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Abstract. We consider functionals on one dimensional subshifts which have 
prescribed Randon-Nikodym derivative under transportation by conjugating 
homeomorphisms, and investigate their relation to Ruelle's transfer operator. In 
particular we show that two-sided functionals essentially are products of a 
functional which are supported on stable and unstable leaves. We also prove the 
meromorphicity of the Fourier transform of correlation functions for Axiom A 
follows in a more general setting 

In this paper we study Gibbs' functiona.ls on one dimensional lattice systems and 
relate them to the eigenspaces to Ruelle's Perron Frobenius operator. The 
knowledge we have about its spectrum enables us to give a classification of Gibbs' 
functionals in terms of eigenfunctionals up to a remainder which corresponds to 
the essential spectrum and therefore remains inaccessible to the technique employed 
here. However as the essential spectrum is an artefact of the Banach space of 
functions we are working with, it seems conceivable that a more sensible choice 
of a function space might remove this difficulty. Using interactions, previous work 
on this subject was done by Ruelle in [12] and [13]. Some of his results will be 
translated into a setting using an exponentially decreasing potential instead of 
interactions whereby one has to rely on Sinai's representation of two-sided functions 
by cohomologous one-sided ones. Similar to the case of a measure, we define Gibbs' 
functionals by their behaviour when transported by conjugating homeomorphisms. 
This characterisation of Gibbs' measures was first considered by Capocaccia [7] 
who also showed that given a point and its image the germs of conjugating 
homeomorphisms are locally unique. The need of extending this notion to 
functionals arose in [12] where the correlation function of Axiom A diffeomorphisms 
was examined and the region of meromorphicity of its Fourier transform 
determined. It thereby turned out that using Gibbs' functionals, the residues of 
simple poles acquire an intriguingly simple form. In the case of poles of higher 
order the expressions of the negative terms in the Laurent expansion become more 
involving; however the coefficients can again be expressed through Gibbs' 
functionals. 
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In the first section we define Gibbs' functionals using exponentially fast decaying 
functions or potentials. In Sect. 2 we show then that one-sided functionals are 
given by the eigenfunctionals of the transfer operator, and in Sect. 3 we establish 
the connection between the two- and one-sided functionals, proving that up to a 
remainder term they are given by products of one-sided functionals. In the final 
part we extend the result of [13] about meromorphicity of the correlation function 
for suspended flows to the case where the eigenspaces of Ruelle's operator no 
longer have to be one-dimensional. For simple (or semi-simple) eigenvalues of the 
transfer operator, Ruelle [13] introduced Gibbs' functionals for Axiom A flows. 
However it seems that there is little hope of defining Gibbs' functionals for multiple 
eigenvalues, at least not in a way which would result in a good theorem. In our 
context this without serious consequence. 

1. Introduction 

Let (12, T) be a Smale space (a compact metric space with a local product structure, 
see [11]) and denote by do(',') its metric. A map ~b from some open U c f2 into 
f2 is called conjugating, if da(Tk~b(x), Tk(x))~ 0 for Ikl --, ov uniformly in x ~ U. With 
a properly chosen metric the distance actually decrease in a uniformly exponential 
way. Let F be a (real) valued H61der continuous function on ~ and define 

r(x) = exp ~ (FTkd/(x) - FTk(x) ). 
k~Z 

Since the distance da(T~h(x), Tk(x)) decreases exponentially fast, the sum con- 
verges uniformly in x~ U. We say a probability measure # on O is a Gibbs' state 
if for all conjugating homeomorphism ~h defined on some U~,, the measure ~# is 
absolutely continuous with respect to # and the Radon Nikodym derivative 
(RN-derivative) satisfies (d~#/d#)(x)= r(x) for x~ U~,. Se also [11] Chapter 7. For 
a continuous function F: f 2 ~ R  the pressure P(F, T) is defined by the variational 
principle 

P(F, T) = sup (hr(p) + p(F)), 
P 

where p are T-invariant probability measures on $2. By hr(p) we denote the measure 
theoretic entropy of p with respect to T. Measures which attain the supremum are 
called equilibrium states for F. For details see Walters [16], where also equivalent 
definitions for pressure are given and discussed. If F is H61der continuous and T 
topologically mixing there exists a unique equilibrium state which is also a Gibbs' 
state (see [11] Chap. 7). Conversely, a Gibbs' state is an equilibrium state and 
hence T-invariant, provided T is a topologically mixing transformation. 

We set C~(~) for complex H61der continuous functions on f2 with H61der 
exponent fl~(0, 1]. From now on # no longer needs to be a measure but can be a 
functional, and from now on # will be an element in the dual of C~(g2) unless 
stated Otherwise. This generalisation was for Axiom A diffeomorphisms first 
considered by Ruelle in [12] and then in [13] extended to suspended flows. For 
#,v~C~(s we say formally r~Cp($-2) is the RN-derivative d#/dv if the identity 
# = rv is satisfied. Besides this we shall take the liberty of writing ~ xd# = i )~rdv for 
(test) functions X~ C~(/2), as one is used to do for measures. The following definition 
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extends the notion of Gibbs' states to functionals which under conjugating 
homeomorphisms have a prescribed RN-derivative. 

Definition. 1. A functional #~Cp(O)* is a Gibbs'functional for F~Ca(O) if 

~((zo~O)r) = ~(z) ,  

for all zeC~(O)* with support in ~(U#,) and for all conjugating homeomorphisms 
defined in some open U#, c .(2. 

We shall restrict mainly to subshifts of finite type. Let A be some finite set 
with the discrete topology, let A be an I A[ • [A[-matrix of zeros and ones and 
define 

S , = { z e ~ A : A [ z ~ , z ~ + ~ ] = l V i ~ Z  t ,  

which carries the product topology. We call S a subshift of finite type and define 
on it a (two-sided) shift transformation by a(z)i = zi+ 1, i~E. We say A is the alphabet 
of 2;. For  positive p < 1 one defines a metric on 27 by d(x, y) = p*, where k = k(x, y) = 
m a x { j : x i = y i  for all ] i [<j}.  The topology on 27 is then generated by the 
open-closed sets 

U(x_. . . .  x.) = {z~27: zi = xi, [i[ =< n}, 

where x _ , . . . x ,  is a word in 2~ of length 2n + 1, n = 1, 2 , . . . .  The U(x_ , . . . x , )  are 
usually called cylinders. Note that 2; has dimension zero. Throughout this paper 
we shall assume that (,S, a) is topologically mixing, that is A" is positive for large 
n. The variation of a complex function f on 27 is a function defined by 

var, f (x )  = sup {If(x) - f (Y) l :  y e27 satisfying k(x, y) > n}, 

n = 1, 2 , . . . .  If the variation decays fast enough, such that for some continuous 
and strictly positive function u on 2; 

[I f 11. = s u p  s u p  var, (x) exp 2-min (u-"(x), un(x)) 
x~_S neZ 

is finite, where u" = u + ua + --- + ua"-  a and u-"  = ucr- a + ... + u~r-", we define a 
norm Ill'lit, = J['[[ ~ + [['[J. and denote by C.(27) the space of complex functions on 
27 which are finite with respect to this norm. In fact, C.(2;) is a Banach algebra. 
We have a filtration C.(27) c C.,(~), 0 < u' < u, and furthermore, C.(2;) is dense in 
C,,(2;), with (-] C,(2;) dense in C,,(S) (in the IIl']lr,,-norm). Such a continuous and 

u > O  

strictly positive u is called modulus of continuity. We shall assume that the variation 
of u itself decays exponentially fast. 

