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Abstract. In this note we give simple examples of one-dimensional mixing
subshift with positive topological entropy which have two distinct measures of

maximal entropy. We also give examples of subshifts which have two mutually

singular equilibrium states for Hölder continuous functions. We also indicate
how the construction can be extended to yield examples with any number of

equilibrium states.

1. Introduction. It is a well known fact that a wide class of uniformly hyperbolic
transformations that satisfy some irreducibility condition have unique measures of
maximal entropy. Irreducible subshifts have unique measures of maximal entropy if
they are for instance of finite type or sofic (factors of shifts of finite type). More gen-
eral hyperbolic systems which satisfy specification have unique measures of maximal
entropy [1]. In either case the systems have a ‘uniform’ mixing property. Hofbauer
had shown in [6] that even subshifts of finite type don’t necessarily have unique
equilibrium states. However the potentials in the provided examples lack of course
regularity and one of the equilibrium states is supported on a single fixed point.
On infinite alphabets there are examples of Markov shifts that have many Gibbs
states although all are non-invariant [4] with only one exception. For a large class
of Hölder continuous functions we get here multiple equilibrium states which are
supported on embedded subshifts.

Here we produce a simple example which shows that even in the case of an
irreducible subshift with positive entropy one cannot generally expect to have a
unique measure of maximal entropy. Also Krieger [7] gave an example with a non-
unique measure of maximal entropy—although not as simple and straightforward as
this one. For two-dimensional subshifts of finite type, Burton and Steiff [2, 3] have
given examples whose measures of maximal entropy form simplices that consist of
more than single points.

In section 2 we give an example of a subshift which has two measures of maximal
entropy. We then extend it to examples which can have any number of measures of
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maximal entropy including one with infinitely many. In the third section we con-
struct an example that has two equilibrium states for Hölder continuous potentials
which we then extend to examples with any number of equilibrium states and also
one with infinitely many.

2. Measures of maximal entropy. We will first describe an example with two
distinct ergodic measures of maximal entropy and then show how to construct an
example with any number of distinct ergodic measures including one with infinitely
many.

Let ν ≥ 2 be some positive integer and let us construct a subshift over the symbol
set A = {0, 1, 2, . . . , 2ν}. We shall refer to the symbols {1, 2, . . . , ν} as the green
symbols and denote them by G. Similarly we call {ν+1, . . . , 2ν} the yellow symbols
and write Y for them. Hence A = {0} ∪ G ∪ Y. Let us denote by ΣG = GZ the
(green) full ν-shift over the alphabet G. Similarly we write ΣY for the (yellow) full
ν-shift YZ.

Let τ > 0. The subshift Σ ⊂ AZ will consist of the union of the two monochro-
matic shift spaces ΣG and ΣY , to which we add bicoloured sequences in the following
way: A sequence in Σ in which a word α of one colour (green or yellow) is followed
by a word β of the other colour (yellow or green) will have a string of zeroes γ
separating the two words α and β. The length |γ| of that string of zeros is then at
least, τ(a + b), where a = |α|, b = |β| are the lengths of the coloured words to the
‘left’ and ‘right’ of γ. If in particular the word α or β is infinitely long then it can
only be followed by an infinite string of zeros and cannot ‘transition’ to a string of
another colour.

More precisely:

Definition 2.1. The shift space Σ ⊂ AZ is defined as follows: We have x ∈ Σ if
(i) either x ∈ ΣG ∪ ΣY , in which case we call x a monochromatic point.
(ii) or if bi-coloured blocks are of the form:

. . . 0g1g2 . . . ga−1ga0λy1y2 . . . yb−syb0 . . .

or
. . . 0y1y2 . . . ya−1ya0λg1g2 . . . gb−sgb0 . . .

where λ ≥ τ(a+ b) and gi ∈ G, yi ∈ A (0λ is a string of zeros of length λ), τ > 0.

If ω = ωmωm+1 . . . ωm+n−1 is an allowed word of some length n in Σ, then we denote
by U(ω) the cylinder set {x ∈ Σ : xi = ωi,m ≤ i < m+n}. The shift transformation
σ on Σ is defined in the usual way by σ(x)i = si+1, i ∈ Z, for x ∈ Σ. Notice that
the transition rules are shift invariant. Thus Σ is indeed a subshift which we endow
with the usual topology generated by the cylinder sets U(ω), where ω runs over all
finite words in Σ.

