviations. Large deviations results can be derived following the corresponding ar-guments in previous sections. In particular, and by using the recent result by Melbourne[25], we can state that for Hölder observables, the large deviation property holds withpolynomial decay at a rate which is given by that of the decay of correlations; for ourLorenz maps it is of order n− 1−κ(γ−1)

κ(γ−1) , provided that 0 < κ < min( 1
γ−1 , 1).7 AppendixWe prove here Lemma (8).Let us call

β+
i = (bi, bi−1); β−i = (b−(i−1), b−i);these sets are such that T i(β±i ) = I∓0 .Put H(x) the �rst-hitting map from I+

0 in I−0 : H(x) = T i(x) if x ∈ β+
i , and de�ne

Ap,q :=
(
T−1

+ T
−(p−1)
− (β−q )

)
∩β+

p , that is the subset of β+
p that will go exactly in β−q underthe action of H and will return in I+ in p+ q iterations. Note that ∪∞

q=1Ap,q = β+
p .The set that will return after n is Cn =

∑n−1
p=1 Ap,n−p and

Rn =
∞∑

m=n+1

Cm =
∞∑

m=n+1

m−1∑

p=1

Ap,m−pLet us decompose the set Rn in :
Rn =

∞∑

p=n

∞∑

q=1

Ap,q +
n∑

p=1

∞∑

q=n

Ap,q +
∑

p+q>n;p,q<n

Ap,q =

=
∞∑

p=n

∞∑

q=1

Ap,q +
∞∑

p=1

∞∑

q=n

Ap,q −
∞∑

p=n+1

∞∑

q=n

Ap,q +
∑

p+q>n;p,q<n

Ap,q (21)Note that the measure of the sets of the �rst two sums in (21) are:
∞∑

p=n

∞∑

q=1

ν(Ap,q) =
∞∑

p=n

ν(β+
p ) = ν(0, bn) (22)24



and
ν(b−n, 0) =

∞∑

q=n

ν(β−q ) =

∞∑

q=n

ν(T−1
+ β−q ) + ν(T−1

− β−q ) =

=
∞∑

q=n

ν(A1,q) + ν(T−1
− β−q ) =

=
∞∑

q=n

ν(A1,q) + ν(T−1
+ T−1

− β−q ) + ν(T−2
L β−q ) =

=
∞∑

q=n

ν(A1,q) + ν(A2,q) + ν(T−2
− β−q ) =

· · ·

=
∞∑

q=n

∞∑

p=1

ν(Ap,q) (23)We already showed in the proof of proposition (5) than the measure of each Ap,q scalesas :
ν(Ap,q) . (pq)−ξ with ξ = γ/(γ − 1) + 1and thus the remaining two terms in (21) scale faster than n−2(ξ−1), that is faster than

bn ∼ n−(ξ−1) and therefore they can be neglected.Using (22) and (23) we have �nally:
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