
1 23

Journal of Statistical Physics
1
 
ISSN 0022-4715
 
J Stat Phys
DOI 10.1007/s10955-016-1487-y

Entry Times Distribution for Mixing
Systems

N. Haydn & F. Yang



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Stat Phys
DOI 10.1007/s10955-016-1487-y

Entry Times Distribution for Mixing Systems

N. Haydn1 · F. Yang1

Received: 24 October 2015 / Accepted: 18 February 2016
© Springer Science+Business Media New York 2016

Abstract We consider the return times dynamics to Bowen balls for continuous maps on
metric spaces which have invariant probability measures with certain mixing properties.
These mixing properties are satisfied for instance by systems that allow Young tower con-
structions. We show that the higher order return times to Bowen balls are in the limit Poisson
distributed. We also provide a general result for the asymptotic behavior of the recurrence
time for Bowen balls for ergodic systems and those with specification.

Keywords Return times distribution · Dynamic balls · Bowen balls · Recurrence times

1 Introduction

Recently there has been a great interest in the statistics of return times to small sets and
their limiting distributions as the target sets shrink to a point and the observation time is
scaled accordingly as suggested by Kac’s theorem. Lacroix and Kupsa [19,20] have shown
that the shrinking of the target sets has to be done in a dynamical or geometric regular way
as their examples show that otherwise any limiting distribution could be achieved. The first
dynamical result is due to Doeblin [11] who showed that for the Gauss map higher order
returns to cylinder-like neighbourhood of the origin are Poissonian distributed in the limit.
In main stream dynamics, Pitskel [22] was the first one to consider the limiting distribution
for Axiom A systems and showed in 1990 that for cylinders the return times are Poissonian
in the limit and, by an approximation argument, also for metric balls for hyperbolic maps
on two dimensional torii. In the successive years, a sequence of results then established that
returns to cylinder sets in the limit become Poissonian under increasingly general conditions
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(see e.g. [2,4,9,10,12–14,17,18,26]. Similar results have recently been proven for geometric
balls (see e.g. [8,15,21]). For dynamical balls, which are themetric equivalent of cylinder sets
and which are used in the construction of equlibrium states and the formulation of entropy for
continuousmaps onmetric spaces,much less is known.According to a result ofVarandas [24]
the exponential growth rate of the recurrence time equals the entropy. Previously, Brin and
Katok [7] have proven a Shannon-McMillan-Breiman type theorem for Bowen balls. This
paper builds on [16] where limiting distributions of entry and return times were determined
together and rates of convergence were given. The principal assumption is that the given
invariant probability measure is φ-mixing or α-mixing. Although this seems restrictive, all
systems that allow a Young tower construction [27,28] do satisfy the α-mixing property.

In the next section we give the main results. In Sect. 2.5 we prove Theorem 3 which
states that for ergodic, positive entropy systems the minimal recurrence time grows at least
linearly. In Sect. 4 we prove a general result on the higher order return distributions for
α-mixing systems, where the return sets can be unions of cylinders over a countably infinite
alphabet. For that purpose we use the Chen-Stein method of which we give a short sketch at
the beginning of the section. This result is then used in Sect. 5 to prove the first two main
theorems which in fact follow from the more general Theorem 5.

2 Main Results

Let X be a compact metric space and T : X → X a continuous mapping. We equip X with
the Borel sigma-algebra and assume that there is a T -invariant probability measure μ which
we assume to be ergodic. We denote by h = h(μ) its measure theoretic entropy which is
assumed to be positive.

For A ⊂ X we thendenote byWA,m(x) the number of visits of the orbit
{
T (x), T 2(x), . . . ,

Tm(x)} (for some m ∈ N) to the set A, i.e.

WA,m(x) =
m∑

j=1

χA(T j (x))

where χA is the characteristic function of the set A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0
otherwise. The purpose of this paper is to get results on the distributions ofWA,m in the case
when the return set A is a Bowen ball and the cutoff values m for the length of the orbits
are scaled by the measures of the return set, that is m = [t/μ(A)] for a positive parameter
t .

The function τA(x) = min{ j ≥ 1 : T j x ∈ A} is the entry time if x ∈ X and called the
return time if x ∈ A. Clearly WA,m(x) = 0 if the entry/return time τA(x) is larger than m.

2.1 Bowen Balls

Let X be a metric space and T ′ : X → X a continuous map. For ε > 0 and n ∈ N one
defines the (ε, n)-Bowen ball (or dynamical balls) by:

Bε,n(x) =
{

y : sup
0≤k<n

d(T kx, T k y) < ε

}

.

Bowen balls have the property that they capture the local dynamics in metric spaces and
are used to define entropy, pressure and prove the existence of equilibrium states for given
potential functions (see e.g. [25]). In many ways Bowen balls play on metric spaces the rôle
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that cylinder sets play in symbolic systems. For instance, according to Brin and Katok [7]
one has the metric analogue of the theorem of Shannon–McMillan–Breimann:

lim
ε→0

lim
n→∞

1

n
| logμ(Bε,n(x))| = h(μ)

for μ-almost every x provided μ is ergodic and the entropy h(μ) is positive. Similarly,
Varandas [24] provided us with the metric equivalent of Ornstein–Weiss’ formula for the
recurrence time Rε,n(x) = min{ j ≥ 1 : T j x ∈ Bε,n(x)}, according to which

lim
ε→0

lim
n→∞

1

n
log Rε,n(x) = h(μ)

μ almost everywhere for ergodic μ and h(μ) > 0. In a previous paper [16] we adressed the
distribution of the first entry and return times and showed that P(τBε,n(x) > t/μ(Bε,n(x))) →
e−t as n → ∞ and then ε → 0 for almost every x . We also provided rates of convergence.
Here we consider higher order returns, that is we are interested in the distribution of the
random variable WA,m for m = [t/μ(A)], t > 0 a parameter, and in particular if μ(A) → 0
along a sequence of suitable sets.

2.2 Mixing Properties

Let A be a finite measurable partition of X and denote by An = ∨n−1
j=0 T

− jA the nth
join. Its elements are referred to as n-cylinders. We assume that A is generating, i.e. that
A∞ = ∨∞

j=0 T
− jA consists of singletons. For a set Y ⊂ X we shall use the notation

An(Y ) = ⋃
A∈An , A∩Y 
=∅

A as the smallest union of n-cylinders that approximates Y from
the outside. In particular An(x) denotes the n-cylinder that contains x .