If τ = 0 then Σ is a sofic system in which every string of zeroes connects to
coloured symbols of different colours, and whose topological entropy is 2 log ν (see
Lemma 2.3).

Lemma 2.2. The shift transformation σ on Σ is topologically mixing for every
τ > 0.

Proof. We have to show that for any two finite words ω and η there exists a number
N so that U(ω) ∩ σn(U(η)) is non-empty for all n ≥ N . This is evidently true
if ω and η are both monochromatic of the same colour. If the last symbol of η
and the first symbol of ω are of different colour then consider the word π = η0λω.
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Clearly, π is an admissable word for every λ > τ(|η| + |ω|), and the cylinder set
U(π) ⊂ U(ω) ∩ σn(U(η)) is non-empty for all n ≥ N , where N can then be chosen
to be equal to (1 + τ)(|η|+ |ω|).

If the last symbol of η and the first symbol of ω are of the same colour, then let
us consider the word π = η0κε0λω, where ε is a symbol (or some other short word)
of the other colour. Here we have κ ≥ τ(|η| + |ε|) and λ ≥ τ(|ω| + |ε|). Clearly
U(π) is non-empty for those choices of λ and κ. Thus U(ω) ∩ σn(U(η)) 6= ∅ if
n ≥ N = (τ + 1)(|η|+ 2|ε|+ |ω|).

Lemma 2.3. If τ ≥ log 3
log ν then the topological entropy h of the shift σ : Σ → Σ is

equal to log ν.

Proof. Let us first get a lower bound on the topological entropy h of Σ. For that
purpose let us observe that since Σ contains two full ν-shifts, ΣY and ΣG , the
topological entropy of Σ must be at least log ν. Let us now estimate the number of
the remaining words of length n from above. We have two cases to consider:
(i) Monochromatic words that might also contain zeroes. According to our rules
such words begin or end with strings of zeroes. Thus we obtain purely yellow and
green words of lengths k = 0, . . . , n which on at least one side are framed by strings
of zeroes. Their number turns out to be 2

∑n
k=0(n− k)νk ≤ 2nνn

∑n
k=0 ν

−k which
has exponential growth rate log ν.
(ii) To estimate the number of words of length n that genuinely contain symbols
of both colours, let us observe that since any such word has at least one transition
from yellow to green or vice versa, it therefore must also contain at least n τ

τ+1

zeroes, that is at most n′ = [ n
τ+1 ] ([ ] denotes integer part) coloured symbols (i.e.

symbols in A\{0} = {1, 2, . . . , 2ν}). The coloured symbols come in monochromatic
blocks of alternating colour. Denote by Pk,` the number of possibilities in which one
can arrange ` symbols in k blocks (separated by the appropriate number of zeroes),
where k = 1, 2, . . . , `. One finds that

Pk,` =

(
`− 1
k − 1

)
,

which is the number of possibilities of picking the first element of every block but
the very first one. The number of n-words in Σ which contain ` coloured symbols
arranged in k ≤ ` monochromatic blocks of alternating colour is 2Pk,`ν

`.
Distributing ` coloured symbols out of n′ in k blocks can be done in Pk,` many

ways, where 1 ≤ k ≤ ` ≤ n′. This leaves m = n− (τ + 1)` zeroes to be distributed
on k + 1 intervals, namely the k − 1 gaps between the blocks of coloured symbols
plus the two ends of the entire word. There are

Qk,m =

(
m+ k
k

)
many possibilities. By Stirling’s formula we have

Qk,m =

(
n− (τ + 1)`+ k

k

)
≤

(
n− (τ + 1)`+ k

1
2 (n− (τ + 1)`+ k)

)
≤ c12n−(τ+1)`+k

√
n− (τ + 1)`+ k

≤ c12n−(τ+1)`+k
√
n.
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We can thus estimate the total number of bi-coloured strings of length n by