A conjugating homeomorphism ~b defined on U(Zk... Zt) = Z, for some ~-word 
Zk "" Zt, k < l, replaces the z-string by another word z' k... z't, z' k = Zk, Z'~ = Zt. AS 
one can see this defines a conjugating map from U to ~b(U). In fact all conjugating 
homeomorphisms on 2; are of this form. The RN-derivative of a Gibbs' functional 
for f~C , (2 ; )  transported by r is given by exp ~ (f trkr --ftrk). 

k~7 

To discuss Gibbs' functionals on 27 it is necessary (or convenient) to consider 
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the one-sided, left infinite and right infinite subshifts defined by 

= {  ~oA:A[xi- l ,x l]=lVi<O t, -So xE i 

17i={Y~i~>=iA:A[yi,Yi+l]=lVi>l }, 

and the one-sided shift transformations shift a-1:17o ~ X 0  which is induced by 
a -  1 on the two-sided subshift is onto and locally a homeomorphism (and finite, at 
most ]AI, to one) and a:27 1 ~271 induced by a. As above in the two-sided case 
we define variation and the Banach algebras Cuo(17o) and Cul(S1) of functions 
which are finite with respect to the norms IIIfil[I.,= IIf~ll| + Ilfill.,, where the 
H61der constants [1 f i  11,, are here given by sup sup var, fi(x) exp u~ +-"(x), i = 1. 

xEEi n~ 1 

For one-sided H61der continuous functions f~Co(17~), i = 0 ,  1, one defines 
according to Ruelle [11] Perron-Frobenius type operators (transfer matrices) 
Li: Cu,(27i) -. C,,,(27i) by: (LoZ)(x) = ~" Z(x') exp f o(x'), x~27 o, where the summation 

X'E~X 

is over all x'e27o satisfying a -  1x' ~--- X; and similarly (L1z)(y) = ~ X(Y') exp fl(Y') 
for Y~271, Y' ea- lY = {u' E171: aY' =Y}. Y'r  

Gibbs' functionals II~o, I~1 on the one-sided shifts I7o,271 are defined similar 
to the two-sided case above. The advantage however is that instead of an infinite 
sum over the integers from - oe to + oo we have to deal with finite sums (if we 
forget for a moment that we have to use Proposition 3 below), where the number 
of non-zero terms depends on the particular conjugating homeomorphism we are 
considering. We examine the right infinite case 171 in more detail, results obtained 
there have also a formulation for the left sided case. Put T,, n > 1, for the set of 
2;1-words r/= r/1 " ' r / ,  and U(r/) for the cylinder {y~S~: r/~ = y~ Vi < n}. A conjugating 
homeomorphism ~b 1 is of the form q/i(r/y)= 7/y, where r/,fleT, and ye271 is such 
that r/y, 71y are allowed sequences. The RN-derivative of a Gibbs' functional v on f 1 
is then given by 

(dO i v/dv)(r/y) = exp (fln(TlY) -- f ln(r/Y))" 
In the case of 17 o one proceeds in the same way. Before passing on to the two-sided 
functionals we shall in the next section linger more on one-sided ones, in particular 
on ~ l .  

2. The One-sided Case 

The main result of this section is Proposition 2 which classifies one-sided Gibbs' 
functionals as'eigenfunctionals of Ruelle's operator. We restrict our attention to 
the right-sided case and drop the index 1 whenever possible. Let u, strictly positive 
and continuous, be a modulus of continuity for functions on 27 and let f~C,(27). 
For real f Ruelle's Perron-Frobenius theorem [11] tells us that the largest 
eigenvalue 2 0 of the associated operator L = Lf is real, positive and simple if (27, a) 
is topologically mixing, while the rest of the spectrum is contained in a disc of 
radius strictly smaller than 2 o. The pressure of f as defined by the variational 
principle equals log 2 o. In the case of complex valued f ,  L has isolated eigenvalues 



Gibbs' Functionals on Subshifts 221 

of finite multiplicity in the annulus {z~C:e e(Rf-u) < Izl ~ e e(RI)} and an essential 
spectrum which is contained in the closed disc with radius e P(RI-"), where P ( R f )  
is the pressure of the real part of f (see [8] Lemma 2). Let 1Ez be the eigenspace 
in C,(Z) to the eigenvalue 2, 121 > e P~Rs-"), and E~* the corresponding eigenspace 
in the dual Cu(~,)*. As complex vectorspaces dim 1Ez = dim ]Ex* = I. In 1Ez*, 1Ez we 
choose orthogonal bases vz,,,N~,r,r = 1 . . . . .  l, normalised so that vz,r(Nz,,s)= 
6~,~,~5r, ~ (6,,, is the Kronecker symbol: 6r,~ = 1 if r = s and 0 otherwise). Hence we 
obtain the decompositions (• stands for transposition) 

L*v = ~ 2v(N~• + R*(v), 
(2-1) 

LX = ~ 2N~-~L~v~(X) + R(~), 
2 

where the spectral radii of the remainder R:Cu(S, )~C.(2) ,  R*:C,(27)* ~ C,(S)* 
are less or equal to e et*I-"), Na is the vector of eigenfunctions (Na,~, N~,2 . . . .  )~ and 
v~ stands for the eigenfunctionals (vz,~, v~,2 . . . .  )'. The matrices Lz are assumed to 
be in Jordan normal form with ones in the diagonal. We denote by a* the adjoint 
to the shift given by (a* v)(~) = v(x o a), v ~ C.(Z)*, ~f ~ C, (2~). 

Proposition 2. Let u be a modulus of  continuity, f ~C.(~, ) and 2 be in the discrete 
spectrum of L, then the functionals vz,s, s = 1 . . . . .  1 are Gibbs' functionals. Moreover, 
any Gibbs'functional v~C.(,~, )* has the representation 

v = Z v(N~)~v~ + Ip*v, 
2 

where IP*:C~(Z')*-* C,(2~)* is a projection and LIP* has spectral radius < e PIRy-") 

Proof. The first assertion was shown in [12], but nevertheless we shall give a proof. 
For a,b,c~A satisfying A[a,c] = A [ b , c ] =  1 we define a conjugating homeo- 
morphism ~b~:U(ac)~U(bc) in the obvious way by putting ~b~(acy)=bcy, for 
acy~ U(ac). Since v is Gibbs, we have for (test) functions zeC,(2;), 

z(ay)dv(ay)= ~ z(ay)eY~"'-Y~Y)dv(by). 
U(ac) O(bc) 

One obtains by summming over all a~A satisfying A[a, c] = 1, 

I Z(y)dv(y)= ~ (Lz)(ay)e--rt'dv(y), 
a U(ac) O(bc) 

which holds independent of b~A, A[b,c]= 1. Let N(c) be the number of 
predecessors of c, that is the number of b which satisfy A[b, c] = 1 (N'(c)> 1) and 
sum over b: 

I Z(y)dv(y)=N(c) -~ ~ (Lz)(ay)e-Y<'dv(y) �9 
0 -- I U ( C )  ~ - 1 U ( c )  

Put g(acy)= f (acy)+ log N(c)~C,(~,), and sum over c~A for which we get 

v(Z ) = ~ (Lz)(aY)e-~ dv(y) = (a* e-Ov)(Lz). 