We shall require that the measure μ have some mixing property with respect to this
partition A. We consider two situations:

(i) We say that μ is φ-mixing if

|μ(A ∩ T−n−k B) − μ(A)μ(B)| ≤ φ(k)μ(B)

for all A ∈ σ(An), B ∈ σ(
⋃∞

j=1 A j ), whereφ(k) is a decreasing function that converges
to 0.

(ii) We say that μ is α-mixing if

|μ(A ∩ T−n−k B) − μ(A)μ(B)| ≤ α(k)

∀A ∈ σ(An), B ∈ σ(
⋃∞

j=1 A j ), for some decreasing function α(k) that converges to 0.

2.3 Regularity of the Measure

In order to carry through an approximation scheme that involves cylider sets, we have to
assume that the invariant measure has some regularity. Denote by B(x, ε) the metric ball in
X with centre x and radius ε. Then for x ∈ X, 0 < δ < ε define the function

ψ(ε, δ, x) = μ(B(x, ε + δ)) − μ(B(x, ε − δ))

μ(B(x, ε))

as in [16]. In other words, ψ measures the proportion of the measure of the annulus B(x, ε +
δ) \ B(x, ε − δ) to the ball B(x, ε).
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Example If X is the unit interval and T a map on X , then if μ is an absolutely continuous
measure, one has ψ(ε, δ, x) ≤ c1

δ
ε
for some constant c1 and all x ∈ X . More generally, let

X be a compact Riemann manifold and T an expanding map. Then if the invariant measure
μ is equivalent to the Riemann measure one again hasψ(ε, δ, x) = O( δ

ε
) for all x ∈ X . This

follows from the fact that μ(B(x, ε)) ∼ εd , where d is the dimension of the manifold.

Remark Also let us note that sometimes the following annulus condition is used (see
e.g. [21]):

μ(B(x, ε + δ) \ B(x, ε − δ))

μ(B(x, ε))
≤ c0

δg

εh

for some g, h and a constant c0. In this case ψ = c0δgε−h . In Theorem 1 the requirement
would be that h is positive and g can be arbitrary. In Theorem 2 h = ξ and again g can be
arbitrary.

2.4 Main Results on the Distribution

We can now formulate our main results on the limiting distribution of WA,m when A are
Bowen balls and m follows the traditional Kac scaling. For a partition A we denote by
diam(A) = supA∈A diam(A) the diameter of A, where diam(A) = supx,y∈A d(x, y).

Theorem 1 Assume that the invariant measure μ is φ-mixing where φ(n) = O( 1
n2+κ ) and

diam(An) = O(γ nξ
) for some γ < 1, ξ ≤ 1 and κ > 0. Moreover assume that μ satisfies

the following regularity condition

ψ(ε, δ, x) ≤ Cε

| log δ|ζ
for some ζ > 1/ξ , Cε > 0 independent of x. Let t > 0 and put m = t

μ(Bε,n(x))
.

Then there exists ε0 > 0 so that for every ε < ε0 we have

lim
n→∞ P

(
WBε,n(x),m = k

) = e−t t
k

k!
almost surely.

If the measure has better regularity then we can relax the condition on the diameter of
cylinders and obtain the following statement:

Theorem 2 Assume that there exist constants α, κ, ξ > 0 satisfying αξ > 1, such that
diam(An) = O(n−α), φ(n) = O(n−(2+κ)) and

ψ(ε, δ, x) ≤ Cεδ
ξ

for some constant Cε independent of δ and x.
Then there exists ε0 > 0 so that for every ε < ε0 and t > 0 we have

lim
n→∞ P

(
WBε,n(x),m = k

) = e−t t
k

k!
almost surely, where m = t

μ(Bε,n(x))
.

The proof of these two theorems is in Sect. 5. In the proof of these theorems we need
some estimate on the minimum return time of points in Bε,n(x), which is in the next section.
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2.5 Recurrence Time for Dynamical Balls

For a set A ⊂ X we have the first hitting time of a point x given by τA(x) = min{k > 0 :
T k(x) ∈ A}. The period of the set A is then given by

τ(A) = min{k > 0 : T−k(A) ∩ A 
= ∅}
which evidently equals τ(A) = minx∈A τA(x). We can now formulate our secondmain result
which is well known for cylinder sets [23].

Theorem 3 Assume that μ is ergodic with entropy h(μ) > 0.

(i) Then for almost every x ∈ X

lim
ε→0

lim inf
n→∞

τ(Bε,n(x))

n
≥ 1.

(ii) If, moroever, the map T has specification, then

lim sup
n→∞

τ(Bε,n(x))

n
≤ 1

for all ε small enough.

Let us recall that a map T : X → X has specification if for every ε > 0 there exists
a separation time K (ε) so that any two (in fact arbitrarily many) orbit segments T j x, j =
0, 1, . . . , nx and T j y, j = 0, 1, . . . , ny can be ε-shadowed by an actual orbit, that is there
exist a point z ∈ X and m ≤ K such that d(T j z, T j x) < ε for j = 0, 1, . . . , nx and
d(T nx+1+m+ j z, T j y) < ε for j = 0, 1, . . . , ny .

3 Proof of Theorem 3

In order to prove the lower bound (i) we need the following lemma.

Lemma 1 [7] Let A be a finite generating partition with μ(∂A) = 0. Then for all δ > 0
there exist N > 0 and a set DN with μ(DN ) > 1 − δ, such that

∣
∣{A ∈ An : A ∩ Bε,n(x) 
= ∅}∣∣ ≤ eδn ∀ x ∈ DN

for all ε small enough and n ≥ N.

Proof For all ε > 0, define Uε(A) = ⋃

A∈A
Uε(A) where

Uε(A) = A ∩ B(X \ A, ε)

(where we write B(Y, ε) = ⋃
x∈Y B(x, ε)). Since

⋂
ε>0Uε(A) = ∂A, we have

limε→0 μ(Uε(A)) = 0, and thus for every β > 0, there exists ε0 small enough so that

μ(Uε(A)) < β/2, for all ε < ε0.