Q(n) ≤ 2

n′∑
`=2

ν`
∑̀
k=2

(
`− 1
k − 1

)(
n− (τ + 1)`+ k

k

)

≤ 2c1
√
n

n′∑
`=2

ν`2n−(τ+1)`
∑̀
k=2

(
`− 1
k − 1

)
2k

≤ 2c1
√
n

n′∑
`=2

ν`2n−(τ+1)`3`

≤ c2
√
n

{
2n if 3ν2−1−τ < 1

2n(3ν2−1−τ )
n
τ+1 if 3ν2−1−τ ≥ 1

Thus

lim
n→∞

1

n
logQ(n) ≤ max

(
log 2,

log 3ν

τ + 1

)
which is ≤ log ν if τ ≥ log 3

log ν .

Example 1. If τ ≥ log 3
log ν , then there are two mutually singular measures of maximal

entropy on Σ.

Proof. It is well known [8] that the measure of maximal entropy on the full ν-
shift {1, . . . , ν}Z is the Bernoulli measure with the probability vector ( 1

ν , . . . ,
1
ν ).

It’s metric entropy is log ν. Let us define on Σ a Bernoulli measure µY which is
given by the probability vector (0, 1

ν , . . . ,
1
ν , 0, . . . , 0) and the measure µG with the

probabilities (0, 0, . . . , 0, 1
ν , . . . ,

1
ν ). Evidently both measures are shift invariant and

have metric entropies log ν which by Lemma 2.3 is the topological entropy of Σ.
Hence µY and µG (as well as all their linear combinations) are distinct ergodic
measures of maximal entropy for the subshift Σ.

2.1. Example with L ≥ 2 distinct ergodic measures of maximal entropy.
Let ν ≥ 2 be an integer and consider the alphabet A = {0, 1, 2, . . . , Lν}. We label
the embedded full ν-shift spaces by Σj = {(j − 1)ν + 1, (j − 1)ν + 2, . . . , jν}Z,
j = 1, 2, . . . , L. A transition from a word α in Σj happens only to a word β of a
‘different colour’ if it is separated by a string of zeros of length ≥ τ(|α|+ |β|) and β
lies either in Σj−1 or Σj+1. One sees, as was proven in Lemma 2.2 for L = 2, that
the resulting shift space Σ ⊂ {0, 1, 2, . . . , Lν}Z is topologically mixing.

Example 2. If ν ≥ 2 and τ ≥ log 5
log ν then there are L ≥ 2 distinct ergodic measures

of maximal entropy on Σ.

Proof. The topological entropy of Σ is at least log ν as this is the topological entropy
of the embedded subshifts Σj . To get an upper bound on the topological entropy of
Σ we estimate the number Q(n) of words of length n that are not ‘monochromatic’,
i.e. don’t belong to a single Σj . We proceed as before and obtain:

Q(n) ≤ L
n′∑
`=2

ν`
∑̀
k=2

(
`− 1
k − 1

)
2k−1

(
m+ k
k

)
,

where m = n− [(τ +1)`], ` counts the number of ‘coloured’ symbols (i.e. symbols in
A\{0}), k− 1 is the number of changes of colour that is where there is a transition
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from a word in some Σj to Σj±1 (the factor 2k−1 accounts for number of possible
switches in colour). As before we thus get (with n′ = [n/(τ + 1)])

Q(n) ≤ L
√
nc1

n′∑
`=2

ν`2n−(τ+1)`
∑̀
k=2

(
`− 1
k − 1

)
2k2k−1

≤ 2L
√
nc1

n′∑
`=2

2n(5ν2−τ−1)`

≤ c2
√
n

{
2n if 5ν2−τ−1 < 1

2n(5ν2−τ−1)
n
τ+1 if 5ν2−τ−1 ≥ 1

.

Consequently we get that

Q(n) ≤ c2
√
n 2n

(
1 + (5ν2−τ−1)

n
τ+1
)

and thus

lim
n→∞

1

n
logQ(n) ≤ max

(
log 2,

log 5ν

1 + τ

)
.