We see that the condition v = L*a*e-~v is necessary for v to be Gibbs. That it is 
sufficient follows from the fact that the equations also allow to be read from right 
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to left. With (2-I) for L* we decompose v as follows 

v = ~, 2(a*e-gv)(Nai)L~vl + R*(a*e-gv), (2-2) 
2 

where the spectral radius of R*:C~(Z)*~ Cu(Z)* is less or equal to e vmy-"l. This 
representation of v shows that up to some remainder term F ' v ,  which lies in a 
linear subspace of C.(Z) to which restricted L has spectral radius < e Pray-"), 
one-sided Gibbs' functionals are linear combinations of eigenfunctionals v~. To 
conclude the proof we have to show that the functionals v~,~ are Gibbs'. To this 
end let x, 2 be discrete eigenvalues of L, recall that 2L~• = LN~ (we write L for 
the unit matrix times L) and evaluate 

(a* e-gv~,,)(2Lil N i), = (L ' x -  1L~- lv~)~( ().Li• N l oa)~e-g ) 

= x -  12(L~- 1 v~),(L((Li• o o)~e-~ 

= x-  12 ~ I ~ (LilN~(cx))~eY~"~-~ - lv~),(cx) 
c~A U(c) a,A[a,c] = 1 

= x _ 1 2 ( L _ i v ~ ) , ( L i l N i ) = ~ O  if x r  
(~,~ if ~ = 2 .  

In addition we have R*r176 --- 0 as can be seen from the following identities: 

v~,~( (Rg)oae -~ = (L*~- i L , -  lv~)~( (Rx)o ae-~ 

= (x-  i L~ -1 v~),(L((Rg)o ae-g)) 

= (x-  1L~- ~v~),(Rz) = 0 

for all ~ e C,(Z). Thus L* a*e -g leaves eigenfunctionals of L* invariant, which proves 
the first half of the proposition. Inserting this into (2-2) proves the second half. [] 

3. The Two-Sided Funetionals 

In this section we connect two-sided to one-sided Gibbs' functionals and prove in 
Proposition 4 the two-sided equivalent of Proposition 2 for the two-sided case. 
Two functions f ,g~C, , (Z)  are said to be cohomologous if there exists a Hrlder 
continuous w~C,,(Z) such that f - g  = w -  wa for some positive u'. A function 
that is cohomologous to zero is a cocycle. Put ~ ,  for the Gibbs' functionals for 
f~C , (Z) .  One easily sees that ~ y  = ~g if g is cohomologous to f and that Gibbs' 
functionals are therefore determined by the equivalence class of cohomologous 
functions a particular f is in. This leaves some freedom to choose f ,  however only 
in the two-sided case. One-sided functional generally do change when adding to 
f a cocycle. The following classical result by Sinai [15] is essential for the description 
of two-sided Gibbs' functionals. It asserts that Hrlder continuous functions are 
cohomologous to functions which are constraint in the local unstable direction. 

Proposition 3. For f ~ C,(Z) there exist w i and f l in C(II2),(E) such that f l = f + 
wl - waa; we have f i(x) = fl(Y) whenever x~ = Yl, i < O. Moreover if f is real valued 
wl, f l both can be chosen to be real. 

For a proof see [8] Proposition 1. The same statement for some woeCtl/2~,(Y, ) 
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applies to fo = f + wo - woo which has the property that fo(X) = fo(Y) whenever 
x~ =Yi for i >  1. In particular (fo, f l )  can be identified with an element in 
Cuo(2;o) x Cu,(Z1), where the one-sided moduli of continuity Uo, U 1 are co- 
homologous to u and such that functions in Ctl/e)u(2; ) which depend only on 
negative or positive coordinates can be identified with elements in Cuo(2;o) and 
Cu,(271). We shall repeatedly use one-sided functions in a two-sided context with 
the obvious meaning. Without loss of generality we can assume that Uo, ul are 
positive (see [8]). Put ti~ o for the one-sided Gibbs' functionals on 2; 0 associated 
to fo and @l c Cu,(2;i) for those associated to f l t r  and let Lo, L 1 be the transfer 
operators on C,o(270),Cu,(S1) with weight functions fo and flo". For a discrete 
eigenvalue 2 of L~ let as in the previous section vz,,, Nx,~, s = 1, . . . ,  l, be normalised 
orthogonai bases in 1E, I,z*, IE1, ~ and #,,r, M .... s = 1 . . . . .  k, normalised orthogonal 
bases spanning the eigenspaces of Lo*,Lo to the discrete eigenvalue x. Put 
~(z) = (Wo - wl)a(z)eC~l/2)j2;) and define a map ~ from Cuo(2;o) x Cu,(2;1) into 
C~I/2)~(Z) by f(lt, v)=e*Itv. 

As (2,tr) is a hyperbolic space we can identify the local stable and unstable 
"leaves" with 2;0 and 2;1 respectively. The transfer operators Lo and L~ associated 
to the functions fo and f l  o. act in the stable and unstable directions and can be 
interpreted as operators in Ctl/2)j2;) as (the comma separates the zero'th coordinate 
from the first) 

(L1X)(x, Y)= ~ X( x, ~/y)e s'*("r', 
qeA 

xeC(~/2)JZ), and similarly for Lo. Denote by Ui c C~/2)~(2;)* the subspace of 
functionals on which the induced operator L~* has spectral radius < ee, P = 
P ( F , , f -  u), i =  0, 1, and put F = F o W F  1. 

Proposition 4. The image of ff~o x ~ l  under { are two-sided Gibbs' functionals for 
f .  Moreover any two-sided Gibbs' functional ~o for f which can be extended to 
C(1/2)J2~)* has the representation 

eo = E E co(e-'M~.,Nx,~)~(# .... vx,~) + 05, 
K,2 r,$ 

where the summation x, 2 is over the discrete spectrum of Lo* and LI* and r 

Proof. We first show the second part of the proposition. For co Gibbs' and a conju- 
gating homeomorphism ~ defined on U0 c 2; the RN-derivative (dOco/da~)(z)= 
r(z) is given by 

r(z) = exp ~ ( f  ~ k ( z )  -- f ak(z) ), 
keE 

z e U  o. Without loss of generality we may assume that U 0 is a cylinder set 
{z~2;: z~ = z'~ for i =  k, . . . .  l} for some Z-word Z'k'"Z'~, with k < 0 < l  say. Let 
Z"R"" Z"~ be a 2;-word with Z"k = Z'k, Z"t = Z'~, then a conjugating homeomorphism 
~b is defined by ~b(z)~ = z"~, i =  k, . . . ,  1 and O(z)~ = zi otherwise, maps U 0 onto 
U(Z"k"'Z"I) and induces conjugating homeomorphisms r that map some open 
U~,q, into 271 by ~Ol(y)i = yi, i > I, and ~k~(y)i = z"~, i = 1 . . . . .  l, for y~U(z'  o �9 ..z'~); and 
similarly for ~o:~ko(X)i = x~, i < k, and ~Po(X)i = z"~, k < i < O, for xe{x~2;o:X ~ = z'i, 
k < i < O}. Put 

r o = e x  p ~ (foakd/o--foak)~Cuo(2;o), r i =exp ~ (f lak~kl--f lo.k)ec~j,F,1),  
k < O  k < l  
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which are defined on Uo,r U 1,r respectively. With z = Woa - w x ~r the RN-derivative 
(d~o9/&o)(z) assumes that form 

r(z) = ro(x)r 1 (y) exp (z~(z) - z(z) ), (3-1) 

where xy = z~ U~,. By assumption co can be extended to a functional on C(1/2~,(X) 
which we again denote by o9. Since C,(X)  is dense in C(~/2).(X) this extension 
is qnique, which makes e-'o9 a well defined element in C(I/2).(X)* that has 
RN-derivative (dr when transported by r Let 
zEC(~/2),(X) be independent of positive coordinates and define on X~ a functional 
o3(Z," ) by putting cb(Z,Z' ) = og(e-'~('Z' ) where ~'~C(l[2)u(Z~,) depends only on co- 
ordinates > 0. Since d~(Z, ") is Gibbs' by Proposition 2 it can be written as 

&(Z, ") = ~ ~ o3(Z, N~,s)vz,s(') + IP~* o3(z, "), (3-2) 
2 s 

where the summation is over the discrete spectrum of LI* and IPI* is a projection 
operator such that Lx*~a* has spectral radius < e e. Now as Z varies o3(., N~,~) is 
a functional on X o and, as we have seen, Gibbs'. Thus by Proposition 2 

o3(., Nz,~) = ~ ~ ch(M .... Na,,)#~,~(') + lPo*e3(', N~,~), (3-3) 

where the spectral radius of Lo*~0* is bounded by e ~'. The second half of the 
proposition follows now from (3-2) and (3-3) since e3 = e-~o9 for functions which 
are products of right-sided and left-sided functions. Note that F~ = ~*C~/2) , (X)*,  
i = 0 ,  1. 