By the Birkhoff ergodic theorem,

lim
n→∞

1

n

n−1∑

k=0

χUε (A)(T
k(x)) < β/2, for a.e x ∈ X.
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By Egorov’s theorem there exists N1 so that the set DN defined by

DN =
{

x ∈ X : 1
n

n−1∑

k=0

χUε (A)(T
k(x)) < β ∀n ≥ N

}

satisfies

μ(DN ) > 1 − δ, for all N > N1.

Every n-cylinder An(x) is identified by the n-word x0x1 · · · xn−1 where xk ∈ A. We
call this word the (A, n)-name of An(x). For all y ∈ Bε,n(x) and 0 ≤ k ≤ n − 1, either
T k(y) ∈ A1(T k(x)), or T k(x) ∈ Uε(A). Now let us note that for all x in DN , the frequency
of the latter possibility (i.e. T k(x) ∈ Uε(A)) is less than β. In other words, dH

n (x, y) < β

for all y ∈ Bε,n(x), x ∈ DN and n > N , where dH
n is the Hamming distance given by

dH
n (x, y) = 1

n

∑n−1
k=0(1 − δxk ,yk ) with δ denoting the Kronecker symbol.

If we denote Cβ,n(x) = {y ∈ X : dH
n (x, y) < β} the cluster of n-cylinders centred at x

then

Bε,n(x) ⊂ An(Bε,n(x)) ⊂ Cβ,n(x), ∀x ∈ DN , n > N .

Since dH
n (x, y) = 0 if the points x, y lie in the same element of An , Cβ,n(x) is a union of at

most λn elements in An , where λn can be estimated by

λn ≤
[nβ]∑

m=0

|A|m
(
n

m

)
. (1)

Using Stirling’s formula, it is easy to show that

lim sup
n→∞

log λn

n
≤ β log |A| − β logβ − (1 − β) log(1 − β).

The right-hand-side converges to 0 as β approaches 0. For any given δ > 0 we can take β

small enough such that λn ≤ eδn for all n ≥ N for some large enough N . In particular
∣
∣{A ∈ An, A ∩ Bε,n(x) 
= ∅}∣∣ ≤ eδn .

��
Proof of Theorem 3. Let δ > 0 and DN , N as in Lemma 1. Then for all x ∈ DN we have
Bε,n(x) ⊂ Cβ,n(x) = {y ∈ X : dH

n (x, y) < β} with β > 0 being chosen below. Hence

τ(Bε,n(x)) ≥ τ(Cβ,n(x)).

For arbitrary η < 1, fix ζ <
1−η
8 h (h = h(μ) the entropy of μ) small and let EN =

{x ∈ X : e−(h+ζ )n ≤ μ(An(x)) ≤ e−(h−ζ )n for all n ≥ N }. By the Theorem of Shannon-
McMillan-Breiman, we can take N large such that μ(EN ) ≥ 1 − δ. Set GN = DN ∩ EN ,
we have μ(GN ) ≥ 1− 2δ. For a large enough constant c1 (depending on N ) we achieve that
c−1
1 e−(h+ζ )n ≤ μ(An(x)) ≤ c1e−(h−ζ )n hold for all n > 0.
Define

Bn = {x ∈ GN : τ(Bε,n(x)) < ηn}
and

B̃n = {x ∈ GN : τ(Cβ,n(x)) < ηn}.
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Clearly Bn ⊂ B̃n for all n ≤ N .
If we put Rn(k) = {x ∈ GN : τ(Cβ,n(x)) = k} (k ≤ [ηn]) then B̃n = ⋃ηn

k=1 R
n(k)

(disjoint union). To be precise, if a point x lies in Rn(k) then T jCβ,n(x) ∩ Cβ,n(x) = ∅ for
j = 1, . . . , k − 1 and there exists some y ∈ Cβ,n(x) such that T k(y) ∈ Cβ,n(x). Hence we
have dH

n (y, T k y) ≤ dH
n (y, x) + dH

n (x, T k y) ≤ 2β. Set

R̃n(k) = {y ∈ GN : dH
n (y, T k y) ≤ 2β}

and we obtain

Rn(k) ⊂ {x ∈ X : there exist y ∈ R̃n(k) such that dH
n (x, y) ≤ β}. (2)

First we estimate μ(R̃n(k)). For every y ∈ R̃n(k), let

An(y) = (y1 . . . yk yk+1 . . . y2k . . . ymk+1 . . . yn)

with yi ∈ A, m = [ nk ], then
An(T

k y) = (yk+1 . . . y2k y2k+1 . . . y3k . . . y(m+1)k+1 . . . yn+k).

Let gi = ∑(i+1)k
j=ik+1(1 − δy j ,y j+k ) for i = 1, 2, . . . ,m, where δa,b is the standard Kro-

necker symbol. That is gi is the number of coordinates on which yik+1 . . . y(i+1)k and
y(i+1)k+1 . . . y(i+2)k differ. Obviously gi ≤ k and also

∑m
i=1 gi ≤ 2βn as y ∈ R̃n(k).

For given (g1, g2, . . . , gm) and given k-word y1y2 · · · yk , the total number of n-cylinders
An(y) that lie in the given Ak(y) = (y1y2 · · · yk) and for which y ∈ R̃n(k) is bounded from
above by

an,y1,...,yk ,g1,...,gm ≤
(
k

g1

)
|A|g1

(
k

g2

)
|A|g2 . . .

(
k

hm

)
|A|gm

≤
(

n

2βn

)
|A|2βn .

To simplify notation, we abbreviate the LHS to an . By Stirling’s formula

log an
n

≤ 2β log |A| − (1 − 2β) log(1 − 2β) − 2β log 2β → 0

as β → 0+. We can take β > 0 small such that an ≤ eδn where δ > 0 is as above.
Denote by bn,k the total number of such possible (g1, . . . , gm) ∈ {1, 2, . . . , k}m . Then

bn,k =
[2βn]∑

j=0

(
j + m − 1

m − 1

)
=
([2βn] + m

m

)
=
([2βn] + n

k
n
k

)

which, again by Stirling’s formula, can be bound as follows:

log bn,k

n
≤ f

(
2β + 1

k

)
− f

(1
k

)
− f

(
2β
)
,

where we put f (x) = x log x . Since f (x) → 0 as x → 0 and f (x) is uniformly continuous
on (0, 2], we have limβ→0

log bn,k
n = 0 and in particular

bn,k ≤ eδn

if we only take β > 0 small enough.
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We are now able to estimate the measure of the set R̃n(k) as follows, where the sum over
g1, . . . , gm is as above,

μ(R̃n(k)) ≤
∑

y∈R̃n(k)

μ(An(y))

≤
∑

Ak (y),y∈R̃n(k)

∑

g1,...,gm

anc1e
−(h−ζ )n

≤
∑

Ak (y),y∈R̃n(k)

bn,kc1e
−(h−ζ−δ)n

≤
∑

Ak (y),y∈R̃n(k)

c1e
−(h−ζ−2δ)n .