Hence, if τ ≥ log 5
log ν then htop(Σ) = log ν. It is now clear how we get the L distinct

ergodic measures of maximal entropy: they are the L Bernoulli measures µj with

weights pjk = 1
ν for k = (j − 1)ν + 1, (j − 1)ν + 2, . . . , jν and pjk = 0 for all other

k (j = 1, 2, . . . , L). These measures all mutually singular and have metric entropy
log ν i.e. they are measures of maximal entropy.

2.2. Example with infinitely many distinct ergodic measures of maximal
entropy. Let ν ≥ 2. We now let L go to infinity and obtain a subshift Σ over the
alphabet A = N0 = {0, 1, 2, . . . }. There are infinitly many embedded full ν-shift

Σj = {(j − 1)ν + 1, (j − 1)ν + 2, . . . , jν}Z,
for j = 1, 2, . . . . As before we only transition from a word α in Σj a word β in Σj±1

by keeping them separted by a string of zeros of length ≥ τ(|α| + |β|). Again the
resulting shift space Σ is topologically mixing but it is not a compact space. Here
we use the Gurevich entropy [5] which is defined by htop = limn→∞

1
n logN(n),

where N(n) is the number of n-words α1α2 · · ·αn which begin with a fixed symbol,
that is α1 = a for a fixed a ∈ A. The entropy htop is independent of the choice
of a. One can also consider the one-point-compactification Σ̄ = Σ ∪ {∞} and
a suitable metric which in particular implies that neighbourhoods of ∞ contain
the embedded subshifts Σj for large enough j. The topological entropy can then
be defined by (ε, n)-separated sets1 Eε,n (see e.g. [8]) and is given by htop(Σ) =

limε→0+ limn→∞
log |Eε,n|

n .

Example 3. If ν ≥ 2 and τ ≥ log 5
log ν then there are infinitely many distinct ergodic

measures of maximal entropy on Σ.

Proof. Evidently htop(Σ) ≥ log ν. Moreover if we denote by RL(n) the number of
words of length n in Σ whose first coordinate lie in AL = {0, 1, . . . , Lν} then we get

that htop(Σ) = limL→∞ limn→∞
logRL(n)

n . We have that

RL(n) ≤ Lνn + Lc3
√
n

{
2n if 5ν2−τ−1 < 1

2n(5ν2−τ−1)
n
τ+1 if 5ν2−τ−1 ≥ 1

.

1The metric on a shift space with infinite alphabet uses the distance between symbols ds(a, b) =∣∣∣ 1
a+1
− 1

b+1

∣∣∣ for a, b ∈ A = N0. Then d(~x, ~y) =
∑

j ϑ
|j|ds(xj , yj) for some ϑ ∈ (0, 1).
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and consequently

lim
n→∞

1

n
logRL(n) ≤ max

(
log ν,

log 5ν

1 + τ

)
.

Now, letting L go to infinity we obtain htop(Σ) ≤ max
(

log ν, log 5ν
1+τ

)
which is equal

to log ν if τ ≥ log 5
log ν then htop(Σ) = log ν. The equal weight Bernoulli measures on

the spaces Σj are all measures of maximal entropy and are mutually singular.

3. Equilibrium states. Let us construct now subshifts with non unique equilib-
rium states for Hölder continuous potentials. We say a function f : Σ→ R is Hölder
continuous on the shift space Σ if there exists a ϑ ∈ (0, 1) and a constant C so that
for every n > 0 one has

sup |f(~x)− f(~y)| ≤ Cϑn

where the supremum is over all pairs of sequences ~x = · · ·x−1x0x1x2 . . . , ~y =
· · · y−1y0x1y2 · · · ∈ Σ for which xi = yi∀|i| < n and either x−n 6= y−n or xn 6= yn.

3.1. Example with two distinct equilibrium states. Let τ > 0 and ν ≥ 3 and
integer. Then we put as above A = {0}∪G ∪Y = {0, 1, . . . , 2ν} and define as above
the subshift Σ ⊂ AZ which has the two embedded full ν-shifts Σ∗, ∗ = G,Y and
where the transitions are strings of zeros of lengths ≥ τ(|α| + |β|) with α, β being
the adjacent monochromatic words of different colours.