It remains to show the first part of the statement. For (#, v ) ~ 0  x ~ we 
obviously have e~#v~C(I /z ) . (X)*cC,(X)  *. As described above a conjugating 
homeomorphism if: U ~ , ~ X  induces conjugating homeomorphisms ~Oo, ~k~ in Xo 
and X~. Now as # and v are Gibbs' it follows from (3-1) that e~#v is Gibbs' 
as well. [] 

If we call e~#~,,v~,~ pure Gibbs' functionals, then with an additional normalising 
condition on ~o and ~ ~ is a bijection onto the pure two-sided functionals whose 
inverse is given by o9. A trivial but nonetheless interesting consequence of the last 
proposition is the following corollary which asserts a sort of local product structure 
for equilibrium states. We take a weighted product of transversal measures on stable 
and unstable leaves whereby the weight function turns out to be H61der continuous 
of class C(I/2),(X) and not of class C,(X), since its derivation involved Proposition 3 
where we lost some regularity. 

Corollary 5. The equilibrium state # on X is up to a normalising factor of the form 
e~#v, where #, v are the unique Gibbs' measures on Xo, X~ and ~ is as above. 

Proposition 6. ([12] Proposition 2.2) L o and L 1 have the same discrete eigenvalues 
with the same multiplicity and the eigenspaces are isomorphic. 

Proof. For reason of completeness we bring a proof which is modelled after [12] 
Proposition 2.2, adapting it to our purpose. Let z be as before and define an 
operator D:C,,(X~)*--* C,o(XO) by (comma parts the zero'th coordinate from the 
first) 

(Ov)(x) = ~ e~(*'r) dv(y), 
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ve C~, (S1)*, for which we can do the following transformations: (Set r(x, y) = - 
whenever x y ~ . )  

OLa*(v)(x) = S (L1 e~)(x, y)dv(y) 

= S Z exp (z(x. qy) + fla(tly))dv(y) 
flea 

= ~ ~ exp (Wo(X,. y ) -  wi (Xtl. y) + f(xtl ,  y) + wi (xq. y) - wl a(xtl, y))dv(y) 
qeA 

= f (Loeb)( x, y)dv(y) = (LoDv)(x). 

This shows that LoD = DLI*, and similarly one shows that LxD* = D*Lo*, where 
D* adjoint to D. One sees that D maps lEa,i* into Eo,z for discrete eigenvalues 
2. A similar statement applies to D*. We still have to show that D is injective on 
El,i*. Let v~El,z* be non-zero and zeC,,(271) such that v(e*z) does not vanish. 
Without losing any generality we can assume that Z(Y) depends only on the first 
n coordinates for some n, that is • is constant on cylinders U(t/), r/eT.. Moreover 
since v(e~z)r 0 we have that also (Ll*v)(e~x) is non-zero and 

(L i*"v)(e~X) = ~ ~ Z(tl) exp (z(x. fly ) + fl"tr(qy))dv(y) 
,Fl  [,tl = n  

= ~ Z(n)expfo(-")(xq) ~ e*'"'r)dv(y)= Lo"(XDv)(x ) 
I,iI = n  , r l  

is non-zero which implies that Dv does not vanish. In the last equation X is a 
locally constant function in C.o(,So). We also used f i  = fo - z + r e -  a and fl"a(t/y) = 
fo(-")(xq) - (z - za")(x, fly), where fo (-") = fo + " "  + fo el  -". By the same argument 
one shows that D*IEo,~* is injective. Hence DIE~,a* C Eo,l and D*lE0,i* c lEl ,  i 
which implies that Eo, a and IEI,~ are isomorphic. [] 

This proposition is particularly interesting for evaluating one-sided functions. Let 
xsC(1/2).(2;) be independent of positive coordinates so that we can identify it with 
a function in C,o(27o) and let veC,~(,S~)* be an eigenfunctional to the eigenvalues 
2 and #eC,o(27o)* Gibbs. Then 

~(#, v)(z) = I~v(e*x) = kt(v(e')z) = #(Mx), 

where M = DveC,,(.So) is an eigenfunction of Lo to the eigenvalue 2, and a similar 
result hold~ if X depends only on positive coordinates. For f real, the unique Gibbs' 
measure on 27 0 is up to a normalising factor given by M/~, where M = Dr, t~ and 
v span the one dimensional eigenspaces in C,,o(27o), C,o(27o)* and C.1(27i)* to the 
eigenvalue e e(y) which they share. Proofs and details to this classical result can be 
found in [1]. 

Let /~ ,  v~ span IEo,z*, 11~.~,~* and be such that Lo*#~ = xLo,,,#,,, Ll*v  ~ = 2Ll,~vz, 
where Lo,,,, L~,z are in Jordan normal form with l's in the diagonal. If we choose 
normalized and orthogonal bases Mx, Nz, #x, vz in IE o zll~,~ z, lEo x*, E~ z* such that 
M l  = Ovz and Nz = D*/za, the linear maps are relate(i b y ' L o S =  L1, ~ since 

2L0.1• = L o M  i = LoDv~ = DL 1 *v z = 2Li.aDv ~ = 2Li .aM a. 

Define a collection of Gibbs' functionals by 

#~i=e~p~vz l, 
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where # ~  is a k x/-matrix of functionals on 2~ with entries (#~)~ = e'(#~)~(v~)j and 
k, 1 are the dimensions of Eo,~ and ~l,x. Notice that (#~a)oEC~/2,(2;)*. If 2 is a 
simple eigenvalue then #hA is in fact the derivative of 2. For this see [12] where 
we also take Proposition 2.3 in the following form: 

Lemma7.  Let Eo,~* , El,a* be eigenspaces of Lo*,Lx*, then tr* restricted to 
~(Eo,~* x lEl,~* ) has the eigenvalue x2-1 and satisfies 

o'*#~ i = x).- le~(Lo,~#~)(L1, ~- ivy)• = t~2-1Lo,~#~lL i,~- l• 

4. The Zeta Function 

Given f r  (,S can be a one or two-sided subshift) the zeta function is then 
defined by 

~(f) = exp )-" ~m/m, 
meal 

where (, ,(f) = ~ expfm(x) and F(m)= {X~.S:amx = X} are the periodic points 
xeF(m) 

of period m. The pressure of the real part of f is a given by the variational principle 
and equals (cf. [1-]) 

lira m- 1 log ~ exp R f ' ( x ) .  
rnr xcF(ra) 

Thus we see that whenever P(F,,f)< 0 the summation over m converges to an 
analytic and non-zero function and according to [8] Theorem 4 can meromorphically 
be continued as follows: 

Theorem 8. ~(f) is a non-zero and analytic function in {f~C,(~) :  P(l~ f )  < 0} and 
has a meromorphic extension to the halfplane {f~Cu(E): P(R f - u)<  0}. 