For y ∈ R̃n(k) ⊂ GN , we have c
−1
1 e−(h+ζ )k ≤ μ(Ak(y)), hence 1 ≤ c1e(h+ζ )kμ(Ak(y)).

Therefore

μ(R̃n(k)) ≤
∑

Ak (y),y∈R̃n(k)

c21e
−(h−ζ−2δ)ne(h+ζ )kμ(Ak(y))

≤c21e
−(h−ζ−2δ)n+(h+ζ )k .

Since c−1
1 e−(h+ζ )n ≤ μ(An(x)) ≤ c1e−(h−ζ )n for every n-cylinder inGN , R̃n(k) can be cov-

ered by atmost c31e
−(h−ζ−2δ)n+(h+ζ )k+(h+ζ )n many n-cylinders. Since according to (2) Rn(k)

is contained in the β-neighbourhood of R̃n(k) (under the Hamming metric dH
n ), and every

β-neighbourhood of an n-cylinder contains at most λn < eδn many n-cylinders according
to (1), the total number of n-cylinders that intersects Rn(k) is bounded from above by

λnc
3
1e

−(h−ζ−2δ)n+(h+ζ )k+(h+ζ )n ≤ c31e
(2ζ+3δ)n+(h+ζ )k .

Therefore,

μ(Rn(k)) ≤ c31e
(2ζ+3δ)n+(h+ζ )kc1e

−(h−ζ )n ≤ c41e
(−h+3ζ+3δ)n+(h+ζ )k .

Summing over k, we obtain with those estimates the following bound:

μ(B̃n) ≤
ηn∑

k=1

μ(Rn(k))

≤
ηn∑

k=1

c41e
(−h+3ζ+3δ)n+(h+ζ )k

≤c2e
(−h+3ζ+3δ)n+(h+ζ )ηn

≤c2e
(−(1−η)h+4ζ+3δ)n .

Since Bn ⊂ B̃n for all n ≥ N , we have
∑

n

μ(Bn) ≤ N +
∑

n>N

μ(B̃n) ≤ N +
∑

n>N

c2e
(−(1−η)h+4ζ+3δ)n .

We can choose δ <
1−η
8 and ζ <

1−η
8 h, hence

−(1 − η)h + 4ζ + 3δ ≤ −1 − η

8
h < 0.
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Therefore
∑∞

n=1 μ(Bn) < ∞. By the Borel–Contelli lemma, for almost every x ∈ GN we

have lim inf
n

τ(Bε,n(x))
n ≥ η. Since η < 1 is arbitrary, the lower bound (i) of the theorem

follows.
In order to get the upper bound (ii) for a map with specification let K (ε) be the separation

time. Then there exists a point z ∈ Bε,n(x) and an m ≤ K so that T n+m ∈ Bε,n(x). Hence
τ(Bε,n(x)) ≤ n + K and consequently limn→∞ 1

n τ(Bε,n(x)) ≤ 1. ��

4 α-Mixing Systems have Poisson Distributed Return Times for Unions of
Cylinders

This section is on the return times to sets that are unions of cylinders, where the underlying
partition A is allowed to be countably infinite. Recall that WA,m(x) is the number of visits
of the orbit

{
T (x), T 2(x), . . . , Tm(x)

}
to the set A, i.e.

WA,m(x) =
m∑

j=1

χA(T j (x)).

We then have the following result.

Theorem 4 Let μ be α-mixing w.r.t. a finite or countably infinite partition A and let A ∈
σ(An). As before, let τ(A) be the period of A. For any t > 0, let m = t

μ(A)
and denote by

νt the Poisson measure on N0 with parameter t . Then there exists a constant C1 so that for
every set E ⊂ N0

|P(WA,m ∈ E) − νt (E)|
≤ C1 min

τ(A)<�<m

(
α(�)

μ(A)
+ �μ(A) + PA(τA ≤ �)

)
(t + logm).

For similar result see [2,4,5] where the Poisson distribution for φ-mixing measures was
shown for single cylinders centred at a generic point. Let us note that for unions of cylinders
it was shown in [3] that the hitting and first return times are exponentially distributed for
α-mixing measures and in [14] that higher order returns are Poissonian in the limit for φ-
mixing systems. To prove this theorem we use the Chen-Stein method similar to [14] where
it was laid out in more detail than we do here although we shall proceed to give a summary
of the procedure.

Let ν be a probability measure on N0 (equipped with the power σ -algebra BN0 ). If we
denote by F the set of all real-valued functions on N0, then the Stein operator S : F → F
is defined by

S f (k) = t f (k + 1) − k f (k), ∀k ∈ N0. (3)

Denote by νt the Poisson-distribution measure with mean t , i.e. Pνt ({k}) = e−t tk
k! ∀k ∈ N0

then the Stein equation

S f = h −
∫

N0

h dνt (4)
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has a solution f for each νt -integrable h ∈ F (see [6]). The solution f is unique except
for f (0), which can be chosen arbitrarily.1 In particular, if h : N0 → R is bounded then so
is the associated Stein solution f . A probability measure ν on (N0,BN0) is Poisson (with
parameter t) if and only if [6]

∫
N0

S f dν = 0 for all bounded functions f : N0 → R. The
total variation distance of a probability measure ν from the Poisson distribution νt can then
be estimated as follows:

|ν(E) − νt (E)| =
∣
∣
∣
∣

∫

N0

S f dν

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

N0

(t f (k + 1) − k f (k)) dν

∣
∣
∣
∣ (5)

where E ⊂ N0 and f is the Stein solution that corresponds to the indicator function χE .
The following lemma on the function f associated to characteristic functions was proven
in [14].

Lemma 2 For the Poisson distribution νt with parameter t , the Stein solution of the Stein
equation (4) that corresponds to the indicator function h = χE , with E ⊂ N0, satisfies

∣
∣ fχE (k)

∣
∣ ≤

{
1 if k ≤ t
2+t
k if k > t .