Let f be a real valued Hölder continuous function on the full shift ΣG so that
PG(f) > sup f + log 2, where PG(f) is the pressure of f on the full shift ΣG (see
[8]). For ν ≥ 3 this is possible since PG(f)− sup f is bounded above by log ν (and
equal to log ν if f is cohomologous to a constant, i.e. f = u ◦ σ− u+ c for a Hölder
continuous u) and the pressure function is continuous.

Let us define a Hölder continuous function g on Σ in two steps. We first extend
the function to ΣY by identification: that is g(~y) = f(~x) for ~x ∈ ΣG , ~y ∈ ΣY for
which yi = xi + ν∀i. Now we extend g to bi-coloured words in the following way:
If x0 = 0 then we put g(~x) = sup f . If x0 6= 0 and ~x ∈ Σ is a sequence which
contains symbols of both colours then let x−n · · ·xn be the longest monochromatic
string of either green or yellow symbols (that is x−n · · ·xn is a word in either ΣG
or ΣY and either x−n−1 = 0 or xn+1 = 0). We then pick a monochromatic point
~y ∈ U(x−n · · ·xn) ⊂ Σ∗ (∗ = G,Y) and define g(~x) = f(~y). In this way g is a Hölder
continuous function on Σ. Let us now prove that the pressure of g (on Σ) is in fact
equal to PG(f) (which equals PY(g)) for a suitable choice of τ . Let us note that if
f is not cohomologous to a constant on ΣG then the extension g will also not be
cohomologous to a constant on Σ.

Lemma 3.1. If τ ≥ log 4ν
PG(f)−sup f − 1, then the pressure P (g) of g on Σ is equal to

PG(f).

Proof. Denote by Wn the collection of Σ-words α = α1 · · ·αn of lengths n. The
pressure of g is then given by the exponential growth rate of the partition function

Zn =
∑
α∈Wn

eg
n(x(α)).

The point x(α) ∈ Σ is an arbitrary point in the cylinder set U(α) ⊂ Σ, and gn =
g + gσ + gσ2 + · · · + gσn−1 is the n-th ergodic sum of g. If in the above sum we
restrict to monochromatic words α of either colour, then we obtain the green or
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yellow partition function Z∗n =
∑
α∈W∗n

eg
n(x(α)) (∗ = G,Y) whose growth rates are

exactly PG(f). We denoted by W ∗n the set of monochromatic words α = α1α2 · · ·αn
in Σ∗.

Let us note that the growth rate of
∑n
k=1 Z

∗
k is also PG(f). Hence, if we denote

by W ′n those words in Wn that contain symbols of exactly one colour and otherwise
at least one zero, then it follows that the growth rate of Zn =

∑
α∈W ′n

eg
n(x(α)) is

also given by PG(f).
It thus remains to show that the exponential growth rate of

∑
α∈W ′′n

eg
n(x(α))

is ≤ PG(f), where W ′′n denotes the genuinely bi-coloured words in Wn (i.e. those
words that contain green and yellow symbols). In Lemma 2.2 we estimated

|W ′′n | = Q(n) ≤ c2
√
n2n

(
1 + (3ν2−1−τ )n/(τ+1)

)
,

and since sup g = sup f , we obtain

Z ′′n =
∑
α∈W ′′n

eg
n(x(α)) ≤ |W ′′n |en sup g ≤ c2en sup f

√
n 2n

(
1 + (3ν2−1−τ )n/(τ+1)

)
.

Thus

lim
n→∞

logZ ′′n
n

≤ sup f + max

(
log 2,

log 3ν

τ + 1

)
which is ≤ PG(f) if τ + 1 ≥ log 3ν

PG(f)−sup f .

Example 4. Let ν ≥ 3 and τ ≥ log 3ν
PG(f)−sup f − 1. Then there are two mutually

singular equilibrium states for g on Σ.

Proof. For ν ≥ 3 there are many potentials f : ΣG → R for which PG(f) ≥ sup f +
log 2. Then for the extension g : Σ → R there is an equilibrium state on each of
the embedded full ν-shifts ΣG and ΣY both of which, by Lemma 3.1, assume the
pressure P (g) = PG(f) in the variational principle. These two measures are both
invariant and mutually singular.