Note that zeta function and pressure do not change by adding a cocycle to f .  In 
the one-sided case replacing f by f + l o g z ,  ze~\{0},  has the effect that the 
eigenvalues of L j- are scaled by z and the pressure of the real part becomes 
P ( R f  + log Izl) = P ( R f )  + log [zl. Ruelle introduced a generalized zeta function 
which we denote here by 

d(z, f )  = ( ( f  + log z) = exp ~ z'(,,/m, 
m~lN 

(see also [11] Chapter 5.29) and for which the following result holds: 

Corollary 9. d(z,f)  is a non-zero analytic function for [z[ < e -PtRI) and can mero- 
morphically be extended to [z[<e -P(Rf-u) with poles at 1/2(f), where 2(f) are 
eioenvalues of L I (countin9 multiplicities). 

Consider the one-sided right infinite case and put IP~(.)= N~• for the 
projection onto the eigenspace El,  ~. We shall need the following corollary which 
also has a formulation in the left sided case. 

Corollary 10. Given f" ~Cu~(.~l) then (1 - zLf,,)-x = ~ N• _ z2Ll,a)- lv~ + K~, 
where K~ is holomorphic for Izl < e -etRf'-ud. 
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5. Suspended Flows 

Let (27, a) be a two-sided topologically mixing subshift of finite type and rECu(27) 
a real and strictly positive function. From now on the modulus of continuity is 
u = 27r for some positive constant 7. Of course any positive and continuous function 
would do. The reason for this particular choice lies in the fact that suspensions which 
via Markov partitions are derived from Axiom A flows on manifolds have ceiling 
functions with this regularity where ? is half the contraction parameter of the flow 
(see [8] Sect. 5). See l-2] for a detailed account of the construction of Markov 
partitions and suspensions for Axiom A flows. We put 

27~ = {(x,t)E27 x N:O -< t <  r(x)} 

and ~ot: 27, --* 27,, t real, for the suspended flow which is defined by ~ot(x; s) = (x, s + t) 
whenever 0 <= s, s + t < r(x) and extended to t e n  by identifying (x, r(x)) with (ax, 0), 
where a is the shift on the lattice 2~. The function r is frequently called the ceiling 
or return function of the flow ~o,. We use the product topology on 27, (for a metric 
see 1,6]) and assume that there is more than one closed orbit (weak mixing). The 
entropy of ~0 t is the entropy of the "time-one" map ~01. 

Denote by A the Lebesgue measure on P-, and let # be a a-invariant probability 
measure on the discrete 2~, then /2 = It(r)-lit x A is a ~0:invariant probability 
measure on ~,. The measure theoretic entropy h*(fi) which is given by the time-one 
map equals by Abramov's formula h(it)/it(r), where h(it) is the measure theoretic 
entropy of 27 with respect to #. We also have the identity P(-h*( f t ) r )= 0. The 
pressure of a continuous F: 27r ~ IR is defined by the 

P*(F) = sup (h*(p) + p(F)). 
P 

where p are ~o:invariant probability measures on 2~r. A measure that attains the 
supremum is called an equilibrium or Gibbs' state. If It is an equilibrium state on 

r(x) 
27 to the function f - P*(F)r, f ( x )  = S F(x, t)dt, then fi = It x A ~It(r) is an equili- 

o 
brium state on 27~ to the function F and we have P ( f - P * ( F ) r ) =  0 which also 
determines P*(F) uniquely I-5]. 

Denote by 2((9) the length of a closed orbit (9 under the flow ~0t. The zeta 
function for a continuous F: ~,  ~ tE is then given by 

where x~E(9 is a point on the closed orbit (9, z a complex variable, and where the 
Euler product is over all closed orbits. Provided f ( x )  is an element in C,(27) we 
can express the zeta function (*(z) by the one introduced in Sect. 4. Hence 
( ( f -  zr)= (*(z) and it follows from Theorem 8 that (*(z) has a meromorphic 
extension to z for which P ( R ( f  - zr) - vr) < 0. Thus 

Proposition 11. 1-8] ff*(z) is non-zero and analytic for ]Rz > P*(RF)  and has  a 
meromorphic extension to the halfplane {zEC: Rz  > P*(RF)-7} with a pole whenever 
L:  +z, has 1 as eioenvalue. 

Let Vo, vl, r o, r~eCtx/z)u(Y,) be functions chosen according to Proposition 3 so 
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that r o = r + V o - - V o 6  , r 1 = r + v i - - v 1 6  , depend only on coordinates <0, >1 
respectively and can be identified with functions in C,o(27o), Cul(X1). Note that r o 
and rl are real but not necessarily strictly positive although r is. Let as in Sect. 3 
fo, f l  be one-sided functions cohomologous to f ,  then according to 1-13] we can 
do the following construction. For complex numbers ~,/~ we form transfer operators 
LI , ,L I , ,  using the functions f '  = f o  + ~roa-1  and f "  = f l a  + fir 1. (In the next 
section one of the parameters either a or fl will always be equal to zero.) For K, 
discrete eigenvalues of LI , ,  LI, , ,  let as before p,, vz be bases for the eigenspaces 
IEo,x* c C.o(2~o)* , EI,~* c C,,(271)* such that Lf ,*#~ = xLo,~# ~, Lf,,*v~ = 2Ll ,~v ~, 
where Lo,~, L:,~ are invertible metrices in Jordan normal form with l's in the 
diagonal. Without loss of generality we may assume that the eigenspaces lEo,z*, 
El,x* are irreducible and have dimensions k and 1. By Proposition 1 #K, vz are 
one-sided Gibbs' functionals for the functions f '  and f " .  On the discrete system 
27 we define a collection of functionals (which are not necessarily Gibbs') by 

# r t  : e~'#rV l • 

(• means transposition) where z' = Woa + cwo - w l a  - fly 1 = z + ~v o - flv~ and #~  
is a k x/-matrix with entries (#~a)~,j = e~'(#~)i(v~)j. One easily verifies that 

a*#~ = tr le~' +'" '-  ~(Lo,~#~)(LI,~- ivi)i = ~c),- le~"~- 1Lo,Kp~LI,~• 1, 

where z" = (fl - a)r is a function in C.(Z)(this situation is unlike Lemma 7 where 
we could explicitly determine the spectrum of a* for Gibbs' functionals.). 

Let a = fl and vi span the eigenspace of Ly,* ( f"  = f l  a + fir1) to the eigenvalue 
t+#(vo vi) 2, then by Proposition 6 M~ = Dv~ = vz(e - ) is a vector of eigenfunctions of 

L f, ( f '  = f o  + ]~ro ~ l) to the eigenvalue 2 and forms a basis in IEo,~, (Ly,, Lf,, have 
the same spectrum). Since by definition # ~  = e~+~"~ • we obtain according 
to the remark made following Proposition 6 that Mz• = eta- ~)o~ as a functional 
on left-sided functions. Similarly N~ = #z(e~+P(~~ We put e m = 1 ifm >0  and - 1 
if m < 0 and summarise as follows (with the convention z"- m = Z"a- ~ + ... + z"a- " 
if m >___ 1): 

Proposition 12. The func t iona l s (#kZ) i , jGC, (27 )* , x=x(~ ) ,A=~( f l )have theproper t i e s :  
(i) a*m#~x = (x/2) m exp (emZ" -")Lo,~m#~xLi,4 •  f o r  m integer, 

(ii) #~z = e(~-a)~~ xX#~ acting on one-sided func t ions  in C,o(SO), 
(iii) #~  = e (~- a)~N~vx • acting on one-sided funct ions  in C~,(Z  1). 