(6)

In particular

m∑

k=1

∣
∣ fχE (k)

∣
∣ ≤

{
m if m ≤ t

t + (2 + t) log m
t if m > t .

(7)

4.1 Return Times Distribution

Proof of Theorem 4. The Poisson parameter t is the expected value of WA,m which implies
t = ∑m

i=1 μ
(
χAT i

) = mμ(A), where μ(T−i A) = μ(A) by invariance. If h = χE with
E ⊂ N0 an arbitrary subset of the positive integers, then we obtain from (5) and (3)

|ν(S f )| = |ν(h) − νt (h)| = ∣∣P(WA,m ∈ E) − νt (E)
∣
∣

= ∣∣E (t f (WA,m + 1) − WA,m f (WA,m)
)∣∣ .

Hence we can proceed as follows:

∣
∣P(WA,m ∈ E) − νt (E)

∣
∣ =

∣
∣
∣
∣
∣
tE f (WA,m + 1) − E

(
m∑

i=1

Ii f (WA,m)

)∣∣
∣
∣
∣

=
∣
∣
∣
∣
∣

m∑

i=1

piE f (WA,m + 1) −
m∑

i=1

piE( f (WA,m)|Ii = 1)

∣
∣
∣
∣
∣

≤
m∑

i=1

pi

∣
∣
∣
∣
∣

m∑

a=0

f (a + 1)P(WA,m = a) −
m∑

a=0

f (a)P(WA,m = a|Ii = 1)

∣
∣
∣
∣
∣

≤
m∑

i=1

pi

m∑

a=0

f (a + 1)εa,i , (8)

1 f can be computed recursively from the Stein equation:

f (k) = (k − 1)!
tk

k−1∑

i=0

(h(i) − μ0(h))
t i

i ! = − (k − 1)!
tk

∞∑

i=k

(h(i) − μ0(h))
t i

i ! , ∀k ∈ N.
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where we put Ii (x) = χAT i (x) for the characteristic function of the set T−i A and

εa,i = ∣∣P(WA,m = a) − P(WA,m = a + 1|Ii = 1)
∣
∣ . (9)

The function f above is the solution of the Stein equation (4) that corresponds to the indicator
function h = χE in the Stein method and has been bounded in Lemma 2.

In order to estimate the error term εa,i put

Wi
A,m = WA,m − χA ◦ T i =

∑

1≤ j≤m
j 
=i

χA ◦ T j

(punctured sum). Then

εa,i =
∣
∣
∣
∣
∣
∣
P(WA,m = a) −

P

({
Wi

A,m = a
} ∩ T−i A

)

μ(A)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣P(WA,m = a) − P(Wi

A,m = a)

∣
∣
∣+ ξa

μ(A)

where ξa = maxi
∣
∣
∣P({Wi

A,m = a} ∩ T−i A) − P(Wi
A,m = a)μ(A)

∣
∣
∣ is zero if all Ii are inde-

pendent of each other. The first term is estimated by
∣
∣
∣P(WA,m = a) − P(Wi

A,m = a)

∣
∣
∣ ≤ P(Ii = 1) = μ(A).

For the second term, which contains ξa , we proceed as follows.
Let � << m be a positive integer (the halfwidth of the gap) and put for every i ∈ (0,m]

Wi,−
A,m =

i−(�+1)∑

j=1

χA ◦ T j , Wi,+
A,m =

m∑

j=i+�+1

χA ◦ T j ,

Ui,−
m =

i−1∑

j=i−�

χA ◦ T j , Ui,+
m =

i+�∑

j=i+1

χA ◦ T j ,

with the obviousmodifications if i < � or i > m−�.With these partial sumswe distinguish
between the hits that occur near the i th iteration, namely Ui,−

m and Ui,+
m , and the hits that

occur away from the i th iteration, namelyWi,−
A,m andWi,+

A,m . Let us put W̃
i
A,m = Wi

A,m−Ui
m =

Wi,−
A,m+Wi,+

A,m for the total summinus the 2�+1 terms in the gap surrounding the coordinate i .

The gap allows us to use themixing property in the termsWi,±
A,m and its sizewill be determined

later when we optimise the error term.
Note that for a ∈ N0

P
({
WA,m = a + 1

} ∩ T−i A
) = P

({
Wi

A,m = a
} ∩ T−i A

)

=
∑

a=(a−,a0,−,a0,+,a+)
s.t |a|=a

P
({
Wi,±

A,m = a±}

∩{Ui,±
m = a0,±

} ∩ T−i A
)
.

We split the following sum into three terms

∑

a

| f (a + 1)| ·
∣
∣
∣
∣P
({

Wi
A,m = a

} ∩ T−i A
)

− P

(
Wi

A,m = a
)

μ(A)

∣
∣
∣
∣ ≤ R1 + R2 + R3
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and will estimate the three terms

R1 =
∑

a

| f (a + 1)| ·
∣
∣
∣P
({

Wi
A,m = a

} ∩ T−i A
)

− P

({
W̃ i

A,m = a
} ∩ T−i A

)∣∣
∣

R2 =
∑

a

| f (a + 1)| ·
∣
∣
∣P
({

W̃ i
A,m = a

} ∩ T−i A
)

− P

(
W̃ i

A,m = a
)

P (Ii = 1)
∣
∣
∣

R3 =
∑

a

| f (a + 1)| ·
∣
∣
∣P
(
W̃ i

A,m = a
)

− P

(
Wi

A,m = a
)∣∣
∣μ(A)

separately.
Estimate of R1: Observe that

{Wi
A,m = a} ∩ T−i A ⊂

({
W̃ i

A,m = a
} ∩ T−i A

)
∪
({

Ui
m > 0

} ∩ T−i A
)

{
W̃ i

A,m = a
} ∩ T−i A ⊂

({
Wi

A,m = a
} ∩ T−i A

)
∪
({

Ui
m > 0

} ∩ T−i A
)

.

Since Ui
m = Ui,+

m +Ui,−
m > 0 implies that either Ui,+

m > 0 or Ui,−
m > 0 we get

∣
∣P
({
Wi

A,m = a
} ∩ T−i A

)−P
({
W̃ i

A,m = a
} ∩ T−i A

)∣∣ ≤ P
({
Ui
m > 0

} ∩ T−i A
) ≤ b−

i +b+
i

where

b−
i = P

({
Ui,−
m > 0

} ∩ T−i A
)

and b+
i = P

({
Ui,+
m > 0

} ∩ T−i A
)
.