3.2. Example with L ≥ 2 distinct equilibrium states. For ν ≥ 3, an integer,
and construct as above a subshift Σ over the alphabet A = {0, 1, 2, . . . , Lν} so
that it contains the embedded full ν-shift spaces Σj = {(j − 1)ν + 1, . . . , jν}Z,
j = 1, 2, . . . , L. Again we allows for transitions from words α in some Σj to a word
β in Σj±1 that have to separated by a string of zeros of length ≥ τ(|α|+ |β|).

Let f be a real valued Hölder continuous function on the full two-shift Σ1 so that
P1(f) > sup f + log 2, where P1(f) is the pressure of f on the full shift Σ1.

Let us define a Hölder continuous function g on Σ in two steps. We first extend
the function from Σ1 to Σj for j = 2, . . . , L by identification: If ~x ∈ Σ1, ~y ∈ Σj
so that yi = xi + (j − 1)ν∀i, then we put g(~y) = f(~x). Then one extends g to
bi-coloured words as before, namely we put g(~x) = sup f if x0 = 0 and if x0 6= 0 for
a non-monochromatic ~x ∈ Σ then we put g(~x) = f(~y) where ~y is a monochromatic
point that realises the longest symmetric monochromatic word of ~x.

Example 5. If τ ≥ log 4ν
PG(f)−sup f − 1, then the pressure P (g) of g on Σ is equal to

PG(f).

Proof. We have to find the exponential growth rate P (g) of the partition function
Zn =

∑
α∈Wn

eg
n(x(α)), where Wn are the Σ-words of lengths n. Clearly P (g) ≥

P1(f).
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In order to estimate the exponential growth rate of Z ′′n =
∑
α∈W ′′n

eg
n(x(α)) where

W ′′n are the genuinely multi-coloured words in Wn we get as above that

|W ′′n | = Q(n) ≤ c2
√
n2n

(
1 + (5ν2−1−τ )n/(τ+1)

)
,

and therefore

Z ′′n =
∑
α∈W ′′n

eg
n(x(α)) ≤ |W ′′n |en sup g ≤ c2en sup f

√
n2n

(
1 + (5ν2−1−τ ))n/(τ+1)

)
which yields

lim
n→∞

logZ ′′n
n

≤ sup f + max

(
log 2,

log 5ν

τ + 1

)
.

This is ≤ PG(f) if τ + 1 ≥ log 5ν
PG(f)−sup f .

Lemma 3.2. Let ν ≥ 3 and τ ≥ log 5ν
P1(f)−sup f − 1. Then there are L ≥ 2 mutually

singular equilibrium states for g on Σ.

Proof. For ν ≥ 3 there are many potentials f : ΣG → R for which PG(f) ≥ sup f +
log 2. Then for the extension g : Σ → R there is an equilibrium state on each of
the embedded full ν-shifts ΣG and ΣY both of which, by Lemma 3.1, assume the
pressure P (g) = PG(f) in the variational principle. These two measures are both
invariant and mutually singular.

3.3. Example with infinitely many distinct equilibrium states. Let ν ≥
3 and construct the subshift Σ ⊂ NZ

0 as was done above. A Hölder continuous
function f on Σ1 which satisfies P1(f) ≥ sup f + log 2 is then as above extended to
a Hölder function g on Σ so that it is a ‘copy’ on each of the embedded full shifts
Σj , j = 1, 2, . . . . Moreover we can extend g to the compact space Σ̄ by defining
g(∞) = sup f . If we denote by µj the equilibrium state on Σj for the potential g|Σj
then Pj(g|Σj ) = P1(f) = P (g) for all j. On the infinite symbol subshift Σ we use
the Gurevich pressure which is given by

P (g) = lim
n→∞

1

n
logZn(g),

where the sum in the partition function

Zn(g) =
∑
α

eg
n(x(α))

is over all n-words α = α1α2 · · ·αn so that α1 = a for a given a ∈ A. The pressure
does not depend the choice of a ∈ A. We thus obtain:

Example 6. If ν ≥ 3 and τ ≥ log 5
log ν and τ ≥ log 5ν

P1(f)−sup f −1 then there are infinitely

many distinct equilibrium states µj on Σ for g which are mutually singular.
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