6. Correlation Function 

In this section we give a more complete result on the correlation.function for 
Axiom A flows as was previously known.  We essentially use the same method as 
was employed in [13] and I-9] to link the correlation function of HGlder continuous 
functions to the (generalised) zeta function the poles of which determine the poles 
of the Fourier transform of the correlation function also called reasonances. The 
connection between the poles of the correlation function and the poles of the zeta 
function was originally suggested by [14]. Also in 1-13] the residues of the poles 
of the Fourier transformed correlation function is given an expressed through 
Gibbs' functionals, however only for one dimensional eigenspaces of the transfer 
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operator L. Here we give a proof without this restriction. Moreover, as we make 
use of the variational principle we also yield a better estimate on the width of the 
strip in which the Fourier transform is meromorphic. 

As in the previous section in modulus of continuity is a positive multiple of 
the ceiling function. Denote by Cu(Zr) the set of all continuous complex functions 

r(x) 
F on Z, such that ~ eP'F(x,t)dteCu(Z) for all pe~ ,  and define functionals 

0 
dfi~ 4 = e ta-~)'d#~ 4 x dt, where as in the previous section a,/3 are complex parameters 
and x, 2 are discrete eigenvalues of LI,, Ly,,. If x and 2 both assume the same value, 
say 1, and are simple or semi-simple, these functionals deserve being called Gibbs, 
as they were introduced in [13], where it was also shown that they get multiplied 
by a factor e tp -')s if mapped under q)s*. If x, 2 are multiple eigenvalues the associated 
functionals no longer have this nice property. For the following we agree that the 
1 in #14, #41 are eigenvalues 1 of the transfer operators Lo, L1 with fo, f i g  as weight 

r(~) 
functions (parameter are 0). For F : N r ~ R  we put f ( O =  ~ (F(~,t)-P*(F))dt, 
where P*(F) is the pressure of F. o 

Theorem 13. Let (Z r, qgt) be a the flow obtained by suspending the strictly positive 
re Cu(X), u = 7r, ~ > O, and let fi be the unique equilibrium state for some real F e Cu(X,). 
Then, for G, HeC(1/Z)u(~,r) the Fourier transform ll~(o) of the correlation function 
Q(t) = fi( ( Gq~,)H) 
(i) is meromorphic in the strip {oEC: I~ol < ~}, and 
(ii) the poles are located at the values of co o at which either Lf, or Ly,, has 1 as 
eigenvalue, where f '  = f o - k O r o  a- i ,  f " = f a a  + iorl, and ff)(co) has locally the 
expansion 

fii~(G)(1 - xLo,~)-1/~KI(H ) if X = x(iOgo)eSp(Ly,), 
fi4~• - 2LLI )- i/211L(n), if 2 = 2(iOo)eSp(Ly,, ), 

plus a contribution which is regular in a neighbourhood of io o. The matrices Lo,~, 
L~, 4 are in Jordan normal form with l's in their diagonals. We assume that the 
eigenspaces are irreducible and have basis as described above and count eigenvalues 
according to the number of irreducible subspaces into which the eigenspaces split. 

The next lemma will be needed to prove the theorem. It will be necessary 
to decompose complex functions @eC(~/z)u(Z) into locally constant functions: 

--- ~ ~m, where ~,neC(1/2),(Z) are stepfunctions constant on two-sided cylinders 
m>0 

U(t/_,,... t/,n), SO that I~m + i(x) < I1~ II~amu exp -- min (u'(x), u-re(x)) are such that 
v a r k ~  is small for k<m.  For each symbol t/eA choose one-sided infinite 
sequences 2eZo, -geL'~ such that the composition 2t/-9 is admissible in 2:. Define 
Go(t/) = ll~(2t/p), t/cA, and inductively for m > 0, 

~m(t]) = ~C~tlY) - -  E [~k(t]--k'''~lk)' 
O<=k<m 

where r/= r/_~--. ~/m are words in Z of length 2m + 1 and ~, 9 depend merely on q_,, 
and ~/m. Clearly (~mECo/z)u(Z~.,) and satisfies by construction the following estimate 

v a r ~ m ( X ) < { ~  "varn ' f f j (x )= forf~ k>m.k~m' 
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Lemma 14. Let gr and let Lg:Cu,(~,O~Cu,(X1) be the transfer operator 
associated to g here as an operator from C~I/2)u(X) to itself, where u 1 > 0  is 
cohomologous to u. Then for all x~C(1/2)u(X), locally constant functions tl~m as 
introduced in the last paragraph and m > O, the identity holds: 

LgJ((~J~aJ)z) = Lgm((lI;ma'~)(1 - Lg)- 'Z). 
j>=m 

Proof. By the manipulations (as usual a comma parts the zero'th from the first 
coordinate) 

(Lj~maJZ)(x,y) = ~ ~ ffJ,n(rlj-,n+ l""tlj,Y~"'Y,n)Z(X, rly)expgJ(qy) 
j>=m j>m [rtl=j 

= ~, ~m(p, yx '"ym)expgr ' (py)~ ~ Z(x, 6py)expgk(6pY) 
[pl=m k > 0  [t~l=k 

= Lom(IBmam(1 - L o) - 'Z)(x, y) 

for (x, y)eZo x X x satisfying x y ~ X  and p6 = tle Tj, (p, 6)e T .  x Tk,j = m + k, so that 
xqy is admissible. [] 

A similar statement holds for some OeCuo(XO), Lg: Cuo(XO)~ Cuo(XO) and m > 0. 

Proof of Theorem 13. We proceed along the path led out in [13] and relate the 
Fourier transform tl~(og) = lzv(e~r) ~ e ~'~ Q(t)dt of the correlation function Q(t) to the 

R 
spectrum of the operators L r, and Ly,,, where f '  = f o -  icoro a - l ,  f "  = f l a  + io~rl 

are one-sided functions and f(~) = ~ (F(r t) - P*(F))dt. The moduti of continuity 
o 

u o, ux of f ' ,  f "  are cohomologous to u. Since f is real, the largest eigenvalues of 
L 0, L t are single and real, namely 1, as the pressure o f f  is zero. Let #, v be probability 
measures on Xo, X ~ which span the eigenspaces to the eigenvalues 1. For 
tl~og) = #v(e'q,o) we have in the sense of distributions (or by Fubini's theorem once 
we know that the integrals exist) 

r(~) 

q,o(r = ~ e~~ ~ ((Gq~,)H)(~, s)dsdt = ~r*,~(r 
R 0 

r(~) 

with M~o(~)= ~ e*~162 t)dt (similarly II~,o) and 
o 

II~*~,(~) = ~ e"~ O)dt 
R 

rS+ ~(r 

= E  J" d'~'G(r dt 
)~Z rJ(r 

= Y, e x p  (i~o(rl j - -  v ~ ) ( ~ ) ) ( e ~ ) ~ ( ~ )  
j>=o 

+ ~ exp(-- i~(ro j + Vo)(~))(eU~O~ 
j < o  

(r~ ~  O) where ro-*= roa-~ + ... + ro a-* for k >= 1. We decompose e i ~ ' ~  and 
ei~176 as described above and split I~)(co) (and thus the proof of the theorem) into 
three parts: 