For b+
i we obtain the estimate

b+
i = P

({
Ui,+
m > 0

} ∩ T−i A
) = P(Ui,+

m > 0|Ii = 1)μ(A) = PA(τA ≤ �)μ(A)

and since in [14] it was shown that b−
i = b+

i we obtain

R1 ≤ c2PA(τA ≤ �)μ(A)
∑

a

| f (a + 1)| ≤ c3PA(τA ≤ �)μ(A)(t + logm)

for some c3 where we used Lemma 2 to estimate the sum over a.
Estimate of R3: In order to show that short returns are negligible note that

{Wi
A,m = a} ⊂ {

W̃ i
A,m = a

} ∪ {Ui
m > 0}

{W̃ i
A,m = a} ⊂ {

Wi
A,m = a

} ∪ {Ui
m > 0}

which yields
∣
∣
∣
∣P
(
W̃ i

A,m = a
)

− P

(
Wi

A,m = a
) ∣∣
∣
∣ ≤ P

(
Ui
m > 0

)
≤ 2P

(
�⋃

k=1

{Ii+k = 1}
)

≤ 2�μ(A),

and therefore

R3 ≤ 2�μ(A)2
∑

a

| f (a + 1)| ≤ c4�μ(A)2(t + logm).

Estimate of R2: This is the principal term and the speed of mixing now becomes relevant.
Recall that W̃ i

A,m(x) = Wi,−
A,m(x) + Wi,+

A,m(x) and we want to estimate

R2 ≤
∑

a

| f (a + 1)|
∣
∣
∣
∣P
({

W̃ i
A,m = a

} ∩ T−i A
)

− P

(
W̃ i

A,m = a
)

μ(A)

∣
∣
∣
∣

≤
∑

a−,a+
| f (a− + a+ + 1)|

(
P

({
W̃ i,±

m =a±} ∩ T−i A
)
−P

(
W̃ i,±

m =a±)μ(A)
)

εa−,a+ ,
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where εa−,a+ = sgn
(
P

(
{W̃ i

A,m = a} ∩ T−i A
)

− P

(
W̃ i

A,m = a
)

μ(A)
)
. If we put

W+(a−) =
⋃

a+: εa−,a+=+1

{
W̃ i,+

m = a+}, W−(a−) =
⋃

a+: εa−,a+=−1

{
W̃ i,+

m = a+},

both disjoint unions, then

R2 ≤
∑

a

|ϕ(a)|
∣
∣
∣
∣P
({

W̃ i,−
m = a−} ∩ W+(a−) ∩ T−i A

)

−P

(
W̃ i,−

m = a−)μ
(W+(a−)

)
μ(A)

∣
∣
∣
∣

+
∑

a

|ϕ(a)|
∣
∣
∣
∣P
({

W̃ i,+
m = a+} ∩ W−(a+) ∩ T−i A

)

−P

(
W̃ i,+

m = a+)μ
(W−(a+)

)
μ(A)

∣
∣
∣
∣

where ϕ(a) = supa′>a | f (a′)| satisfies by Lemma 2 ϕ(a) ≤ min(1, t
a ). We have to estimate

the two mixing terms, the first of which is for a− ≥ 0:
∣
∣
∣
∣P
({

W̃ i,−
m = a−} ∩ W+(a−) ∩ T−i A

)
− P

(
W̃ i,−

m = a−)μ
(W+(a−)

)
μ(A)

∣
∣
∣
∣

≤ R2,1 + R2,2 + R2,3

where

R2,1 =
∣
∣
∣
∣P
({

W̃ i,−
m =a−} ∩ W+(a−) ∩ T−i A

)
−P

({
W̃ i,−

m =a−} ∩ T−i A
)

μ
(W+(a−)

)
∣
∣
∣
∣

R2,2 =
∣
∣
∣
∣P
({

Wi,−
A,m = a−} ∩ T−i A

)
− P

(
Wi,−

A,m = a−)μ(A)

∣
∣
∣
∣μ
(W+(a−)

)

R2,3 =
∣
∣
∣
∣P
(
Wi,−

A,m = a−)μ
(W+(a−)

)− P

({
W̃ i,−

m = a−} ∩ W+(a−)
) ∣∣
∣
∣μ(A).

We now bound the three terms separately: Due to the mixing property we get for the first
term the estimate

R2,1 ≤ α(�).

Similarly for the second term

R2,2 ≤ α(�)μ
(W+(a−)

)
,

while the third term is estimated by

R2,3 ≤ α(2�)μ(A).

Combining these estimates and considering that the second term in the above estimate of R2

is estimated in the same manner we obtain

R2 ≤ c4α(�)
∑

a

ϕ(a) ≤ c6α(�)(t + logm)

for some constant c4.
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Finally, putting together the error terms R1, R2 and R3 yields
∣
∣P(WA,m ∈ E) − νt (E)

∣
∣

≤
m∑

i=1

pi

(
m∑

a=0

| f (a + 1)|μ(A) + c7

(
α(�)

μ(A)
+ 2�μ(A) + PA(τA ≤ �)

)
(t + logm)

)

≤ c8

(
μ(A) + α(�)

μ(A)
+ �μ(A) + PA(τA ≤ �)}

)
(t + logm)

for some c8 independent of A. ��

5 Poisson Distributed Return Times for Bowen Balls

In this section we will prove Theorem 1. Recall that

ψ(ε, δ, x) = μ(B(x, ε + δ) \ B(x, ε − δ))

μ(B(x, ε))

is the proportion of the measure of the annulus B(x, ε + δ) \ B(x, ε − δ) to the ball B(x, ε).

Put τ kA(x) = τA ◦ T τ k−1
A for the kth return of x to the set A:

τ kA(x) = min{k > τ k−1
A (x) : T k(x) ∈ A}

where τ 1A = τA.
We will prove the following more general theorem and then deduce Theorems 1 and 2.

Theorem 5 Let μ be a φ-mixing T -invariant ergodic measure with positive entropy. Let
γn = diam(An). Assume that there exist ε0 > 0 and an increasing sequence {N (n)}∞n=1
satisfying n < N (n) < 1

4μ(Bε,n(x))−1 and sequences ϑn(ε) → 0 as n → ∞ (∀ ε < ε0)
such that

ψ(ε, γN (n)−k, T
kx) ≤ ϑn(ε) · μ(Bε,n(x))

n
(10)

for all ε < ε0, x ∈ X, 0 ≤ k < n.
Then for all t > 0 one has

lim
n→∞ P

(
WBε,n(x),m = k

) = e−t t
k

k! ,
where m = t

μ(Bε,n(x))
.

The idea of the proof is to use cluster of cylinders sets to approximate Bowen balls. For
this purpose, for some integer N (n) � n, define

B̃ε,n(x) =
⋃

A∈AN (n),A⊂Bε,n(x)

A

the union of all N (n)-cylinders contained in Bε,n(x). If we put

∂̃Bε,n(x) =
⋃

A∈AN (n),A∩∂Bε,n(x)
=∅
A

as the union of all cylinders which intersect the boundary of Bε,n(x), then

Bε,n(x) \ B̃ε,n(x) ⊂ ∂̃Bε,n(x).
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The next lemma (c.f. [16]) allows us to estimate the difference between B̃ε,n(x) and
Bε,n(x).

Lemma 3 Under the hypothesis of Theorem 5 we have

μ(∂̃Bε,n(x)) ≤ ϑn(ε)μ(Bε,n(x))

and in particular, μ(Bε,n(x))/μ(B̃ε,n(x)) = O(1).

Proof Since T is continuous, ∂Bε,n(x) ⊂ ⋃n−1
k=0 T

−k∂B(T kx, ε). Hence if AN (n) ∩
∂Bε,n(x) 
= ∅ for some N (n)-cylinder AN (n), then AN (n)−k(T k y) ∩ ∂B(T kx, ε) 
= ∅ for
some 0 ≤ k ≤ n − 1 and y ∈ AN (n). Since diam(AN (n)−k(T k y)) ≤ γN (n)−k we obtain

∂̃Bε,n(x) ⊂
n−1⋃

k=0

T−k(B(∂B(T kx, ε), γN (n)−n))

⊂
⋃

k

T−k(B(T kx, ε + γN (n)−k) \ B(T kx, ε + γN (n)−k)),

and consequently we can bound the measure of this set as follows:

μ(∂̃Bε,n(x)) ≤ n · sup
0≤k≤n−1

μ(B(T kx, ε + γN (n)−k) \ B(T kx, ε + γN (n)−k))

= n · sup
0≤k≤n−1

{ψ(ε, γN (n)−k, T
kx) · μ(B(T kx, ε))}

≤ n · sup
0≤k≤n−1

{ψ(ε, γN (n)−k, T
kx)}

≤ ϑn(ε)μ(Bε,n(x))

where we used the assumption to bound the measure of the annuli. In particular
μ(∂̃Bε,n(x))/μ(B̃ε,n(x)) = ϑn → 0 and therefore μ(Bε,n(x))/μ(B̃ε,n(x)) = O(1). ��

Next we show that the limiting distribution for the hitting times of Bε,n(x) can be approx-
imated by the distribution of B̃ε,n(x). To simplify notation we write B = Bε,n(x) and
B̃ = B̃ε,n(x). For t > 0 we put m = t

μ(B)
and m̃ = t

μ(B̃)
and write for simplicity’s sake

�B,m(k) = P

(
WB,m = k

)
, �B̃,m̃(k) = P

(
WB̃,m̃ = k

)

and others similarly. The following approximation lemma does note depend on the mixing
property.

Lemma 4 For all t ≥ 0 we have
∣
∣�B,m(k) − �B̃,m̃(k)

∣
∣ ≤ 2t · ϑn(ε) → 0

as n → ∞.

Proof By the triangle inequality
∣
∣�B,m(k) − �B̃,m̃(k)

∣
∣ ≤ ∣

∣�B,m(k) − �B̃,m(k)
∣
∣+ ∣∣�B̃,m(k) − �B̃,m̃(k)

∣
∣

= I + I I.

In order to estimate the first term note that B̃ ⊂ B which implies WB,m ≥ WB̃,m . Conse-
quently

I ≤ P(WB\B̃,m > 0) ≤ P(τB\B̃ < m) ≤ mμ(B \ B̃).
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For the second term we proceed as follows:

I I = P(
{
WB̃,m = k

} ∩ {WB̃,m̃ > k
}
) ≤ μ(B̃)(m̃ − m) = mμ(B \ B̃).

Combining the estimates for I and I I yields by Lemma 3
∣
∣�B,m(k) − �B̃,m̃(k)

∣
∣ ≤ 2m · μ(B \ B̃)

≤ 2m · μ(∂̃Bε,n(x))

≤ 2m · ϑn(ε)μ(B)

= 2tϑn(ε) → 0.

��
Before we prove Theorem 5 let us consider the case of α-mixing measures. As noted

in [16] generalised SRB measures for systems that allow a Young tower construction as
in [27,28] are α-mixing and thus are prime examples to which the following proposition can
be applied. (Generalised Sinai–Ruelle–Bowenmeasures are on the unstable leaves absolutely
continuous with respect to a given reference measure which in the traditional setting is taken
to be the Lebesgue measure.) We though have to make an assumption on the short retun
times.

Proposition 1 Let μ be an α-mixing measure where α(k) decreases exponentially fast to
0. Let �n = a

∣
∣logμ(Bε,n(x))

∣
∣ where a > 0 is so that α(�n)

μ(Bε,n(x))
�n → 0 as n → ∞. If

PBε,n(x)(τBε,n(x) ≤ �n)�n → 0 then

lim
n→∞ P

(
WBε,n(x),m = k

) = e−t t
k

k! .

Proof By Lemma 4 it is sufficient to prove that

lim
n→∞ �B̃,m̃(k) = e−t t

k

k! .
The result then follows from Theorem 4 with m = 1/μ(Bε,n(x)). ��

Let us now prove Theorem 5 where the φ-mixing property is used to control the short
return times up to �.