~ o )  = Ql(~O) + Qo(O~) + Q.(~o), 
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where the summation over j is: (i)j > m, (ii)j ~ - m ,  (iii)]jl < m. This procedure 
will become clear in a second. The first and second summand will have poles which 
can be related to the poles of the zeta function, while the third term turns out to 
be analytical in the region of interest. 
(i) Let us first determine QI ,  and let v be the probability measure on ~1 spanning 
the eigenspace of L~* to the eigenvalue 1. Put 

~ l ,re( ~ = l'tv ( e~-i~ ~I-  ,o ~r, ~1 . . . .  a J e x p ( io)r lJ ) ) ,  

where ~ ~1 . . . .  = ei'~ is a decomposition of the kind described above. By 
m>0 

Lemma 14 we obtain for m fixed summing over j > m 

~l,m(o~) = ~ p(Ll*Jv)(e~-i~ . . . .  aJ)exp(iogrlJ)) 
j > m  

--  ~ v ( L / ' ( ~ x  . . . .  o-~)(1 - L ~ , , ) - X e ' - ' ~ ~  

where f "  = f l ~  + io~rr Drawing out L1 ~ yields (because Ll*v = v): 

I1~ 1,m(~o) = #v((r 1 . . . .  are) exp (imrlre)(1 - Lj..) - le~-io~v~ FI_ 1), 

where r . . . .  ~reexp(ioJrtm)~C(1/z~.(~.) depends only on positive coordinates and 
can be identified with a function in C.,(X1). In the next step we apply Corollary 10. 
Put ll~Lre, ~ for the contribution made by the eigenvalue ,t = ,1(io~) of L s. which is 

I~ 1,m,2(('O) = ~1)((I~1 . . . .  0 "m) exp (ie)rlm)Nx• 2Ll,x)- xvz(e-i'~ 

We have ~ ,m~- -~ l ,m ,~+Y~l . r e  , where the summation is over the discrete 

spectrum of LI,, and converges if we consider only finitely many 2's as we do if we 
decrease u slightly, The remainder Y~t,m is of the form (K = K~(io~ as in Corollary 10) 

7~21,,,(09) = p(Ll*mv)(l~l . . . .  are exp (ior l~)K(e ~- ~'~ ~I_ ~) ) 

= "lP (] r/]~__ m (~1 . . . .  trreK(e~-'~ 

Now [I/~ 1 . . . .  (~)1 < ell"ll = I[ ei'~176 11,/2), (exp - um(~) + exp - u -re(C)), and therefore 

where c I =< ell~ll~ Ile~'~,lr.~ll(~/~ull K(e ' -~ 'N_,o) l l~  o. As u is cohomologous to u~ 
which depends only on positive coordinates and since u-~am= u ~, we get the 
following inequation (with matrix maximum norm): 

[~l ,m[ ~-~C2 ~ ( exp  sup (Rf"re--u~mare)(x)+exp sup (IRf"re-u,m)(x)~ 
I~tl = m \ x~U(n) x~Utn) / 

< 2c 2 ]la~lle2~ll~f"-~ll~ ~, e x p ( R f  "m-  ulm)(r/~) 
I~{ =re 

< c3 ~ e x p ( R f ' -  u~)m(r/~), 
I~1 =rn 
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c2, ca > 0. Here we used that  (2J, a) is topologically mixing and A N > 0 for some N. 
The last two summations are over those r/for which the periodic points t/~ obtained 
by concatenat ing ~/with itself are admissible. We also used that ul"am(tl~~ = u tm(~~176 
Thereby with the variational principle 

IXl,~l _-< c4e me(f -le~r-u), 

c4 > 0, uniformly in m, and since by assumption P ( f -  I c e r - u ) <  0 the sum 
X1,  m converges for Ice > - ? to an analytic function X 1. To  reformulate the 

m > 0  
expression II)l,~,x recall that  Lo,a=LI,a • and the identities #~1 • =ei~177 
a*m#~l = exp(-icer-m)(2Lo,~)m#~l which corresponds to the choice (e, f l )=  (• 0) 
and #1~ •  e~-i~ for which we put  (e, f l )=  (0, ice) (2 is tied to the parameter  
value ice). We obtain by Proposi t ion 12, 

Q 1,m,~(C~ = # i l  • ((e -i,ov, ii~1 . . . .  )am exp (icerm))(1 - )~L i ,).)- 1#1 ~ • _ o~) 

= # a l z ( e - i ~  . . . .  )(2Ll,i)m( 1 - ALl,i)- l# i l •  

= #ii•  e -  i~  . . . .  )(1 - 2L 1,1)- 1 ~1 )  •  o )  - -  V l , m , i ( ( D )  ' 

involving the remainder 

Vl,m,i(ce) = fl~lZ(e-i~ . . . .  ) ~ (2Ll,i)t'#1~• 
O<p<m 

= v(~l,o,mame-i~ • ~ (~,Ll,~.)P-m#1~.• 
O<p<m 

which still has to be est imated.  There are constants cs, c6, c7 depending on 2 but  
not  on rn such that  ]lNi,~]]~<c5, I (# l i (~_ ,o) ) , [<c6 ,  r = l  . . . . .  t, 1 being the 
dimension of  IE~.~, and in the matrix maximum norm II Lx,x -~ II <_- cTp ~, P >-- 1. With 
the identity Ll*mv = v we get by the same argument  as in estimating Xl,m that  

IVw,,ll  < lcsc6c7m'v( ~ e'f"l~)(e-m'~" + e-""~)(rl')) ~ 12[ -p 
\ Inl = m  1 <p<m 

<= C8 Imteme{~f'-u~) ~ I~l- '  =< c9 lrnie-m', 
l<p<m 

uniformly in m, where c 8, c9 > 0 and p = log I,~l - P( f  - ~cer - u) is positive as [,~l is 
strictly larger than the radius e "<f- ~ . . . .  ) of the essential spectrum of Lf. .  Thus the 
series ~ Vl,m.X converges to a function W 1,x which is analytic for Rce > - ?. Since 

m > 0  

e-~~ = I1~ o we finally get 
m > 0  

I~  1,m,2 : #11• -- 2Ll , i ) -  i#11z(~-I- o,) + Wl,a(ce), 
m>O 

and 

QI(~~ = ~/~ilZ(G)( 1 - 2Ll,~)- 1Fq~l(H) + Yl(ce). 

The  summation ~ ~V1, ~ is finite and converges absolutely if we replace u by a 

slightly smaller u' > 0 since Lf,, then will have only finitely many discrete eigenvalues 
in the somewhat  bigger space C.,(I21), On the other  hand ?, which depends 
continuously on u, increases to its original value as u' approaches u from below 
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and we conclude that the remainder term Y1 = X l  + ~ WI,~ is analytic for 
IRcol < ~. 

(ii) For  •o we use the decomposition ei~'v~ = ~ Co . . . .  where the locally 
m>O 

constant functions Co,o,,, satisfy the same inequalities as @1 . . . .  . For  fixed m we 
obtain (this time the summation is over j < - m) 

~O,m(CO) = #V(Co,o,,ma -m exp(--  kor o-m)(1 -- L$,)- ld-u~176 

where f '  = fo - imroa- 1 and Co . . . .  a -  m exp ( -- imr o -")e C(1/z),(X) depends only 
on coordinates < 0. Using Corollary 10 we get with - io~ as parameter value for 
~: by the same argument as in (i) the following result: 

Qo,,,(co) = ~ (#1~(C,o)(1 - xLo,~)- l#~l(~-I_ ~,) + Wo,~(og)) + Xo(tO) 
K 

=. ~ fil~(G)(1 - xLo,~)- lfi~l(H) + Yo(Og), 
K 

where Xo,  Wo, ~ and Yo are analytic for I(o < ? and the summation is over the 
discrete spectrum of L$,. 