Proof of Theorem 5. Again, by Lemma 4 it is enough to show that �B̃,m̃(k) → e−t tk
k! as

n → ∞. We apply Theorem 1 of [14] to the set B̃ε,n(x) ∈ σ(AN (n)) and obtain (for some
c1)

∣
∣
∣
∣�B̃,m̃(k) − e−t t

k

k!
∣
∣
∣
∣ ≤ c1t (t ∨ 1) inf

�>0

⎧
⎨

⎩
�μ(B̃) +

�∑

j=τ(B̃)

δB̃( j) + φ(�)

μ(B̃)

⎫
⎬

⎭
| logμ(B̃)|,

where δB̃( j) = min1≤ω≤ j∧N (n){μ(Aω(B̃)) + φ( j − ω)} and, as before, Aω(B̃) =
⋃

A∈Aω,A∩B̃ 
=∅ A. Let η′ ∈ ( 1
2+κ

, 1) so that the gaps � = μ(B̃)−η′
are larger than N (n).

Then

∣
∣
∣
∣�B̃,m̃(k)−e−t t

k

k!
∣
∣
∣
∣≤c1t (t ∨ 1)

⎛

⎝μ(B̃)1−η′ +
�∑

j=τ(B̃)

δB̃( j)+μ(B̃)−1+η′(2+κ)

⎞

⎠ | logμ(B̃)|.
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Since μ(B̃) = O(μ(Bε,n(x))) we conclude by [7] | logμ(B̃)| = O(n) and it thus remains
to show that

∑�

j=τ(B̃)
δB̃( j) = o( 1n ).

Since B̃ ⊂ B we get Aω(B̃) ⊂ Aω(B) and therefore Aω(B) ⊂ B̃ε,n(x) ∪ ∂̃Bε,n(x) for
all ω ≥ N (n). As in Lemma 1 let us put

DN0 =
{

x ∈ X : 1
n

n−1∑

k=0

χUε (A)(T
k(x)) < β ∀n ≥ N0

}

.

Then Aω(Bε,n(x)) ⊂ An(Bε,n(x)) ⊂ Cβ,n(x) for all x ∈ DN0 and ω ≥ n ≥ N0.
By Theorem 3, we can take N0 large enough such that the set

{
x : τ(Bε,n(x)) >

n

2
∀n > N0

}

has measure arbitrarily close to 1. Since B̃ε,n(x) ⊂ Bε,n(x) we conclude that

EN0 =
{
x : τ(B̃ε,n(x)) >

n

2
∀n > N0

}

also has measure arbitrarily close to 1 for N0 large enough. For x ∈ GN0 = DN0 ∩ EN0 , and
all n > 4N0 we then split the following sum into three parts:

�∑

j=τ(B̃)

δB̃( j) =
�∑

j=τ(B̃)

min
1≤ω≤ j∧N (n)

{μ(Aω(B̃)) + φ( j − ω)}

≤
�∑

j=n/2

min
1≤ω≤ j∧N (n)

{μ(Aω(B)) + φ( j − ω)}

≤
2n−1∑

j=n/2

min
1≤ω≤ j

{μ(Aω(B))+φ( j − ω)}+
N (n)∑

j=2n

min
1≤ω≤ j

{μ(Aω(B)) + φ( j − ω)}

+
�∑

j=N (n)+1

min
1≤ω≤N (n)

{μ(Aω(B)) + φ( j − ω)}

= I + I I + I I I.

Since μ is φ-mixing there exists a π < 1 so that μ(Am(x)) < πm for all x and m large
enough [1]. We now assume that β > 0 is small enough so that the size λm of the (β,m)-
clusters Cβ,m(x) satisfies λm < π−m

2 for all x ∈ DN0 (see (1)). Thus

μ(Cβ,m(x)) ≤ λmπm < π
m
2 (11)

for all m large enough and x ∈ DN0 . We now estimate the three parts on the right hand side
above using the mixing property as follows:

(I) For the term I , we also take ω = j
2 . Since Bε,n(x) ⊂ Bε, n4

(x) and j
2 ≥ n

4 ≥ N0 we
have

A j
2
(Bε,n(x)) ⊂ A j

2

(
Bε, n4

(x)
)

⊂ A n
4

(
Bε, n4

(x)
)

⊂ Cβ, n4
(x).

The bound (11) then yields

I ≤
2n−1∑

j=n/2

μ
(
A j

2
(B)
)

+ φ
( j

2

)
≤ 2nμ

(
Cβ, n4

(x)
)

+ c2
n1+κ

= o
(1
n

)
.
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(II) For the second term we take ω = j
2 and obtain

I I ≤
N (n)∑

j=2n

(
μ(A j/2(B)) + φ

( j

2

))
≤

N (n)∑

j=2n

μ
(
C

β,
j
2
(x)
)

+ c1
n1+κ

since j
2 ≥ n > N0. By (11) we conclude that I I = o( 1n ).

(III) For the third term I I I we take ω = N (n)
2 . Lemma 3 shows that μ(AN (n)/2(B)) =

O(1)μ(B). We obtain

I I I ≤
�∑

j=N (n)+1

(
μ(AN (n)/2(B)) + φ

(
j − N (n)

2

))

≤
�∑

j=N (n)+1

O(1)μ(B̃) + c2
N (n)1+κ

=O(1)�μ(B̃) + c2
N (n)1+κ

= o(
1

n
).

The three estimates combined prove Theorem 5. ��
To prove Theorems 1 and 2 we need to verify that (10) is satisfied.

Proof of Theorem 1. Under the hypothesis of Theorem1we take η ∈ ( 1
ξζ

, 1) and put N (n) =
μ(Bε,n(x))−η. This yields

n · ψ(ε, γN (n)−k, T kx)

μ(Bε,n(x))
≤ nCε

N (n)ξ ·ζ | log γ |ζ μ(Bε,n(x))

= C ′
εnμ(Bε,n(x))

ηξζ−1 → 0

since ηξζ > 1. Consequently ϑn(ε) → 0 as n → ∞ for every small enough ε > 0 and the
statement of Theorem 1 now follows from Theorem 5 ��
Proof of Theorem 2. Similarly the choice of η ∈ ( 1

αξ
, 1) and N (n) = μ(Bε,n(x))−η yield

n · ψ(ε, γN (n)−k, T kx)

μ(Bε,n(x))
≤ nCεN (n)−αξ

μ(Bε,n(x))
= C ′

εnμ(Bε,n(x))
ηαξ−1 → 0

since ηαξ > 1. Again ϑn(ε) → 0 as n → ∞ for every small enough ε > 0 and the theorem
follows from Theorem 5. ��
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