(iii) Finally ~ . .  The summation here is over IJl < m where, for fixed m, we get 
by the same argument as in estimating X 1,m the following bounds (as f and r are 
real) 

#(v e ~-i'~ o <~< m =  @1 . . . .  aJexp(io~rlJ)) 

<Clo ~ (LI*Jv)(IC1 . . . .  a J l e x p ( - ( b ) r l J ) )  
O<j<m 

= cll  E E e x p ( R f  " / -  ulm)(q ~176 
O__<j<rn I . l= j  

C12 E e-(m-j)infueJP(f-loJr u), 
O<j<m 

with Clo ~ II e *- ~,o~]i_i_,~ II ~ and c 1 i, c12 independent of m. Since P( f  - ~ogr - u) < 0 
and infu is strictly positive the double sum over j and m > j converges absolutely. 
Therefore 

( .... ZI(co)=#v e~-i~ ~ ~ C1 aJexp( i~r lJ) )  
m>=O ONj<m / 

is holomorphic in a~ for Ito > - 7 ,  and by the same argument one shows that 

Z~176 e~-u~176176 l<j<raE COoma-Jexp(--i~ 

is holomorphic for Ico< ~. 
The three paragraphs (i), (ii), (iii) together yield 

~(o9) = ~ fi~(G)(1 - tcLo,~)- ~/~1 (H) + ~/~.li(G)(1 - -  ) ~ L l , , 0 -  i/~la'L(n ) + "vhr((O), 
sr ,I 

where the remainder Y = Yo + "Vx + Z o + Z 1 is holomorphic in the strip [~o9] < ~. 
The eigenvalues x and 2 depend on ~o and therefore ~(o9) has a pole whenever 
either L I, or Ly,, has eigenvalOe 1. Thus, counting multiplicities, the poles 
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of ~(a)) coincide with the poles of ~ ( f - i o g r ) +  ~ ( f  + i~or). This proves the 
theorem. []  

7. Further Remarks 

(I) We give a short description of the Margulis measures for two-sided suspensions. 
For  f = 0 and e =/~ = - h, where h is the topology entropy of ~0,, one can define 
measures /~,~ supported on the local weak stable and unstable leaves by 
d/7 = eh(V~176 dt and d~ = eh(t-V')dvidt, where /~ ,  v~ are the measures on 270, 271 
which span the one-dimensional eigenspaces of L:,  and L:., to the eigenvalues 1. 
Similarly as in [4] Proposition 3.3 one shows that q~*-s/7 = e-hS/7, (P*s g =  e-hSv, 
s > 0 ,  where Vo,Vi account for the fact that the ceiling function r in our 
case is two-sided. These identities are the scaling properties of Margulis trans- 
versal measures. To show that/7, g are indeed transversal measures we observe 
that the strong stable leave through a point (xy, t ) eX ,  is locally given by 
{ ( x ' y , t + V l ( X ' y ) - - v l ( x Y ) ) : x ' ~ ,  o close enough to x} where the identification 
(z, r(z)) = (trz, 0) applies (the size of the neighbourhood over which x' varies depends 
on ]lv~ll~). Let Zx, Xx' be two functions defined on the weak unstable leaves 
characterised by the left-infinite sequences x, x ' e X o  and whose support is sufficiently 
small. If ~x, Z~, are equivalent under "sliding" along the strong stable foliation we 
have that X~(Y, t) = ~ , ( y ,  t + vl (x '  y) - vi(xy)) ,  assuming 0 < t + v~(x'y) - v l (xy)  < 
r(x'y). Hence one easily verifies that ~(Xx)= '7(Z~,) as the factor e -~v~ drops out. 
The same conclusion applies to/7, which therefore is a measure transversal to the 
strong unstable foliation. 

Margulis originally proved the existence of these measures for Anosov flows. 
The generalization to Axiom A flows is due to Bowen and Marcus [4] whose 
approach we essentially followed here. If we glue/2 and ~ along the flow we get 
the measure /7~ which up to a normalising factor is the measure of maximal 
entropy and which in this sense is locally of product form. 

(II) The transformation property (Ruelle [13] p. 107), q~*~t~ = e(~-~)~/7~ for 
semisimple x, 2, was with f = 0 and ]~ = - h  recently used by Pollicott [10] to 
show that for Axiom A attractors the non-weighted zeta function has an analytic 
extension to a halfplane Nz > h - e, for some e > 0, with the exception of a single 
pole at h (the topological entropy of the flow). This is a consequence of the fact 
that the eigenvalues of q~*s have moduli either 1 or bounded away from 1. It readily 
follows that the Fourier transform of the correlation function associated to the 
measure of maximal entropy is analytic in a uniform strip containing the real axis, 
apart from a pole at 0 whose residue essentially is the limit integral. 

(III) It is natural to ask how Theorem 13 can be extended to Axiom A flows 
in general. By a well known result of Bowen [2] an Axiom A flow is semi-conjugated 
to a suspended flow whereby the ceiling function essentially measures the time it 
takes for points on small pieces of hypersurfaces which are transversal to the flow 
to flow up to the next one in order. As pointed out such a ceiling function has the 
regularity we assumed r to have. However the construction of the partitions is 
subject to some arbitrariness, as points on the forward and backward projected 
boundary set usually have several distinct symbolic descriptions. With regard to 
the zeta function the over-counting of periodic orbits which results from this 
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ambiguity was eliminated by Manning and Bowen through considering auxiliary 
suspensions (see [3]). The difficulty here is that a functional f i~ does not necessarily 
correspond to anything alike on the original system. One needs a Bowen-Manning 
formula for correlation functions (although for Anosov flows on three dimensional 
manifolds one can do without). For  diffeomorphisms partial results in this direction 
were obtained in [12] Sect. 5. 

(IV) There is no pole at 0 if we consider the expression fz((Gq~,)H) - [t(G)fi(H) 
as the correlation function of F, G, the Fourier transform of which is analytic in 
a strip containing the real axis if the zeta function ( ( f  + zr) has an analytic extension 
to the halfplane ]Rz > P(F) - e for some positive e with the exception of a single 
pole at P(F). By the theorem of Payley Wiener the correlation function decays 
then exponentially fast, provided it satisfies some L 2 integrability condition. By 
suspending a locally constant function Ruelle [14] constructed an Axiom A flow 
which does not mix exponentially fast. The Fourier transform of its correlation 
function has poles arbitrarily close to the real axis which is expressed in the fact 
that the zeta function has poles arbitrarily close to the line R z  = P(F). However 
the following corollary tells us that Axiom A diffeomorphisms always mix 
exponentially fast as the Fourier transform of Q(T) is periodic. A proof  without 
invoking the zeta function is in [3] 1.26. 

Corollary 15. ([12]) Suppose (~,, a) is topologically mixing and let # be the unique 
Gibbs' state for some real valued f eCo(Z, ), for some constant 0 > O, whose pressure 
is P. Then for given G, HEC(1/2)o(• ) the Fourier transform ~(co) of the "discrete 
time" correlation function 

Q(T) =#((GaT)H), TeZ ,  

is meromorphic in the strip {co~ll~:l[col < 0}. Furthermore if K is an eigenvalue of 
Lo* (and LI*) with an eigenspace whose basis is linearly mapped by the (Jordan) 
matrix Lo, ~ (and Ll,,), ~(co) is up to a function analytic for IRco I < 0 equal to 

(#,~(G)(1 -- ~.e-~'~ - ' # , l (n )  + #~l• - ~:e"~ - I #,~" (H)). 
K 
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